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We use the exact eigenstate formalism to construct a gauge-invariant theory for correlation func-
tions for disordered superconductors. The density response and the longitudinal and transverse
current response at zero temperature are calculated explicitly for Bardeen-Cooper-Schrieffer (BCS)
superconductors with arbitrary amounts of disorder. At small frequencies and wave numbers this
can be done analytically, and we discuss the coherence length, the penetration depth, and the
Anderson-Bogolubov mode at various degrees of disorder. We then calculate the longitudinal
dielectric function numerically for larger frequencies and wave numbers. We find that the disorder
does not change the absence of low-lying collective modes in charged superconductors. Implica-
tions for the quasiparticle inelastic lifetime are discussed.

I. INTRODUCTION

Superconductors differ drastically from normal metals
in their transport properties. Specifically, it was the dc
conductivity being infinite that first caught Kamerlingh
Onnes’ attention. It is therefore remarkable that even
after Barden, Cooper, and Schrieffer (BCS)! developed
their microscopic theory, it took some time until the
transport theory for superconductors was fully worked
out. The difficulty was connected with the problem of
gauge invariance, which is not easy to handle in a system
where interactions are of qualitative importance. The
BCS paper included a description of the transverse elec-
tromagnetic response, albeit not a gauge-invariant one,
but it could not deal with the longitudinal response.
Many authors have contributed to a clarification of this
point,? but the final solution is usually connected with the
names of Anderson,> Bogolubov,4 and, on a more techni-
cal level, Nambu.’> The main result was that gauge in-
variance is restored by a longitudinal collective mode.
This is the Goldstone boson which arises due to a spon-
taneously broken symmetry in the superconductor. In a
hypothetical neutral superconductor this Anderson-
Bogolubov (AB) mode is soft and lies in the gap. It can
be interpreted either as a first soundlike mode propaga-
ting in the condensate, or as bound electron pairs with
nonzero momentum. In the physical case of a charged
superconductor, the AB mode is ‘““pushed up” to high fre-
quencies by the Higgs mechanism,® and becomes indistin-
guishable from the plasmon. In a real superconductor,
there is therefore no collective mode at small frequencies
and wave numbers. This holds at low temperatures,
which we will be interested in. In the immediate vicinity
of T, the situation is much more complex, and low-lying
collective excitations do exist.’

The methods of Anderson and Bogolubov can be ex-
ploited analytically in the limit of small frequencies,
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o << A, and wave numbers, g& << 1, where £ is the coher-
ence length and A is the gap. For many applications,
however, it is necessary to know the dielectric function €
at larger g and . An obvious example is the quasiparti-
cle lifetime due to Coulomb scattering. Prange® has used
Nambu’s Green function technique to reduce the calcula-
tion of e(q,w) to the task of performing three Kramers-
Kronig transforms, which can be easily done numerically.
He has discussed the longitudinal dielectric function in
detail, and has emphasized that the question of whether
or not there is an s-wave collective state in the gap of a
BCS superconductor is of quantitative rather than of
qualitative nature. There is no physical principle which
prevents the dielectric function from having a zero in the
gap, it is just that the numbers work out such that it does
not.

Due to the work mentioned previously, the electromag-
netic response of clean BCS superconductors is complete-
ly known. The same is not true for disordered supercon-
ductors, which have become of great interest in recent
years.” As our understanding of these systems develops,
the lack of theoretical knowledge about their electromag-
netic response becomes more and more of a stumbling
block. A recent strong coupling theory for disordered su-
perconductors'® neglected inelastic processes for lack of
information about the dielectric function. On the other
hand, there is some evidence that disorder enhanced
Coulomb scattering of quasiparticles is important at
strong disorder.!! A calculation of inelastic lifetimes in
superconducting films'? used the Coulomb propagator of
the normal metal, thus neglecting the gap in the elec-
tromagnetic response. This is not satisfactory, since it
strongly underestimates the lifetimes below T,. Another
field for potential applications of €(g,w) is nonequilibri-
um superconductivity. Existing theory treats the various
pair-breaking rates as phenomenological parameters.!3
In clean systems close to equilibrium, pair breaking due

2072 ©1989 The American Physical Society



to both electron-phonon scattering'* and Coulomb
scattering'® has been calculated microscopically. The
electron-phonon contribution is by far the dominant one.
This is expected to change in disordered systems,!! and a
calculation of the Coulomb scattering rate for this case
would be highly desirable. Again this is not possible
without a reliable theory for the dynamically screened
Coulomb potential.

It is the purpose of the present paper to improve on
this point. We will provide a practical scheme for calcu-
lating the dielectric function of arbitrarily disordered su-
perconductors. For explicit calculations we will restrict
ourselves to the BCS model, where the interaction is re-
placed by a separable model potential, and only the gap
parameter is kept instead of the full self-energy. It has
recently been shown!®!? that additional self-energy parts
are important in disordered superconductors. These
effects can be included in the present formalism, and will
be addressed in the future.

This paper is organized as follows. In Sec. II we use
Anderson’s exact eigenstate method'® and Nambu’s
Green function formalism to construct a conserving ap-
proximation'” for arbitrary four-point correlation func-
tions for arbitrarily disordered superconductors. This is
achieved by essentially rewriting Prange’s equations® in
the exact eigenstate basis. We then solve the resulting in-
tegral equation for the density and the current response,
which determines the dielectric function, the conductivi-
ty tensor, and the magnetic susceptibility. Then correla-
tions are expressed in terms of the corresponding correla-
tion functions for normal conducting electrons. In Sec.
II1, the response functions and the related dielectric func-
tion at small g and o are calculated analytically for clean,
diffusive, and critical (i.e., close to a mobility edge) nor-
mal conducting electron dynamics, respectively. In the
clean case we recover the well-known results. The
diffusive and critical cases allow for a discussion of elec-
tromagnetic absorption, the relevant length scales, and
the AB mode as a function of disorder. In Sec. IV we cal-
culate the dielectric function numerically outside the long
wavelength limit. Finally, we discuss our results with
respect to various applications.

II. A CONSERVING APPROXIMATION
FOR CORRELATION FUNCTIONS

A. Electromagnetic response and correlation functions

The longitudinal dielectric function e€(q,w) of an elec-
tron liquid can be written as'®

e(q,0)=1+v(qQ)x,(q,®) . (2.1)

Here v(q) is the bare electron-electron interaction, and
Xsc is the screened or irreducible polarizability. It is con-
nected with the full polarizability y by

Xsol@0)=x(q,0)/[1—v(q)x(q,0)], (2.2)

but is most easily defined diagrammatically as all contri-
butions to the polarizability which are irreducible with
respect to the interaction. The use of y,. rather than Y
takes care of the most drastic manifestation of the long-
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range part of the interaction, viz., screening, and Y, de-
pends only weakly on the interaction. In fact for normal -
conducting electrons it is an acceptable approximation
[namely random-phase approximation (RPA)] to replace
Xsc by the Lindhard function for the noninteracting sys-
tem. In a superconductor, the situation is more compli-
cated. X, is dominated by the effective attractive interac-
tion, which can not be neglected without abandoning su-
perconductivity altogether. The problem is then to keep
the interaction in Y, in such a way that gauge invariance
is maintained.

Gauge invariance implies particle number conserva-
tion, which enables one to obtain the longitudinal current
response or the conductivity o from the density response.
The connection is'®

0(q,0)=—ie (w/q*)x.(q ) . (2.3a)
In particular, the real part of the homogeneous longitudi-
nal conductivity, o'(®), is given by

o'(w)= lix%ez(a)/qz))(sc "(¢g,0) . (2.3b)
q—>

Here
X" (§,0)=Imy,(q,0+i0)
and

o'(w)=Reo(w+i0) ,

are the dissipative parts of y,. and o, respectively.'®

The analogous correlation functions in the transverse
channel determine the magnetic response of the system.
The magnetic susceptibility Y, in terms of the transverse
current correlation y reads'®

2

Xor(@,0)=————[xr(qw)—n/m] . (2.4a)
cg°—w
The static magnetic susceptibility is
e? .
Xm(q)=—"—[xr(g,i0)—n/m], (2.4b)
cq

where n and m are electron density and mass, respective-
ly. Notice that for the longitudinal current correlation
one has x;(q,i0)=n/m. In a normal conductor, longi-
tudinal and transverse response are indistinguishable in
the long-wavelength limit. Therefore

Xr(g,i0)—n/m=0(q? ,

and Eq. (2.4b) yields the Landau diamagnetism. In a su-
perconductor, ¥ r%X; even for ¢g—0, and Eq. (2.4b) de-
scribes magnetic screening. The penetration depth A is
defined by

Xulg—0)=(—1/47)Ag)" 2. 2.5)
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and we first consider correlation functions which have
not been ensemble averaged. In this situation it is con-
venient to work in real space. We use Nambu’s matrix
notation,’ and rewrite the equations given in Ref. 2 for an
arbitrary 4-point correlation function as

B. Gauge-invariant correlation functions

We now proceed to construct gauge invariant expres-
sions for the various correlation functions introduced in
the last section. We are interested in disordered systems,

XXX, iQ)=—T 3 fdx'ldx'l'dxgdx'z'tryv(x’l’xlx',)G(x'lx'z,ia)—iﬂ)T#(xéxzxé',iﬂ)G(x'z'xi’,ia)) , (2.6)
iw

f’u(xlxsziﬂ)=7/“(x1x2x3)— TY fdxédx'z'ﬁG(xlx'z,ia)—iQ)f‘#(x'zxzx'z',iﬂ)G(xé’x3,iw)7'3 V(x;x;) . 2.7
i

These equations are shown graphically in Figs. 1 and 2. Here ¥ and T denote unaveraged correlation functions and ver-

tices, respectively. I', the bare vertex y, the Green function G, and the Pauli matrix 7, are all 2 X2 matrices, and tr

denotes the trace. We are using the Matsubara formalism here. The corresponding zero-temperature correlations can

be obtained in the end by the analytic continuation iQ)—w+i0. V denotes the effective attractive interaction. In what
follows we will use for simplicity a pointlike interaction:

V(XIXZ)= Va(xl—X2) .

This allows for an easy solution of the integral equation for I',. It introduces, however, ultraviolet convergence prob-
lems which will be dealt with in Sec. III. The bare vertex ¥, determines the correlation under investigation. For in-

stance, the screened density correlation is
Xsc(X1X2,i Q) =Xo(X1X5,i Q) ,

with the density vertex
Yol X1XX3) =738(X;—X,)8(x, —x3) .

Likewise, the transverse current correlation is
Xr(X X0, i) =X (X;Xp,i Q) ,

with

i(k—q/2)(x;—x3)+iq-(x;—x

Yr(xxx3)=1 e 2)%k-eT(q) ,

k,q

where 1 is the 2X2 unit matrix, and e;(q) is a unit vec-
tor perpendicular to q. These are all correlation func-
tions we will need for our present purposes. Examples of
others include the stress vertex and the corresponding
stress correlation function which determines the sound
attenuation coefficient.?’

The structure of Egs. (2.6) and (2.7) ensures gauge in-
variance of ¥ if the matrix Green function G is calculated

FIG. 1. Graphical representation of minus the correlation
function y, Eq. (2.6). Straight and wavy lines denote Green’s
functions and the interaction, respectively.

(2.8a)

(2.8b)

(2.9a)

(2.9b)

[

in the generalized Hartree-Fock scheme which consti-
tutes the standard theory of superconductity. The basic
principle is that self-energy contributions and vertex
corrections have to be treated consistently. This was
shown by Nambu in Ref. 5. In the present case, we still
have to perform the ensemble average over the disorder.
In order not so spoil gauge invariance, we again have to
be careful that our procedure is consistent with the corre-
sponding theory for the Green function. The existing
theories for G2 72310 force us to make the following ap-

<]

FIG. 2. Graphical representation of the #-matrix equation for
‘the vertex T',,. The small circle represents the matrix 7;. Label-
ing is analogous to Fig. 1.
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proximation. On the right-hand side of Eqgs. (2.6) and
(2.7) we factorize the ensemble average € - - - ),, by writ-
ing (GI'G),,~(G(T'),G),,. Diagrammatically this
means that we do not allow for a crossing of interaction
and impurity potential lines. This is consistent with the
treatment of G in both BCS-Gorkov theory,21 and in
more recent theories for disordered superconductors.?? 10
We then have a well-defined class of theories for G (and
therewith for the gap A and for the transition tempera-
ture T,.) which, if used with the resulting expression for
X, give gauge-invariant results. To deal with the remain-
ing average of products of Green functions, we follow
Anderson'® and introduce the eigenfunctions #,(x) and
eigenenergies E, of a fictitious electronic system which
includes the disorder but not the interaction. To remain
|

)(,W(q,iQ)=—Tz fdede’2ka(q;e,e')try,,(k,q)G(e,iw—iﬂ)I‘u(p,-—q;iﬂ)G(e',iw) N
iw k,p

r.(p,q;i)=v,(p,q)+ 28> fdede' > Fyp(q;€,€)13G(€,io—iQ)T,(p',q;i Q)G (€, iw)T; .
i K,p'
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consistent with existing theories for G,2! =210 we have to

assume that G is diagonal in this “exact eigenstate basis.”
This approximation has been motivated in Ref. 23. Ac-
cordingly, we write

Gmlio)= [dxdy P2(x)G(xy,io)d,,(y)
%8y Gy (i0)=8,,,, [ dedle—E,)G(e,iw) .

(2.10)
We note the ensemble averaged correlation function by
X={X?., and the averaged vertex by '=(T'),,. Using

the translational invariance after the average, we Fourier
transform and obtain

(2.11)

(2.12)

Here, F is a correlation function for noninteracting electrons. It is defined in terms of the exact eigenstate wave func-

tions

ka(q;e,e')=fdx1dx2dx3dx4e

X PTYEITIRTARN S (g (x, h (33 )05 (%) (%,)8(€— E, )€ = E, )Ny -

n,m

It has been discussed in Refs. 20, 23, and 10 that to a very
good approximation Fy, depends only on the difference
€—¢€’ of its energy arguments, and is proportioned to the
absorptive part of the phase-space Kubo function!®
Dy (q,e—€'):

Fi,(q€,€)=(1/m)Pp(q;e—€) . (2.14)

As a correlation function for noninteracting electrons,
can be calculated by a variety of techniques. It can there-
fore be assumed to be known, and it contains the infor-
mation about the disorder in the system. For given
Green function G, Egs. (2.11) and (2.12) then provide a

closed system of integral equations for the correlation.

functions Xpve As we have discussed earlier, our deriva-
tion makes sure that the result is gauge invariant if a well

|

m

—i(k—q/2)-x, +i(k+q/2)x,

(2.13)

defined class of theories for G is used. These include
BCS-Gorkov theory and the theories developed in Refs.
22 and 10. If in the future it should become possible to
avoid the aforementioned noncrossing approximation in
calculating G, it will be straightforward to adopt the
present theory accordingly.

C. Solution of the integral equation

We will now solve the integral equation (2.12) for the
vertex. We first observe that the vertex can be written in
the form

8ai0)=T 3 [dede n,Gleiw—iQ) Loy (q.e—€)Gle,io)r,

+vTS [dede %@;’n(q,e—e’ 113G (€, i0—i0)8,(a,i)G(€,io)rs .

iw

Here,

D,,(q,0)= 3 ®ip(q,0), (2.15¢)
kp

is the density spectrum, and the matrix

ru(p,q;i)=v,(p,q)+V5,(q,iQ), (2.15a)
where §,, obeys the integral equation
(2.15b)
—
,(q0)= 3 ®i(q,0)y,(p,q), (2.15d)
kp

is a cross correlation between the density and the mode
belonging to the vertex y ..
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To proceed, we have to specify the matrix y u We are
interested here in the two cases of the transverse current
vertex, Eq. (2.9b), and the density vertex, Eq. (2.8b). For
the former, we see by inserting the Fourier transform of
Eq. (2.9b) in Eq. (2.15d) that @} vanishes due to symme-
try. Therefore, §;=0, and

. 1
Ir(p,giQ)=yr(p,@)=""p-er(q) . (2.16)
For the transverse current, the vertex corrections vanish
due to lack of coupling between longitudinal and trans-
verse modes. .

In the case of the density vertex, Eq. (2.8b), we have
@, =73;P,,,, and the vertex correction is nonzero. We
follow Prange® and expand 8 in a quaternion basis

3
8(q,iQ)= 3 6,(q,iQ)7; , (2.17)
i=0
where 7,=1, and 7,,7,,T; are the Pauli matrices. We also
specify the Nambu Green function. In this paper we use
the BCS approximation

4(q,iQ)=iQA [ dede —<1>" (qe—¢ T}; N, ,
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io+ter;+ AT
(iw)*—E?
where E?=¢>+ A%, It is obvious that more complicated
Green functions!® could be treated within the same
scheme. However, the analysis then gets considerably

more complicated, and cannot be carried as far analyti-
cally. We now use the fact that

D, (q,0)=

G(eiow)= , (2.18)

;,n(q’_w) .

It then readily follows that the coefficients §, and §; in
Eq. (2.17) obey homogeneous equations and vanish. For
the remaining coefficients, we obtain

-1

—iO)iotee — A?

Bi(q,i®)=— [dede —<1>" (qe—e)T S e

iw

where N=(iwo—iQ)*—E? and N'=(iw)*—E'?. Finally,
the frequency summations in Egs. (2.20) are easily done,
and we find

A(q,iQ)=iQ= fdede O (qe—€)a (i), (2.21a)
B.(q,iQ) ——fdede @) (q,e— €2, i), (2.21b)
with the spectral functions
' 2 ' ’
A )= EE'—A’+ee f(E')—f(E)
Xeeli)) 4EE’ iQ+E—E'
_EE'+A’—¢e' 1—f(E')—f(E)
4EE’ iQ—E—E'
+H(iQ——iQ), (2.22a)
o _—1 fIE)—f(E)
1 )= e QY E-E
1 A—fEV=f(E) | .o .
4EE  i1O—FE—F +(iQ——iQ).
(2.22b)

Here, f denotes the Fermi function, and (iQ— —iQ) in-
dicates additional terms which differ only in the sign of
iQ. In terms of these integrals, the screened density
response can now be written as

NN’

N VA*? V242

85(q,i®)= B, + =7 |1+ VB, + e ,
(2.19a)
8,(q,iQ)=—A(1+V&)1—VB_)"'. (2.19b)

Here we have introduced
(2.20a)
, (2.20b)

[

Xs(Q,iQ)=2C(q,iQ)/[1+VC(q,iQ)], (2.23a)
C(q,iQ)=B,+VA*/(1—VB_). (2.23b)

Likewise, we have for the transverse current correlation
function

XT(q,iﬂ)=—72;fdede' DUqe—eXBGQ),  (2.24)
where @ is the transverse current Kubo function,
n 1 ”n
(g )= ;;k-eT( )Qkp(q,w) p-er(q) . (2.25)

kp

We have now reduced to quadratures the correlation
functions which are relevant for the electromagnetic
response. Before we proceed to do the integrals, we close
this section with a few remarks. (1) For free electrons,
the phase-space Kubo function ®,, can be expressed in
terms of the Lindhard function. If we use this in Egs.
(2.21), we recover from (2.23) the result of Prange.® (2)
Within the BCS approximation, Eq. (2.18), the normal-
state correlation @, is the only source of disorder.
Equations (2.23) and (2.24) give the response of a super-
conductor in terms of the response of the corresponding
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normal conducting system with the same disorder. (3)
<I>kp in general, and ®,, and ¢, in particular, have been
calculated by a variety of techniques for different disorder
regimes. We will make use of this fact in the next sec-
tion.

III. THE ELECTROMAGNETIC RESPONSE
AT SMALL FREQUENCIES AND WAVE NUMBERS

A. Homogeneous density response

In general, the integrals we encountered in the last sec-
tion have to be performed numerically, and we will do so
in Sec. IV. However, at zero temperature for small fre-
quencies and wave numbers, they can be done analytical-
ly, and considerable insight is gained that way.

We start with the homogeneous limit, ¢=0. In this
case the density spectrum degenerates into a 8 function®*

D, (g=0,0)=7Ngb(w) , (3.1)

where Ny is the (normal conducting) density-of-states per
spin at the Fermi level. Equation (3.1) is an exact result
which follows from particle number conservation. If we
use Eq. (3.1) in Egs. (2.21), we obtain for complex fre-
quency z '

B (0,z)=Nz2A%F(z) , (3.2)
A(0,z)=NpzAF(z) , 3.3)
where
_ de - 1 2
Fz)=[ =—=+40(z%). (3.4)

E(4E2—z%) 2A

For B _, the leading term is proportional to f de(1/E)
which is logarithmically divergent. This is due to the fact
that we have used a pointlike attractive potential. We
therefore have to cut off the integral at a frequency on the
order of the Debye frequency, whence it turns into the in-
tegral entering the gap equation. We therefore have to
make the identification

de
—=1 . 5
Ne [ Sp=1/V (3.5)
Then we have
B_(0,2)=L+N,ZF() (3.6)
—\Y, %4 F ) . .

Using these results in Eq. (2.23), we make two important
observations. In the first place, we find

Xs(0,2)=0,

as it has to be due to particle number conservation. This
demonstrates the conserving nature of our approxima-
tions. In the second place, we see from Eq. (3.6) that

1—VB_(q,z)=0(q%2z%) .

Therefore, the absorptive part of Y, contains an un-
damped excitation with linear dispersion. This is the AB
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mode. Its existence is a direct consequence of particle
number conservation.

In the longitudinal channel the homogeneous correla-
tions depend on disorder only via Np, cf. above. This
again is a consequence of particle number conservation.
It is also the reason underlying Anderson’s theorem for
the superconducting T,, which in BCS-Gorkov approxi-
mation is determined by the homogeneous density
response. In the transverse channel there is no conserva-
tion law, and even the homogeneous correlations depend
explicitly on disorder. We treat this case herein after the
longitudinal one at nonzero gq.

B. Low-frequency longitudinal response

We now consider nonzero wave numbers. Generally,
@, can be written as'®

®,,(q,z)=—g(q)/[z+¢*K(q,z)] . (3.7)
Here, g(q) is the wave number dependent compressibility
which obeys g(¢—>0)=Nj, and K(q,z) is a current
correlation function. The density spectrum is obtained as

®).(q,0)=Im®,,(q,0+i0) .

We will consider three different cases: For free electrons,
one has

K(q,z)=—1v}/z+0(g?) (clean) (3.8a)

with the Fermi velocity vgp. For diffusive electrons, one
has
K(q,z)=iD (diffusive) , (3.8b)

where D =v}7/3 is the diffusion constant with the col-
lision time 7. Finally, if the disorder increases further,
the system approaches an Anderson transition.?> In this
regime one has a critical current spectrum?®
K(q—0,z)=Dy(z/€p)*3(—i)'/® (critical) . (3.8¢)
Here, one has to take the unique cubic root which yields
a positive current spectrum and Dy, =1/2¢?Npp,, with
Mott’s resistivity p, =3m*/kge’. Equations (3.8a),
(3.8b), and (3.8c) are valid for p—0, p Spy,, and p>>p,,,
respectively.?’

By inspection of the integral in Eq. (2.21b) we see that
the function

fle=o,,(q,6 —€+i0)

has either a pole in the lower half plane (clean and
diffusive cases) or a branch cut which can be chosen to lie
entirely in the lower half plane (critical case). We can
then do the integral over € by considering only one
branch cut connected with E’. This way we rewrite Eq.
(2.21b) in the static limit as
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dxx 1
(X2_A2)1/2 x—i€

B_(g,00=—1Im [de [~

®,,.(q,ix —€) .
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(3.9

We now expand in powers of g. The leading term gives again the integral (3.5). The next leading term converges al-

ready, and we can do the € integration first to obtain

ZNF ®© dx

1 o0 e dx
BV(q’O)_ Vv q 2 A x(xZ_AZ)l/Z

Here we have made use of the spectral representation
K(q,z)= f(da)/ﬂ-)lmK(q,w+iO)/(w——z) .

Eg. (3.10) expresses B _ in the static long-wavelength lim-
it in terms of the current correlation function of the
noninteracting system. Similar expressions can be de-
rived for B, and A4, but we will not need them.

With the explicit expressions for K given earlier, it is
now elementary to do the remaining integral. We find

g*v}/12A% (clean) ,

o

2

Dyq’
A

B¥(q—>0,0)=iV—NF (Dg2/2A) (diffusive) ,

(A/ex)V3b (critical) ,

(3.11)

where
b=3V7I(L1)/28°T(£)=1.99. .. .

We now use Eq. (3.11) together with Egs. (3.2), (3.3), and
(3.6) in Eq. (2.23), and find to leading order in g and z

C(q,z)=—Ng(q)?/[z*—(qv)*] . (3.12)

This clearly shows the 4B mode. The “sound” velocity v
is given by v =(m/V'3)A& with

&y for p/ppy <<1/kg&y (clean) , (3.13a)
E= (&N for 1/kpEy<<p/puy S 1 (diffusive) , (3.13b)

Ip for p/py>>1 (critical) . (3.13¢)

Here, §,=vp/mA is the Pippard coherence length, | =vp7
is the mean free path, and

I,=[2b(47))' 3 /7* VAN A) 713

This is the kinematical part of the ‘“sound” velocity.
Considering Y, rather than C, Eq. (2.23), introduces a re-
normalization of v which is of order NzV. This renor-
malization depends on the details of the approxima-
tion,>® and should not be taken too seriously.

Prange® has noted that y,,=2C is a conserving approx-
imation as well as the full expression in Eq. (2.23a). The
main difference between C and the full y, is, besides the
renormalization of v, that C'’ has a collective mode con-
tribution at all g, while in Y, the collective mode ceases
to exist for g above a certain value. However, the residue
of the pole in C decreases rapidly with increasing g, and

ImK (q,i2x)+0(g*) .

(3.10)

[

this difference is of little practical importance. In the
remainder of this paper we will discuss C.

Equation (3.13a) reproduces the well-known result for
the clean case. Equation (3.13b) for the diffusive case is a
result which one might have expected: the expression for
v remains valid if £, is replaced by the “dirty limit”
coherence length (£,/)!/2. A qualitatively similar result
has been obtained by Oppermann?® for a special model
with diffusive dynamics. The present result v>=7AD has
also been obtained with kinetic equation techniques.” [,
in Eq. (3.13c) can also be interpreted as a coherence
length. NpA is the number of states per unit volume
within an energy A around the Fermi surface, or the
number density of states responsible for superconductivi-
ty. I, is then the spatial extension of these states. Clear-

- ly, the coherence length cannot be shorter than /,, so

with increasing disorder the decreasing £ must saturate at
this length scale. It is interesting to see that this result
agrees with the direct calculation of the coherence length
by Kotliar and Kapitulnik,? who arrived there on a quite
different route.

In a hypothetical neutral superconductor, the full po-
larizability Y would be given by Eq. (2.2) with v(q)=—V.
In such a system the 4B mode would be observable. In a
charged system, the collective excitations are given by the
zeros of the dielectric function, Eq. (2.1). There are no
such zeros within the gap as we will see. However, the
AB mode can still be seen in the conductivity. From Eq.
(2.3) we get

o'(w)=oym/2)A8(w) (3.14)

for the conductivity in the low-frequency limit. Here,
0o=v%2Ng/7A. Our derivation makes it clear that the §
function in the absorptive part of the conductivity is ac-
tually the homogeneous limit of the 4B mode. In the
diffusive case, we recover the well-known result®
00=2NpD =0 ,, the normal-state conductivity. In the
critical case, the prefactor saturates at the small value
0o~0p(A/€p)3. We emphasize that Eq. (3.14) gives
the zero-frequency contribution only. In the clean case
this is all there is. Within the jellium model, o for a clean
superconductor is the same as o for a clean normal met-
al, and Eq. (3.14) exhausts the f-sum rule

f(dw/fr)a’(w)=n /m .

The physical interpretation of the & function is an ac-
celerated supercurrent in a superconductor, and ac-
celerated electrons in a normal metal. Both draw power
from a dc field, while there is no loss at finite frequency.
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In the presence of disorder, the superconducting con-
ductivity still shows the 8 function, but Eq. (3.14) no
longer exhausts the f-sum rule. The rest of the spectral
weight appears at frequencies above the gap.’! At

|

2
a'(m:%2NFfdede'K"(o,e—e')lmxge,(mﬂm (0>2A) .

In the diffusive case, Eq. (3.8b), the integrals can be per-
formed, and we recover the Mattis-Bardeen expression.3 1
In this case, o'(w) vanishes linearly at the gap edge. In
the critical case, Eq. (3.8c), we can still extract the lead-
ing behavior at the edge, which is

o'(0)=0y(0/20—1)"°, (3.16)

where &, is a conductivity scale on the order of o,,. We
see that the critical current spectrum of the normal metal
is reflected in the behavior at the absorption threshold.
The effect is, however, very small. At frequencies large
compared to 2A, o', of course, crosses over to the con-
ductivity of the normal metal.

We close our discussion of the longitudinal response
with two remarks. (1) The diffusion pole approximation,
Eq. (3.8b), does, of course, violate particle number con-
servation. This is easily cured, and the virtue of our con-
serving approximation is fully brought out by using in-
stead the Drude formula

K(z)=iD/(1—izT) . (3.8")

dx x2—2A2—ix

2 ©
0,i0)=—1 d
XT( ,i0) T mf efA (x2_A2)1/2 X2+€2

In the clean case, we have

®,(0,z)=—n/2mz ,

€P,(0,ix —e¢) .
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nonzero frequency, calculation of ¢’ amounts to calculat-
ing B, Eq. (2.21b), with the density vertex replaced by
the current vertex. We find

(3.15)

The difference between this and Eq. (3.8b) is, however,
negligible for frequencies w <<1/7. Since A7>>>1 ex-
cept for extremely small disorder, and since we are in-
terested in X.(q,®) with ® on the order of the gap, the
simpler Eq. (3.8b) is completely adequate. (2) We see
from Eq. (3.12) or (3.14) that with increasing disorder,
there is less and less spectral weight in the collective
mode. Since at zero temperature in the absence of elastic
pairbreakers the mode cannot be damped, this is how the
intuitive expectation is fulfilled that disorder must ad-
versely affect the mode.

C. Static transverse response

We finally consider the static homogeneous transverse
current correlation. From Egs. (2.4b) and (2.5) we see
that this is sufficient to determine the magnetic screening
length.

We do the integration over €' in Eq. (2.24) the same
way as in the longitudinal case and obtain

(3.17)

and Eq. (3.17) gives the well-known result ¥ ,(0,i0)=0. For the general case, it is convenient to subtract this (vanish-
ing) contribution from the integral in Eq. (3.17). This improves convergence, and we can do the € integral first:

X7(0,i0)=—482 [ *— 9% L 109,(0,20x)—

A (x2—A2)2 x

n/m

(3.18)

Since @ is a correlation for noninteracting electrons, at ¢ =0 it is identical with the longitudinal current correlation,
i.e., the conductivity. In the three cases we considered before, we therefore have

1/z (clean) ,
—__n 1
®7(0,2)= 2m | z+i/T

UM%(Z/eF)I/a( __i)l/3

(diffusive) ,

(critical) .

(3.19a)
(3.19b)

(3.19¢)
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We can now perform the remaining integral in Eq. (3.18),
and obtain the penetration depth from Eq. (2.5). In the

clean case we have A=A, with the London length
AL =(mc?/4mne?)'? .

In the diffusive case, we find

—172
1 T 2AT e s
= T i ,
A=A Varr 12 1_+_2A7_g(2./3’r) (diffusive)
(3.20a)
where
1/2 - R
(x)=06(1—x) 1+x 1n\/1+x +v1—x
& 1—x Vi+x —V1—x
'+1 172 . 12
X X —
+O6(x—1)2 — arctan[x+1| .
(3.20b)

This result is more accurate than the usual Chambers-
Pippard expression.’® In the clean limit, both give a
linear increase of A with 1/A7, but the slopes are
different by a factor

(m/2)(1+7/4)=2.80... .

In the dirty limit, A7<<1, both Eq. (3.20) and the
Chambers-Pippard formula give

A=A, V2/m(2A7) 712
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As one would expect from the previous section, this in-
crease saturates in the critical regime, where Eq. (3.19¢c)
in Eq. (3.18) gives

A=Apa(A/ep) ", (3.21)

where

a=2%%/[3B(L,1)]'2=0.50. .. .

223

This is the result Kapitulnik and Kotliar® obtained by a
different method.*?

IV. NUMERICAL RESULTS, AND DISCUSSION

A. The screened polarizability in the diffusive case

In Sec. III we have considered the case g& <<1,0 <<A.
In this limit the screened polarizability could be calculat-
ed analytically. Outside this regime, we could not find a
way to perform the integrals in Egs. (2.21), so we have to
resort to numerical integration. We will concentrate on
the diffusive case, which at present is the most relevant.
The critical regime is hard to reach experimentally, and
presumably physical effects are important there which
have been neglected in our simple model.

It is convenient to first calculate the absorptive parts of
the functions 4, B.. The real parts are then obtained by
a Kramers-Kronig transform. We introduce the dimen-
sionless quantities Q=w/A, Q>=Dqg’/A=q’E’w/3,
a""=A"/2Ng, and by =B /2Ny. Taking the imagi-
nary parts of Egs. (2.22), we find for >0

" — 102 _ a-1 dx _ 4 Q-2
a"(Q,0)=10*a0(0-2) | [ pemrn et L e PN e A e el R (4.12)
with

falx)= ! + ! (4.1b)

‘ (x2=DV2+[(x =) —1]"2P+0* (x> D' —[(x —QP—1]"*)2+0* '
Likewise,

" — 12 _ Q-1 dx . 4 Q-2

bi(Q.)=5070(2—2) fx (x2—1)“2[(x—m2—1]”2[fi(x) SIS Mg K o ||

(4.2a)
— T 2__ 14172 — 2__ 17172 _ 2__ 13172 _ 2__ 11172
fi(x)=x(ﬂ X)F(x 2= [(x—Q)Y—11"77+1 | x(Q—x)E(x"—1)"“[(x—Q)—1]""+1 (4.2b)

{(XZ_1)1/2_[(x_9)2_1]l/2}2+Q4 {(x2_1)1/2+[(x_0)2_1]1/2}2+Q4

. Here © denotes the step function, and K is a complete elliptic integral. In the clean case, the corresponding integrals
can be expressed in terms of tabulated functions.® Here we have not found a way to do so. We have written Egs. (4.1a)
and (4.2a) in a way which facilitates numerical integration. Once this has been performed, the real parts are determined
by principal value integrals

, 2 e, a"(Q,0) 4
a(Q,0)=0= [ "do =550, (4.3)
, 2 e b’ (Q,w) 4.3b
b+(Q,Q)-—?fo da)——wT:(—)"z— , (4.3b)
1 2 oo wb” (Q,w) /4
’ = < — +Ab_ . (4.3¢)
b=, @) 2NFV+7rfo 0|75 707 (1)
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Here we have made use of the fact that @ is an even
function of frequency, while b are odd. We have also
used Eq. (3.5) to deal with the singular part of b_. Final-
ly, there is an additional term Ab_. The reason for the
appearance of Ab_ is that in going from Eq. (2.21b) to
Eq. (4.3c) some energy integrations have been performed,
and in others there has been a change of variable. Conse-
quently, the connection between the logarithmically
divergent integral and 1/VNy is no longer given by Eq.
(3.5). However, since we are dealing with a contribution
to b_(0,0), the correction must be simply a constant.
We therefore can use the analytically tractable case Q =0
to determine it. We use the imaginary part of Eq. (3.6) in
Eq. (4.3¢) to find

Ab_=(1)n2 . (4.3d)

The principal value integral can be easily performed by
the same kind of subtraction trick we have used in Egs.
(4.1) and (4.2). We have checked our results by consider-
ing (1) the behavior of the spectra close to the threshold,
(2) the high-frequency asymptotics, and (3) the minus first
moments of a’’ and b, all of which can be obtained
analytically. We estimate the accuracy of our result for ¢
to be better than 1%, with the largest error occuring for
the smallest Q. The six real functions a'’, a’, b, b
determine C and therewith Y. via Egs. (2.23).

In Fig. 3 we plot the real and imaginary parts of
c(Q,0+i0)=C(q,0+i0)/2Ng

as functions of ) for various values of Q. The 8-function
contribution to ¢”’ which corresponds to the collective ex-
citation can clearly be seen at small Q. It causes ¢’ to
diverge as [A—Q,(Q )]~ '. In Table I we list the position
Q,(Q) and the residue 7(Q) of the pole in ¢(Q,). For
small Q these agree with Eq. (3.12). At Q=2 the con-
tinuous part of the spectrum sets in. It is readily seen
from Eqgs. (4.1) and (4.2) that @'’ and b’} are all discon-
tinuous at the threshold with

a”(Q,2)=b"(Q,2)=b"(Q,2)=u/20%.

The corresponding real parts are therefore logarithmical-
ly divergent, and

¢"(Q,Q—2)~const/[In(Q—2)1?.

X.. Shows the same behavior, and it is qualitatively the
same as in the clean case.® It was noted in Ref. 8 that the
continuous behavior at the edge is an important feature,
since a discontinuity in C’’ would necessarily lead to a
zero of €(q,®) in the gap.
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FIG. 3. Real part ¢’ (dashed lines) and imaginary part c”
(fully lines) of the function

c(Q,0)=C(q,0+i0) /2Ny .

Q and () are defined in the text. Q has been chosen as (a) 0.6, (b)
1.0, (c) 1.8, (d) 3.4. Vertical bars denote the 8-function contribu-
tion to c¢”. Notice the different scales for ¢’ and c¢”, respective-
ly.

From Eq. (2.1) we see that for € to have a zero in the
gap, X.. must come very close to zero, since v(q) is large.
Explicitly, the condition is

1

—Xelg,0)=—(g/k)? ! (d=2,3),

N, (4.4)

where «; is the Thomas-Fermi wave number for a d-
dimensional system. Since k; is on the order of 1 A -
the right-hand side is usually very small for g§=1. The
most favorable case for fulfilling Eq. (4.4) is large disorder
and small Fermi energy (or large gap), since this maxim-
izes g for given g£. From our numerical calculations we
conclude that the condition (4.4) can not be fulfilled for
frequencies within the gap. This holds even for critical
disorder (cf. Sec. IV B), and also for the extremely short
coherence lengths of the new oxide superconductors (for
which the present theory would probably be inadequate
anyway). We conclude that there is no disorder induced
zero of the dielectric function, and that the behavior of
e(g,w) at arbitrary disorder is qualitatively very similar
to that in the clean case.® The main differences are (1) the
smearing of all singularities except the 4B mode and the
onset at @ =2A, (2) the reduced spectral weight in the
AB mode, and (3) the long high-frequency tail of the
spectrum.

TABLE 1. Positions Q(Q) and residues 7(Q) of the pole in c(Q,Q).

Q 0.20 0.40 0.60 0.80
Q(Q) 0.35 0.70 1.02 1.30
r(Q) 0.088 0.170 0.234 0.277

0.289

1.00 1.20 1.40 1.60 1.80 2.00
1.55 1.74 1.87 1.95 1.99 200
0271 0.208 0.121 0.049 0.016
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B. The screened polarizability in the critical case

Let us also briefly discuss the critical case. The main
question is whether this changes the conclusion of the
last section that there is no zero of the dielectric constant
within the gap. In this context it is important to realize

" _ @A ro-a dx
A4"(g,0 2 fA (x2—A2) [ (o—x P — A2]1 72

and similar expressions for B!). We see that close to the
absorption threshold, the frequency argument of @}, is
on the order of W=V w(w—2A). At fixed g close to the

threshold, we therefore always have a ¢ >>(NyW)!/3. In
this limit the current correlation K is given by
K(q,z—0)~iDy(q /kg) , (4.6)

rather than by Eq. (3.8¢c). We see that close to the thresh-
old, the results for the diffusive case still hold if the re-
placement D —D,,q /ky is made. In particular, y,. still
goes to zero continuously at the edge. We conclude that
critical disorder does not change the absence of a zero of
€(g,w) within the gap.

C. Consequences for the quasiparticle inelastic lifetime

In this paper, we have developed and demonstrated a
practical scheme to calculate the dielectric function of
disordered superconductors. As we mentioned already in
the Introduction, an important application will be the in-
elastic Coulomb scattering of quasiparticles, and we close
with a few remarks concerning this.

Tewordt!> has calculated the Coulomb inelastic life-
time 7, of quasiparticles in the clean case at zero temper-
ature. The relevant “scattering potential” is the imagi-
nary part of the Coulomb propagator

V(q,w)=v(q)/elq,w) .

To calculate Y, and therewith €, Ref. 15 used the pair ap-
proximation for x;, i.e., in our Eq. (2.23b) only B, was
retained. Simultaneously, x;.(g,®) was replaced by 2N.
This seems inconsistent, since the pair approximation
makes Y, discontinuous at w=2A, hence Y., should
diverge. However, a closer inspection shows that this ap-
proximation is much better than it looks at first sight.
For g£ <1, x;, differs drastically from 2N, but this re-
gion contributes little to 7;, for phase space reasons. At
larger g, x.. rapidly approaches the Lindhard function
except for a singularity at 2A. This singularity is just a
mild kink, however, since Y., is continuous at the edge.
Hence the replacement of y,. by 2Ny is justified. If one
then replaces the continuous onset of ;. by the discon-
tinuity of the pair approximation, one neglects only loga-
rithmic corrections to the frequency or temperature

(@

+ @, (g,(x2— AN 2+ [(0—x P —A2]2})
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that we must not simply replace the diffusive constant D
in the previous section with the critical current spectrum,
Eq. (3.8¢c), for the following reasons. We use Eqgs. (2.21)
and (2.22) to write the spectra of 4, B for arbitrary dis-
order as

{q’(xl_A2)1/2__[(a)_x )Z_AZ]I/Z}

4.5)

r

dependence of 7;,,. Moreover, these corrections would ap-
pear only in an exponentially small frequency or tempera-
ture regime.

Our investigation of the disordered regime has shown
that the above discussion can be carried over to the case
of disordered superconductors. Figure 3 shows that at
small Q, C is dominated by its pole [Figs. 3(a) and 3(b)].
For Q 52, the pole rapidly approaches the absorption
threshold and looses spectral weight, while the continu-
ous spectrum close to the threshold is strongly enhanced
[Fig. 3(c)]. For Q =3.4, the sharp features in both ¢’ and
¢' have already disappeared [Fig. 3(d)]. We note that ac-
tually ¢’ still has a 8-function contribution, and ¢’ still
diverges very close to =2, but this cannot be seen
anymore on any reasonable scale. Table I shows the rap-
id decrease of the pole’s residue. As mentioned before,
Xsc as given by Eq. (2.23) has no longer a pole at large Q.
We conclude that the pair approximation might be
sufficient to calculate 7, in the disordered case as well.
This holds with the caveat that at strong disorder, the re-
gion in g space where the structure of Y’ is important,
may not be small anymore, and its contribution to 7,
may no longer be negligible. This will require a thorough
investigation.

There is some experimental evidence that in disordered
superconductors the quasiparticle scattering rates are
anomalously enhanced and show a nonexponential tem-
perature dependence.!! A possible explanation for these
observations would have been a disorder-generated mode
in the gap. Our analysis has shown that there is none,
ruling out this possibility. We therefore conclude that
the theoretical explanation of these results should be
looked for in more conventional disorder-enhanced
scattering mechanisms. An obvious candidate is the su-
perconducting analogue of the well-known enhanced
Coulomb scattering in normal metals.>*#23 This can be in-
vestigated with the help of the results of the present pa-
per. We will address these questions in the future.
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