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Path-integral simulation of the superAuid transition in two-dimensional He
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The superfluid transition in a two-dimensional He system has been studied using computational-
path-integral methods. Thermodynamic and structural properties, the single-particle momentum
distribution, the one-particle off-diagonal density matrix (or order-parameter correlation function),
the momentum correlations, the superfluid density (based on the winding-number distribution) and
the vorticity correlation function were calculated for temperatures above and below the superfluid

0
transition for a film density of 0.0432 A (which corresponds to zero pressure in the ground state).
The order-parameter correlation function shows an algebraic decay in good agreement with spin-
wave theory. An indirect estimate based on an analysis of finite-size effects using the Kosterlitz-

0
Thouless recursion relations leads to a vortex diameter of 3.7+0.4 A, a vortex core energy of
2.7+0.2 K and a critical temperature of 0.72+0.02 K.

I. INTRODUCTION

The superAuid transition in bulk three-dimensional He
is associated with macroscopic occupation of the zero-
momentum state (Bose condensation). In He films at
nonzero temperature there is no Bose condensate; howev-
er, a superAuid transition is still observed. In the theory
of Kosterlitz and Thouless (KT), ' the transition from
superAuid to normal is associated with the unbinding of
pairs of vortex excitations with opposite circulation. Un-
like the continuous decrease in the superAuid density ob-
served in three dimensions, the theory predicts a univer-
sal jump in the superAuid density at the critical tempera-
ture. The theory also associates a change in the order-
parameter correlation from an algebraic to the usual
high-temperature exponential decay with the onset of this
vortex unbinding and suggests a bump in the specific heat
above the critical temperature due to the gradual dissoci-
ation of these vortex pairs. Specifically, the order-
parameter correlation below the transition temperature is
predicted to decay as l/r" with ri=mkT/2m' ps, and.
the jump in the superAuid density at the transition is

This last prediction is well supported by experiment.
It has recently been shown that path-integral computa-

tions can be used to give a microscopic description, based
only on an interatomic potential, of the superAuid transi-
tion in three dimensions, which agrees with experiment
to within the uncertainties of the computations due to
Monte Carlo statistical Auctuations and the finite-size
effects of the periodic systems used (hereafter referred to
as I). In this paper these techniques are used to study the
superAuid transition in two dimensions.

In the next section the computational-path-integral
method is brieAy summarized leaving the details to the
references. This method is applied to a periodic two-
dimensional system of He atoms interacting through the
Aziz (HFDHE2) pair potential. A film density of 0.0432
particles/A was used which corresponds to the zero-
pressure density for this system in the ground state.
This interparticle spacing is considerably larger than in
the zero-pressure three-dimensional system since the ki-
netic energy is here relatively more important than the
potential. In Sec. III the potential and kinetic energy,
pressure, and the structural properties are presented.
The presence of a superAuid is most fundamentally relat-
ed to long-ranged momentum correlations. These
momentum correlations are discussed in Sec. IV along
with the superAuid densities. The finite-size rounding of
the transition is analyzed using the KT recursion, rela-
tions to estimate a vortex diameter of 3.7+0.4 A and a
vortex core energy of 2.7+0.2 K. The Fourier transform
of the one-particle off-diagonal density matrix
(OPODDM) (which corresponds to the order-parameter
correlation) gives the single-particle momentum distribu-
tion. These are presented in Sec. V. The OPODDM in
two dimensions shows algebraic decay (i.e., inversely pro-
portional to some power of the distance) at low tempera-
ture rather than going to a nonzero constant as in three
dimensions so the momentum distribution display no
macroscopic occupation of the zero-momentum state al-
though it is singular at zero momentum (considerably less
so than the 2D ideal Bose gas, however). The computed
algebraic decay of the OPODDM at low temperature is
in good agreement with the spin-wave prediction using
the computed superAuid densities. In Sec. VI an attempt
is made to see the vortex unbinding, proposed as the un-
derlying mechanism in the superAuid transition, directly
by computing the vorticity correlation function. No
direct indication of such a transition is seen.
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II. COMPUTATIQNAL ASPECTS

Path integrals, introduced by Feynman in his theory
of the three-dimensional superAuid transition, are in-
creasingly being used in the computer simulation of real-
istic quantum many-body systems. The basic discretized
path-integral formula is derived by inserting complete

sets of states into the following identity for the many-
body density operator:

PH—
(

—rH)L

written here for an inverse temperature or "imaginary
time" 13:—I/k&T with r=P/L. In real space this gives
an expression for the density matrix

p(R, R', I3)=&R ~e ~" ~R )

=f fp(R, R)', r)p(R), Rq', r) p(RL ),R', r)dR)dR2 . dRL (3)

as a sum over all discretized paths of terms involving the
density matrix at a higher temperature. In the preceding
equation R denotes a dX-dimensional vector for an 1V

particle system in d dimensions. Bose statistics are intro-
duced by symmetrization

p „s,(R,R';P) = g p(R, PR ',f3),
' p

(4)

over permutations, P, in an N particle system.
The density matrices in Eq. (3) correspond to a higher

temperature (shorter "imaginary time") so that for
sufficiently small ~ an accurate approximation for these
high-temperature density matrices may be used. Here,
and in previous work on superAuid He, a pair product
approximation was used for this. ' The error in this ap-
proximation may be shown to decrease as ~ ." A value
of r corresponding to I/40 K has been found to give re-
sults accurate to within the statistica1 errors of the Monte
Carlo methods employed in these computations. The
pair-density matrix entering this approximation was com-
puted from the 2D Bloch equation for the Aziz potential.
Details of the Monte Carlo computations may be found
in Refs. 6 and 11. As discussed in I, the superAuid densi-
ties were calculated based on the mean-squared number
of times the paths in the path integral wound around the
periodic ce11. Generating path configurations with a
nonzero winding number requires a global move which
restricts the system size for which superAuid densities can
be computed. In the superQuid density computations a
periodic system of 25 particles was used. There is no
such restriction in computing the single-particle momen-
tum distribution, so 62 atoms in the periodic cell were
used for these.

A typical path configuration is shown for a T=2.5 K
system in Fig. 1. Here four cells of the infinite periodic
system are shown. In this snapshot the arrows are direct-
ed between every second point on the individual particle
paths. (Plotting every point on the particle paths gives a
more confusing plot. ) The solid dots give the particle po-
sitions at what is arbitrarily taken as the imaginary time
zero. The size of the particle paths is given roughly by
the thermal deBroglie wavelength. At T=2.5 K this size
is -much less than the average interparticle spacing and
consequently there are no permutations. Only the identi-
ty permutation contributes in Eq. (4).

In Fig. 2 for a temperature T=0.8 K near the

I

superAuid transition, the particle paths overlap and
numerous permutations are seen since the paths of many
particles may now interconnect. This configuration has a
winding number of 1 in both the x and the y directions.
The winding path is highlighted in the figure. In inter-
preting these paths according to Eq. (3), it is seen that
particles only interact with other particle% at the same
"imaginary time" or at adjacent "imaginary times. " For
example, R2 only appears with R& and R3 in the in-
tegrand of Eq. (3) and not with the other R's. So unlike
the picture of a system of classical polymers, the paths
here can cross themselves in 2D. A three-dimensional
plot with imaginary time as the third dimension would
make this clearer. At high temperature where the
thermal deBroglie wavelength is shorter than the range of
the interaction, such crossings are rare, but at low tem-
perature they become very frequent.

FIG. 1. Typical path configuration at T=2.5 K. Arrows
connect every second point on the individual particle path. The
solid dots give the various particle positions at the same "imagi-
nary time" instant. Four cells of the periodic system are shown.
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FIG. 2. Typical path configuration at T=0.8 K. Only one
periodic cell is shown here. The dark arrowheads and light-

gray line indicate a path winding across the unit cell in both the
x and y directions.

III. THERMODYNAMIC
AND STRUCTURAL PRE)PERTIES

The various averages giving the thermodynamic and
structural properties may be straightforwardly computed
from the many-body density matrix as discussed in I and
in the references. The kinetic, potential, and total ener-
gies and pressures are compiled in Table I.

Figure 3 shows the total energy as a function of tem-
perature. At sufficiently low temperature, phonons are
the only excitations and the energy approaches

E=EO+c3T + .

where

T (K)

FIG. 3.. (a) Total energy per particle in K vs temperature.
The squares are data from Table I. The line is a (5,4) Pade fit to
the data with the high- and low-temperature forms as con-
straints. The arrow gives the approximate location (see Sec. IV)
of the Kosterlitz-Thouless transition. (b) The specific heat vs

temperature. The squares with error bars are obtained by
differencing the energies of Table I while the line is the deriva-
tive of the Pade fit to the energies.

TABLE I. Summary of simulation results for 2D He film with surface density p=0.0432 A and
N=25 particles in the periodic cell. The kinetic (KE), potential ( U), and total energies (E) are in

0
K. The surface pressure (P ) is in K/A . The statistical uncertainty in the least significant figure is

given in parentheses. The T=O.O K values are quoted from Ref. 8.

T. (K)

0.00
0.50
0.667
0.80
0.889
1.0O

1.05)
1.111
1.177
1.290
1.48
2.0
2.5

—0.001
0.0038(2)
0.0049(2)
0.0062(2)
0.0071(2)
0.0086(1)
0.0096(2)
o.olo4(1)
0.0116(2)
0.0132(1)
0.0164(2)
0.0237(4)
0.0317(4)

(KE)
3.9(1)
3.977(6)
4.053(9)
4.168(9)
4.235(9)
4.375(9)
4.497(9)
4.571(9)
4.688(9)
4.860(9)
5.118(9)
5.67(2)
6.18(2)

—4.7(1)
—4.795(4)
—4.824(5)
—4.869(5)
—4.886(5)
—4.916(4)
—4.936(6)
—4.961(4)
—4.978(5)
—5.013(5)
—5.055(5)
—5.17(1)
—5.25(1)

—0.85(3)
—0.818(5)
—0.771(6)
—0.701{7)
—0.651(9)
—0.541(7)
—0.438(9)
—0.390(7)
—0.290(7)
—0.153(6)

0.064(6)
0.51(1)
0.94(1)

1.0
0.94(8)
1.00(8)
0.82(7)
0.69(10)
0.59{5)
0.44(6)
0.35(4)
0.27(5)
0.15(3)
0.015(10)
0.0
0.0

g "(r)

1.23
1.25
1.26
1.275
1.281
1.288
1.295
1.301
1.306
1.316
1.329
1.356
1.379
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1.0
p = J(p(r) p(0))dr'

0.8—

0.6—
I-
O.

0.4—
and

G~(r)
=p 13(K)+f2~pr, dr

mkTp

mkT
Gs(&) —

S s 2'

(9)

0.2— It is interesting to note that, in the limit of small imagi-
nary time steps (r—+0), the momentum-density auto-
correlation function is given by the correlation between
the directed path segments. Using Eqs. 38 and 39 of I,

2m 2
1 dr; dr&G(r)=, p —g ' 5(r —r,, l),

, d~ dz

10 2

EL

10 3

10
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where dr/d~ is the path segment length divided by the
imaginary time step. Thus the path segments in, for ex-
ample, Figs. 1 and 2 can, when divided by the imaginary
time step, be viewed as a "velocity" field in calculating
the momentum correlations and superAuid densities.
Within one polymer the direction of the arrows can be re-
versed to generate an equally likely configuration assum-
ing this polymer is not too close to another polymer. But
this reverses the relative velocity with particles on other
polymer loops, thus the main contribution to G comes
from pairs of atoms on the same polymer loop. Thus a
superAuid response is only possible when there are long
polymers involving many particles present.

Figure 7, showing 2m G&(r)jmkTp and 2vrG+(r)lmkTp
for temperatures below and above the superAuid transi-
tion temperature, demonstrates the change in the large r
behavior of Gs(r). The G~(r) component is qualitatively
unchanged through the transition. These curves are simi-
lar to those for the 3D system.

Another display of the momentum-density correlation
function is given by the vector-field plot in Fig. 8. The
short-range correlations are negative, which from Eq. (9)
is needed to reduce the normal fraction below 1 since
P(K) is always greater than 1 (see Table I). The weak
dipolar field at large r is, from Eq. (10), only present in
the superAuid case.

It is dificult to accurately estimate ps from the larger r
behavior of the Gs(r) curves above. The superfiuid frac-
tions given in Table I were obtained from the mean-
squared winding number, W, defined by

10
10 N

g (rr, —r, )=WI. , (12)

FIG. 6. (a) P, (T), the probability an atom is not involved in
an exchange. At T=.0.7 K = T„only about

~
of the atoms are

involved in exchanges. At high temperature T ) 1.5 K, the ex-
changes are thermally activated, while at low temperature
P&(T) is linear. (b) Pz(T) for n =2—6. At high temperature
each segment in the exchange path costs energy (E, ) and—nPE
P„(T) ~ e '. (c) Plot of cycle length distributions at 4 tem-
peratures for ¹25.At the lowest temperature 2 particle ex-
changes are slightly favored. At zero temperature all cycle
lengths would be equally probable [I'I( T)~ 1/%=0.04].

where L is the periodic cell length, through the relation

Ps m (W')
2pi3

(13)

as derived in I. These are displayed in Fig. 9 along with
the solid line indicating the universal jump in the
superAuid fraction for a large system. This universal
jump formula implies that the mean-squared winding
number, ( 8' ) jumps from 0 to 4/m. at the transition in
an infinite system. The finite-size effects for the periodic
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system cause considerable rounding of this transition.
It has been suggested that finite-size effects in He films

may be accounted for in the Kosterlitz-Thouless recur-
sion relations by restricting the maximum separation of
the vortex pairs, assumed responsible for the superAuid
decrease (or dielectric shielding in the analogous
Coulomb gas model) to the system size. ' Applying this
idea to the present simulations gives the dashed line in
Fig. 9.

Specifically the KT recursion relations

(14)

are integrated to l :=ln(r/d)=in(L/2d) rather than to
~. Here,
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FIG. 9. Graph of computed superAuid fractions (open cir-
cles) for a periodic system of N=25 particles. The solid line
from the origin is the universal jump condition, Eq. (1). The
long dashed line is a least-squares fit to the data using the KT
recursion relations. This gave a best fit vortex diameter of
3.7+4 A and core energy of 2.7+0.2 K. The dot-dashed line is
the predicted superfIuid fraction for a periodic system of
N=100 particles using the recursion relations with the best fit
parameters determined from the N=25 simulation results. The
solid curve is the infinite system result for these parameters giv-
ing a transition temperature T, =0.72 K.
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The "vortex core diameter" d and "vortex core energy"
E, were obtained by a least-squares fit of the solution of
Eq. (14) to the data of Table I to give d =3.7+0.4 A and
E, =2.7+0.2 K. Since these parameters should not
change with system size, it is possible to estimate the re-
sults of simulations on larger systems. For example, the
case of 100 particles in the periodic cell is indicated by
the dot-dashed line in Fig. 8.' Using these parameters,
the critical temperature is estimated as T, =0.72+0.02.

Clearly, this analysis of finite-size eftects, as well as the
estimates for d and E„are approximate. The procedure
described earlier does not distinguish periodic boundary
conditions from a finite system in vacuum (aside from us-
ing L/2 rather than a length closer to L for the vortex
separation cut off) and the KT relations are derived for
the case of low vortex derisity. There is thus an ambigui-
ty in the definition of d, but the goodness of the fit is re-
markable. Our estimated T, agrees with the experimen-
tal value of T, =0.75 K at p =0.0460 A (Ref. 14).

Since the full many-body density matrix is available
from the simulation, it should be possible to study, direct-
ly, the equilibrium vortices, but a method for this has not
been determined. A first attempt along these lines is
made in the last section.

V. ORDER-PARAMETER CORREI.ATIONS
AND THE SINGLE-PARTICLE
MOMENTUM DISTRIBUTION

The single-particle momentum distribution, which re-
sults from writing the many-body density matrix in
momentum space and integrating out all the particle mo-
menta but one,

2

n(k)= Jn(»)e
(2m. )

(15)

is the Fourier transform of the one-particle oft:diagonal
density matrix

=1 p(r], r2 . r]v r]+» r2 . rN P) dr]dr2 (16)

(a)
I I I I I I

l
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I I I I I I (I-

T =0.67 K T=1.08 K

0.1 = 01 =

0.01 = 0.01 =

0.001
10 100

0.001
10 100

(c)

0.1 =

1 0

t ], ~
I

v~

I I I I I I ii

T=1.18 K

10—

1.0

0.1

T = 2.0 K

0.01 = 0.01—

0.001
10

I I I I I I II

100

0.001—
I

5
I

10

r{A)

FIR. 10. One-particle off-diagonal density matrices at the indicated temperatures. The upper and lower solid curves in a, b, and c
indicate the estimated statistical uncertainty. The solid line in a, b, and c is a fit to the data for r & 6.0 to the form n (,r) =ar
semilog plot is used for the highest temperature case, T=2.0 K, Fig. 10(d).



39 PATH-INTEGRAL SIMULATION OF THE SUPERFLUID. . . 2091

io'
I I I I

1.0
I
1

I

1

1

0.5—

&=0.67 K

1.0

0.5—

10

|0 2

4 5 6 7 8 910

0
0

C:

1.0

0.5

1.0 2.0

1.0
I
I
I
1

l
l

~ g

0.5 ~ I
il

1.0

T = 2.0 K

2.0

FIG. 11. As m ty p otes for the one-particle off-diagonal density
matrix at the indicated temperatures (solid lines). The dashed
lines give the estimated upper and lower bounds for the zero
temperature condensate fraction computed in Ref. 11. The
asymptotes for the three lowest temperatures intersect (indicat-
ed by arrow} at r =d= 3.7 A at a value of =0.22.
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FIG. 12. SinSingle-particle momentum distributions at the indi-
cated temperatures (solid lines). The long-dashed lines are for
the ideal BBose gas. The short-dashed lines are for the Gaussian
approximation of Eq. (17).

where Z is th e partition function and insures that
n(0)=1.0. In the ap th-integral picture rn(r) is propor-
tional to the end to end distribution for a set of paths
where one path is not closed but has free ends. A fuller
discussion is given in Ref. 15. As first detailed by Pen-
rose and Onsager, ' n (r) also describes the correlation
function for the macroscopic wave function for the sys-
tem.

Figure 10 displays the computed n (r) with error bars
the upper and lower solid curves) at several indicated

temperatures. The solid line in 10(a), 10(b), and 10(c) in-
dicates a least-squares fit for the al be a ge raic decay

n r = r ~ to the large-r part of the curves. Recall
that in 3D n (r), n r& goes to a constant value giving the con-
densate fraction (percentage of t' 1

'
hpar ic es in the zero-

momentum state). ' For the T=2.0 K
t e large-r (r )6) data is slightly better fitted b

Values for g obtained this way are given in Table II
herein and compared with the spin-wave prediction
ri=mkT/2vrA ps using the computed 1 fp& va ues rom

According to the universal jump formula, E . (1),
g=0.25 at the transition in a large system. The agree-
ment between i) based on n (r) a d thn e spin-wave predic-

t&on is remarkable, extending out to temperatures where

g is as large as 1.
Figure 11 shows the asymptotic form of n (r) at several

indicated temperatures. It is seen that the low-
temperature n (r)'s come together at r =d=3.7 A and
n ( d ) =0.22. This value is consistent with the zero-
temperature condensate fraction calculated with Green's
Function Monte Carlo (0.36) no )0.22).

Figure 12 displays the single-particle momentum distri-
butions obtained by transforming the n (r) of Fig. 10.
There is no momenentum condensate in these systems but
the distribution is singular at low wave vector although
considerably less so than the ideal Bose gas shown for
comparison by the dashed lines at the highest and lowest
temperature. The dot dashed line in Figs. 12(b) 12(c)
and 12 d(', are fog the Gaussian approximation

1gs. , c,

g2
n(k)=

2irm (K )
exp( —A'k'/2 (mK ) )

For 3D HD He at saturated vapor pressure (SVP), this ap-
proximation gives a much closer description to the non-
condensed part of the momentum distribution

TABLE II. Com arip son of the algebraic decay exponent of the corn uted or er
tion with the spin-wave-theory prediction

o e computed order parameter correla-
0

T (K)

7l

mk T/2m62p~

0.666

0.19(3)
0.21(3)
0.27

0.59
0.52(4)
0.45

1.08

0.85(4)
0.82(5)
0.60

1.18

1.94
1.3(3)
0.46

1.48

2.5(2)

6.2

2.0

3.9

49.0
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FIG. 14. Vorticity density correlation function m8'(r)/p (in
o 4

KA ) for the temperatures of Fig. 13. The two highest peaks
at r =3.0 correspond to T=2.0 K and T=2.5 K.

k(A )

I

6 Writing G(r) in momentum space as

(22)

FI&. 13. p~(k)/p for the indicated temperature (in K).

VI. VORTICITY CORRELATION I'UNCTION

the expression for W(k) simplifies to

f W(r)e'"'dr =W(k)= k p~(k) .
mP

(23)

the vorticity density correlation function

W(r —r') = W( ~r —r'~ )
—= ( I (r}.I (r') ) . (19)

In order to see directly the proposed vortex-unbinding
mechanism, the vorticity density correlation function was
computed. Based on the vortex-unbinding picture one
might anticipate a single well-defined negative peak at
temperatures below the transition corresponding to
bound vortices of opposite circulation separated by some
distance greater than the core diameter. Above the tran-
sition temperature this peak should broaden as the vor-
tices unbind.

Using the usual definition of vorticity density

I (r)—:VX (r)

Figure 13 herein shows p~(k) for a range of tempera-
tures above and below the transition temperature. From
Eqs. (7) and (9)

T

p&, small k

pP(K ), large k, (24)

and p~(k)+pz(k) =p by the f sum rule. '

Figure 14 displays the W(r) obtained from the p&(k)/p
of Fig. 13 using Eq. (23). Very little temperature depen-
dence is seen. All of the structure for r & 3.7 A is associ-
ated with the vortex core. Vortex unbinding would ap-
pear at large r and is apparently below the resolution of
this calculation. The question of how to study equilibri-
um vortices in these types of simulations merits further
consideration.

After a little algebra this can be expressed in terms of the
previously discussed momentum-density correlation func-
tion ACKNOWLEDGMENTS

m W(~r —r'~)= —V TrG(r —r')+VV:G(r —r'),
which takes the simple form in k space

m W(k)=k TrG(k) —kk:G(k) .

(20) We thank D. J. Thouless for his comments. This work
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ment of Energy by the Lawrence National Laboratory
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