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Electronic excitation spectra and energy losses of slow ions in solids
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We have calculated the energy distribution P (c) of electrons excited by a slowly moving atomic
particle in a metal. The particle is represented by an empirical pseudopotential which is known
from electronic band structure calculations. The first moment of P(c,) yields the value of the total
energy of excited electrons or, equivalently, the value of the energy losses of the moving particle.
The electronic stopping power of Al atoms moving in aluminum calculated by this method is in

quantitative agreement with the stopping power obtained by other approaches. The corrections to
P(c.) due to the deviation of real metals from the free-electron model are also estimated. P(c) can
be used in theories of ion-induced kinetic electron and ion emissions as a source function for calcu-
lating the energy spectra of electrons excited in collision cascades.

INTRODUCTION

The detailed information on energy losses suffered by
atomic particles moving in condensed matter with very
low velocities is of special interest for understanding
stopping and other electronic processes in collision cas-
cades. The analysis of low-velocity stopping has been a
subject of many papers starting with the work of Fermi
and Teller' and Lindhard. It was further extended by
Ritchie, Trubnikov and Yavlinski, and Lindhard and
Scharff. An attempt to include the effect of an electron
bound to the projectile was performed by Ferrell and
Ritchie, and the proper treatment of the scattering po-
tential by the density-functional formalism has been sub-
sequently carried out by Echenique, Nieminen, and
Ritchie. ' Parallel with these developments, Firsov has
worked out a theory based on an intuitive model of semi-
classical quasimolecules. Though originally designed for
analysis of single-collision ion energy losses, the Firsov
theory has been mostly used to interpret stropping data.
Overall agreement between his theory and experimental
results is about as good as with the Lindhard and Scharff
formula.

In this contribution we analyze in detail electronic en-
ergy losses of slow particles in collision cascade in metals
with an emphasis on the analysis of energy sp'ectra of
electrons excited during these stopping processes. We as-
sume that the collisions are of such low energies that the
localized inner shells are not perturbed and do not cross
Fermi energies. ' Very low-energy collisions may indeed
prevail in later temporal stages of collision cascades.
Thus, for these processes, we can use the concept of pseu-
dopotentials to describe the scattering centers. Pseudo-
potentials, either empirical or theoretically estimated
from first principles, are commonly used for very precise
calculations of valence-band structure of solids and have
several useful features. " In particular, it is the relative
independence on the atomic ordering and, to some ex-
tent, also to the electronic surrounding which make pseu-
dopotentials suitable for calculation of electronic excita-
tion in collision cascades.

In contrast to previous treatments of the problem we
shall first calculate, using the perturbation theory, the en-
ergy distribution P (E) of electrons excited by the moving
particle per unit time. The detailed knowledge of P(E) is
the prerequisite for the calculation of the space-time eval-
uation of electronic excitations in the collision-cascade
region and for the estimation of their role in other physi-
cal processes like ionization of sputter particles and elec-
tron emission. The first momentum of P(E) yields the to-
tal energy transferred to the electronic system per unit
time which is equivalent to the energy losses of the mov-
ing particle per unit time. These energy losses are com-
pared with the results obtained by other authors. ' '

The described approach allows to use the correct form
of electron wave functions in solids and to investigate the
role of the form of the wave function (i.e., the degree of
delocalization) on the energy spectrum of excited elec-
trons. The experience with pseudopotentials in semicon-
ductors enables also to generalize the method by going
beyond the Born approximation and to calculate correct
forms of scattering T-matrices for materials with energy
band gaps.

THEORY

As mentioned in the Introduction the basic assumption
of our approach is that the particle moves in the solid
with a very low velocity, so that only valence electrons of
the solid are perturbed and the particle can be well
represented by the corresponding empirical pseudopoten-
tial V(r) Furthermore . we assume that because of low
velocity the effective charge of the particle and thus also
the scattering potential V(r) are the same as if the parti-
cle were at rest. The corrections to V(r) due to the self-
consistency are expected to be small because our interest
is mainly in the electronic excitations in collision cas-
cades where the moving particles are usually of the same
type as the host lattice. We shall assume that the Born
approximation is adequate in metals. It is clear that this
approximation may not be suitable for semiconductors or
insulators. New states created by the moving particle in
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and near the band gap and neglected in the Born approxi-
mation have narrow linewidth and thus can contribute
signifIcantly to the transfer of electrons' across the band
gap.

Within the described approximations the relevant
time-dependent matrix element for the transition from
the filled state

l

k' ) (below the Fermi energy EF ) with the
energy 8„, into the empty state

l
k ) with the energy Ek is

given by

where R(t) is the time-dependent vector indicating the
position of the moving particle in the solid. The proba-
bility of transition from the states of energies between c.k
and c& +dc, I, . into states of energies between ck and
ci, +dck is given by

dOk 4 dQI, +~ . ~k
IV(Ek, ek )p(Ek)p(ek )«kdEI, 2 f f f dt(gk l

V(r —R(t))leak )exp i t
0 4~ 0 4~

2

XP( Ek )P(Ek. )d skd ek (2)

where p(E) is the density of states at the energy e. The
factor of —,

' comes from the assumption that spins of elec-
trons do not change orientation during the excitation.

The total energy transferred into the electronic system
or, equivalently, the energy bE lost by the particle in the
excitation process is

GO EF
b,E= dEk dpi, W(sk, Ek )(Ek —sk )

EF GO

(3)

where zo is the unit vector in the z direction and the in-
tegration is over the whole volume. We substitute

r —Utzo=r'

and transform Eq. (4) into

exp( ikut cos—o)exp(ik'ut cos8')

X f exp( ik r')V(—r')exp(ik' r')d r',
(6)

If the wave functions fk and gk of the solid and the
pseudopotential V of the moving particle are known the
formulas (2) and (3) allow to evaluate W(ek, EI, ) and bE
for any trajectory R (t). Equation (2) includes also con-
tributions to 8'(Ek, Ek ) which are caused by nonsta-
tionarity of the particle motion.

For the calculation of stopping power we can simplify
the calculation by considering the particle motion along
the straight line in the z direction with a constant velocity
U. We shall take the electron wave functions to be equal,
in the first approximation, to the free-electron wave func-
tions. Then the matrix element (1) becomes

f exp( —ik r)V(r —utzo)exp(ik' r)d r,

where 0 and 0' are the polar angles of k and k', respec-
tively.

As only electrons around the Fermi energy are per-
turbed we can set

p(Ek)=p(ek )=p(EF)=p,
where kF is the wave vector at the Fermi energy and we
denote

f exp( —ikF r)V(r) pe(xikz r)d r=c(&,g, g', 0') .

The matrix element c is also function of azimuthal angles
P and P' as indicated in (8).

Thus Eq. (2) can be written

2 2' 4~ ~k
W(Ek, Ek )p d ekdsk z—2 dAk dpi, lc($, 8,$,0 )l 6 kfv cos8 k~u cos8' — — dskdEk2A'(4~)' (9)

From Eq. (9) the probability per unit time that an electron will be transferred from a state around sk to a state
around c.k is given by

co(EI„sq )= f dAk f dQk lc($, 8,$', 8')l 5 kFv cos0 k~v cos8' ——
2(4m) fi o o

Our main task is to calculate P (Ek )p d Ek, i.e., the probability per unit time that an electron appears in an empty level
with energy between s„and s„+dek. The quantity P(c,„) is obtained by integrating co(ek, ek, ) over all occupied states
EJ i ~

To simplify the notation in the integrals over spherical angles and over the energies we introduce new variables

k~U cose=y, ky U cose'=y', E,k
—

Ep =E,, CF —
Ef, =c' .
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P(e)= f dE'f dy f dy'f

"deaf

dP'~c(P, y, P', y')~ 5 y' —y— (12)

The integration over y yields

2 4m i' kFu

2

(13)

Equation (13) is a general expression for calculating the
energy distribution of electrons excited per unit time by a
particle moving with a constant velocity through a solid
represented by a free-electron gas. The integration can
be carried out analytically only in simplest cases such as
for s scatters when the matrix element c is angular in-
dependent.

Then Eq. (13) yields

P(E)= (2RkFu —e) for 2AkFu &e&0,
8A' (k u)

(14)
P(E)=0 for e&2AkFu .

I

the moving particle, respectively.
The electronic stopping power is proportional to

dE/dt and is equal to

dE I dE
dx u dt 3

(17)

If the matrix c is angular dependent, the evaluation
(13) of P ( E ) and consequently also of dZ /dx must be car-
ried out numerically. However, it turns out that the nu-
merical values of dE/dx can be exactly reproduced by
Eq. (17) if the value of ~c~ in Eq. (17) is replaced by ~c, ~,
i.e.,

The spectrum (14) is shown in Fig. 1 by a dashed line.
Next problem is to calculate with the use of (14) the

average energy losses dE/dt per unit time. Because the
excitations above and below the Fermi energy are
symmetrical we can use, instead of (3), the relation

a)=2f P(E)EpdE .
dt o

By substituting (14) into (15) we get

where

3 P t F

~ c, ~

=
—,
' f ~

c (P) ~ ( 1 —cosP)sinP d P

and P is the angle between kF and kF. By definition

cosP =cos8 cos8'+ sin 8 sin8' cos( P —P') .

(19)

(20)

dE 2m'
dt 3

~p~c~k2u = p~c~k QF 3~ F I(: (16)

1.0

where Ek and M are the kinetic energy and the mass of

The integration (19) is similar to the one transforming the
difFerential cross section o(/3) into the transport cross
section o, . This result is not unexpected since Eq. (17)
resembles the expression for electronic stopping power
obtained in previous studies ' and, by comparison, ~c~

should be proportional to the scattering transport cross
section. To see this explicitly we relate ~c (P) ~

to the
scattering cross section, '

(21)

-0.5 where m is the electron mass.
Integration of (21) over 13 according to Eq. (19) yields

~c, ~
in terms of cr„which substituted in Eq. (18) gives

dE
p UFO tU (22)

0.5 1.0
& ( in units of hkFv)

1.5

FIG. 1. The shapes of energy distributions P(c, ) of electrons
excited above the Fermi energy in a metal by a slow-moving
particle. The energies c are in units of AkFv, where kF is the
electron wave vector at the Fermi level and v is the velocity of
the particle. The energy m=0 corresponds to the Fermi energy
of the metal. The distribution P(c.) produced by an s scattering
potential in free-electron metals is shown by the dashed line and
the distribution produced by the realistic pseudopotential of an
Al atom in Al metal is shown by the solid line. The amplitudes
of P(c) are arbitrary in the figure but are normalized to have
the same amplitudes at a =0.

where uF is the velocity of electrons at the Fermi level.
Inserting for p and UF the expressions for the free-
electron gas' we indeed recover the we11-known expres-
sion ' for low-velocity electronic stopping power in the
free-electron gas, i.e.,

dE =mno. ,uFU,
dx

where n is the number of electrons per unit volume in the
metal.

Provided the pseudopotential is known so that ~c (P) ~

and ~c, ~
can be evaluated, Eqs. (18) and (16) represent
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rather precise descriptions of electronic losses in metals
in terms of the electronic density of states p at vF and the
Fermi kF vector. In the next section we shall illustrate
the use of the pseudopotentials for the calculation of elec-
tronic excitations produced by the motion of an alumi-
num atom in aluminum.

APPLICATION TO Al

The empirical pseudopotentials of almost all atoms are
provided in the paper of Cohen and Heine" in the form
of their spatial Fourier transform V(q). When they are
numerically converted into real space they can be con-
veniently expressed in terms of a series of Gaussian func-
tions. As has been shown by Kane, ' in silicon only a few
Gaussians are needed for a pseudopotential which de-
scribes quite precisely the structure of the silicon valence
and conduction bands. For Al we have found adequate a
pseudopotential similar to that of Si and containing only
two Gaussians

V~, (r)= A exp( ar ) Bex—p( b—r ),—
where A =131.6 eV, B =88.3 eV, a =2.96 A, and
b =1.286 A

The Fourier transform (8.) of (24) is then equal to

c(P)=
a

3/2 kF
A exp — (1—cosP)

2a
' 3/2

B exp
kF'

2b
(1—cosg) (25)

where P is defined by (20).
The calculation of Ic, I using Eqs. (25) and (19) is

straightforward and gives in units of eV A the value
of 1300. Inserted into (16) together with the values of kz,
M for Al and p, deduced from the specific-heat measure-
ments on aluminum, yields

dE =2.32 X 10 Ez (in eV sec) .
dt

(26)

The value should be compared with dE /dt
=2. 5 X 10' Ek obtained from Lindhard and ScharF for-
mula for Al. Since the Lindhard-Scharff formula is
known to agree well with experiments, the close agree-
ment between the two numerical values gives credibility
to our approach.

Finally, we can insert (25) into (13) and calculate nu-
merically the energy distribution P(E) of electron pro-
duced by the moving-Al atom in aluminum. The spec-
trum P (E) is shown in Fig. 1 by a solid line and is clearly
substantially narrower than P(e) produced by the s
scattering only.

The extension of the P(e) calculation beyond the free-
electron approximation is straightforward. One uses in
(1) instead of Pk=exp(ik r) the real wave functions of the
metal. The real wave functions are linear combinations
of exp(ik r) and exp[i(k+K) r], where K are the re-
ciprocal lattice vectors of the solid. The potential that
mixes the wave functions is the sum of the same pseudo-
potential used as a dynamic perturbation in (1) over all

lattice points. As the mixing is expected to be rather
weak in metals like aluminum, we can approximate the
real wave function by'

/&=exp(ik r)+ g A(K, k)exp[i(k+K) r], (27)

where

3 (K,k)= exp —iKr Vr —R;d r
~k+ v.

and g; is the sum over all lattice sites. Substituting Eq.
(27) in Eq. (4) and performing the same calculations as
before, we obtain a generalization of P (E). In the partic-
ular case that only s scattering is considered, there are
additional terms to P(E) which have the same general
form as (14) but extend from zero to 26k+ U

+AKU cosOp+ AE U cosOp. Op and Op are the angles be-
tween the z axis and K and K', respectively. For the re-
ciprocal lattice vectors K and K' oriented along the z
axis, the maximum transferred energy can have the value

2&k~U +&I K I
U +&IK'I U.

Since the reciprocal lattice vectors are roughly multi-
ples of 2kF the spectrum of excitations can extend to sub-
stantially larger energies than only e=2nkru in (14).
However, these additional contributions to P(E) are con-
siderably reduced in amplitude compared to (14) since
they are proportional to

I
A(K, k~)A (K', kr)I . As the

coefficients A (K,k~) are of the order of 10 ' in typical
metals like Al, the extended contributions to P(E) would
have very small amplitudes. Further reduction is due to
smaller matrix elements IcI for larger k vectors. Thus,
in most applications the corrections to P(c) can be
neglected.

CONCLUSIONS

We have calculated the energy distribution P(E) of
electrons excited in metals by slow-moving particles. The
particle is represented by the corresponding empirical
non-self-consistent pseudopotentials. By this choice we
are limited to very slow velocities of the particle as any
inner-shell excitations must be avoided. Also the metal
should consist of the same kind of atoms in the particle.
Because pseudopotentials are generally transferable, the
latter limit is probably not very stringent.

The energy distribution P(e) has been first calculated
with a simplified s scattering potential and then numeri-
cally, using the pseudopotential of Al atoms in Al metal.
The first momentum of these distributions leads to the ex-
pressions of electronic energy losses and electronic stop-
ping powers. In the case of the Al atom moving in the Al
metal, the calculated stopping power is in very good
agreement with the stopping power calculated from the
Lindhard-Scharff formula.

Finally, we have estimated the inhuence of the correc-
tions of the free-electron plane-wave approximation on
the shape of P(c.). We have found that these corrections
lead to an extension of P(E) far above the cutoff energy
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2AkFU but the extension has the amplitude by orders of
magnitude smaller than is the amplitude of the free-
electron I' ( E )

The distribution P(E) described in the paper can be
used as the source function for the calculation of energy
spectra of electrons excited in solids by moving particles.
Subsequent modifications of these source function by
transport through the solid and possibly also by the
electron-electron interaction in the strongly excited areas

near the moving particle are of particular interest for the
theory of the ion-induced kinetic electron emission and
for the ionization theory of particles sputtered from col-
lision cascades.
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