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Nuclear spin-lattice relaxation times for mixtures of ortho- and para-H2.
High ortho-Hz concentration
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We investigate nuclear spin-lattice relaxation for high concentrations of ortho-H2 in a para-H&
matrix for temperatures above the ordering transition and lower than the onset of classical dift'usion

(2 T 10 K). We use diagrammatic representations of the moments of the electric quadrupole-
quadrupole {EQQ) spectral functions which govern the relaxation. We find it practical to calculate
the first three nontrivial moments of the EQQ autocorrelation functions. These spectral functions
are then obtained via the principle of maximum entropy. The resulting functions predict an EQQ
coupling constant of I,&=0.92 K. We find that much of the uncertainty in this prediction arises
from difficulties in extrapolating data to infinite temperature and not from inherent inaccuracy in
our moment analysis. We briefly discuss the implications of this calculation to related work.

I. INTRODUCTION

Solid para-hydrogen (p-H2) with ortho-hydrogen (o-H2)
impurity has been the subject of continuing experimental
and theoretical study since the early work of Reif and
Purcell. ' This material has proven to have a very rich
range of behavior as one varies parameters such as the o-

H2 concentration and the temperatuare. This system is
attractive to study because of the wealth of high quality
experimental data and the relative simplicity of the in-
teractions between o-H2 molecules. For calculations of
the longitudinal relaxation time T„one can simply ig-
nore the host para-molecules and concentrate on the in-
termolecular interaction between o-H2 molecules and
effects of the lattice. Thus one can construct physically
well justified and formally tractable models of this solid.
Consequently, H2 makes a good laboratory for testing
theoretical models which frequently are applicable with
appropriate modifications to other systems as well. Of
course H2 is an intrinsically interesting material in its
own right. Beside trying to extend our understanding of
the magnetic resonance properties of light molecular
solids, the present study is relevant to laser fusion work.
It has been demonstrated that spin-aligned targets have a
much larger cross section for fusion than unpolarized
material. An understanding of spin-lattice relaxation is
central to these problems. In the present work we make
a first-principles high concentration NMR estimate of the
EQQ coupling constant I,s and calculate the EQQ auto-
correlation functions to improved accuracy. We also il-
lustrate the practicality of calculating unusually high or-
der moments of spectral functions of the type encoun-
tered in spin dynamics.

We shall apply recently developed methods in two
areas; methods for inverting moment problems (inferring
spectral densities from a limited number of moments) and
techniques for the practical extraction of high-order mo-
rnents from complicated spin-spin interactions. Earlier
calculations with moments have suffered from the arbi-
trariness of the researcher's choice of a fitting function
with as many free parameters as known moments. This

procedure is ad hoc at best, since the bias of the worker
inevitably is manifested in the choice of fitting function.
An alternative approach is to use probability theory to
find a functional form which is consistent with the incom-
plete information (the few known moments) and which
has the highest entropy (in the sense of information
theory). Such a procedure has been developed by Jaynes
and specialized to the classical moment problem by Mead
and Papanicolaou. The maximum-entropy (maxent)
method has been extremely successful in applications to
solid state physics ranging from inferring nuclear mag-
netic resonance (NMR) line shapes for the dipolar-
coupled lattice to reconstructing electronic densities of
states in disordered alloys For calculating T& all the in-
formation required is contained in the electric
quadrupole-quadrupole (EQQ) spectral functions. In this
paper we use diagrammatic methods to obtain three non-
trivial moments of these functions, and employ rnaxent to
reconstruct them to find theoretical estimates of the re-
laxation time T, .

Moment methods are applicable only to high o-H2 con-
centrations: For sui5ciently low random o-H2 concentra-
tions, ortho-molecules tend to become isolated or to form
clusters with only a few molecules strongly influencing
each other. Using a procedure which we have developed
for the dipolar lattice, we have found that this clustering
becomes important for the EQQ interaction around
c=0.1 —0.2. We have used a computer to simulate an
hcp lattie with o-H2 randomly diluted in a para-
background. By taking a coupling between o-H2 mole-
cules proportional to r (with r the separation between a
pair of spins) we can easily find what fraction of o-H2
molecules "feel" an interaction from one another spin
more strongly than the effects of the rest of the spins.
Such spins cannot easily relax to an EQQ continuum, and
add an inhomogeneous component to the EQQ spectral
functions. These isolated molecular spins are not proper-
ly treated by configuration average moments. We illus-
trate the results of these simulations in Fig. 1. To handle
lower concentrations (c (0.2 ) one has to develop
methods beyond the scope of this paper. We therefore re-
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space. We emphasize that maxent is not an ad hoc pro-
cedure for solving moment problems: It is a general
probability theoretic principle for making optimal infer-
ences with problems of incomplete information.

The rest of this paper will be organized as follows: In
Sec. II we discuss diagrammatic techniques for moment
expansions. Section III deals with the results of the cal-
culations, and we discuss the implications of this work to
the EQQ coupling constant I,s and other work.

II. METHODOLOGY

0
0 0.2 0.4 0.6 0.8

FIG. 1. The fraction of ortho-molecules not dominated by a
single neighbor plotted vs the ortho-concentration c.

strict our attention to the high concentration regime and
relegate our work on low concentrations to a future pa-
per.

Earlier attempts to calculate the EQQ correlation func-
tions have been of two types: the self-consistent theory of
Myles and Ebner, or moment work ' with the first pair
of nontrivial moments: M2 or M2 and M4. The self-
consistent theory has much to recommend it: In this ap-
proach the authors do not resort to the use of adjustable
parameters, and they agree reasonably well with experi-
ment. The complexity of the formalism however requires
that the procedure be restricted to low order (only the
second moment is reproduced properly by their correla-
tion functions). Consequently, we expect to do consider-
ably better using the information included in the fourth
and sixth moments. Other work has involved the second
moment or second and fourth moments. The first effort
in this direction was by Moriya and Motizuki using the
second moment and a Gaussian fit. Harris' has calculat-
ed the second and fourth moments and observes that
since the ratio of the fourth to squared second moments
are not very different from three for the EQQ functions, a
Gaussian approximation is reasonable. This argument is
certainly qualitatively correct. However, for a more pre-
cise determination of relaxation times and the EQQ cou-
pling constant it is necessary to go to higher order,
especially for the l =2 functions where M4/M&=4. 0
+0.188/c for c the spin concentration, a significant
departure from three and important since the I =2 func-
tions will turn out to be more important than the more
nearly Gaussian l =1 function. Hama and Nakamura"
independently calculated the fourth moments and fit
these to a product of a Hermite polynomial and a Gauss-
ian. This form however has no theoretical justification,
and has no more claim to validity than any other as-
sumed form. So that we may obtain the advantages of
maxent, we calculate the sixth moments of the EQQ func-
tions, since the maxent procedure does not converge for
the known second and fourth moments. Such conver-
gence difhculties with maxent have been observed in ear-
lier work, and we believe this to be related to the lack of
a sharp cutoff of the spectral functions in frequency

The relaxation of the nuclear spins in o-Hz molecules is
determined by the transverse spin fluctuations these nu-
clei feel from the molecular spin of their particular mole-
cule. Consequently, a calculation of T& is largely an
effort to characterize the spectrum of the molecular spin
fluctuations. This is accomplished through the usual pro-
cedure of constructing autocorrelation functions of the
multipole operators

G (i, t)=e(t)( A (i, t)At(i, O)),
where A (i, t) denotes an irreducible multipole operator
in the Heisenberg representation for site i at time t. The
A are proportional to the operator analogues of the usu-
al spherical harmonics Y for a=(l, m). 8(t) is a step
function to make the correlation function causal and(.. . ) denotes a thermal average. In this paper it is
sufficient to restrict ourselves to consider only J=O (p-
Hz) and J =1 (o-H2) because the splitting between these
ground-state levels and higher J states is much larger
than any other energies in the problem, at least for the
zero pressure solid we concern ourselves with here. '

There are five independent functions that are required for
calculating T, at high temperatures. These correspond
to the choices a=2+1; 2+2, 20 and 1+1,10. For high
concentrations it is natural to use moment methods to
approximate the correlation functions of Eq. (1). Howev-
er, the direct calculation of moments of spectral functions
with the van Vleck formula' is very cumbersome for
high order moments and complicated spin-spin interac-
tions such as the EQQ Hamiltonian. Several workers
have introduced diagrammatic representations for these
moments which are a great convenience in their calcula-
tion. A particularly successful diagrammatic method is
the expansion developed by Reiter' originally for the
Heisenberg magnet at high temperatures. As he and oth-
ers ' have demonstrated, this formalism is readily ex-
tended to any bilinear spin interaction. In this approach
the vertices represent matrix elements of the Liouville
operator in the space dual to the Hilbert space of spin
states accessible to our system. To obtain useful formal
expressions for the moments, one has to evaluate analytic
expressions for the constituent vertices of the moment
graphs, and construct all topologically distinct diagrams
characteristic of a given order. For the sake of brevity
we outline the construction of the graphs: Our discussion
is intended to be illustrative, not exhaustive. Details of
the method can be found in the literature. ' In fact, we
have already implemented this procedure for the second
and fourth moment graphs for H2 in Ref. 16. While the
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present calculation is much more complex, the basic
methodology is identical. The calculation was divided
into several steps: First, we obtained all topologies for
the sixth moment. By this we refer to the set of all possi-
ble combinations of six unlabeled bilinear vertices pro-
ducing a closed graph and accounting for all possible
time orderings. We find that there are 31 such topolo-
gies. These are reproduced in Fig. 2. We note (using the
nomenclature of Ref. 2) that the diagrams fall into three
categories; reducible [Fig. 2(a)], nonskeleton [Fig. 2(b)],
and skeleton [Fig. 2(c)]. For each of these graphs we
have to attach spin and site labels consistent with the
usual rules for constructing these diagrams. ' ' In the
present work, we found that there are about 250 decorat-
ed graphs. To minimize the change for error, we wrote a
simple computer program which examined all possible
combinations of site and spin indexes and retained only

I

those combinations which were admissible (i.e., nonzero
and not duplicated). In Fig. 3, we illustrate one decora-
tion associated with a particular topology, the first dia-
gram of Fig. 2(b). We give analytic expressions for the
vertices Q in Table I. The entries in Table I are readily
obtained by forming equations of motion for the irreduc-
ible multipole operators for the EQQ Hamiltonian. For
further details on these vertices see Ref. 8. Throughout
this work we will use the convention that Czreek indexes
denote spin operators (in irreducible multipole form) and
latin indexes denote sites on a hexagonal close-packed
(hcp) lattice. Further, we will require that indexes y, g,
p, v, o denote the m part of l =2 operators, while A, , g, co

represent the m part of I =1 operators. Thus the numeri-
cal value of Fig. 3 is just the sum over all indexes other
than i and m of the analytic expression

0 zr(ij )Q&„„(ik)Qr& (j l)A*„„(ik)Q*&(jl)Q,*„(ij),

where NN are nearest neighbors. The complete sixth
moment for a = (1,m ) is just the sum of all decorated
graphs whch start and end with (l, m) lines. The graph
of Fig. 3 involves triple sums on sites, so that for o-H2
concentrations c, each of these diagrams is proportional
to c . There are actually many graphs which are propor-
tional to c and c . Following a procedure first proposed
by Abrahams and Kittel, ' it is then evident that the
average moments for the dilute lattice are of the form

indexes. In fact, the evaluation of some of these graphs
required a supercomputer. All diagrams were evaluated
in a nearest neighbor approximation, which has been
justified by Hama and Nakamura, " and Harris. ' For
c =1 we find that the difference between nearest and
second nearest neighbors is =1 Jo. This is fortunate,
since some of the diagrams would be virtually intractable
beyond nearest neighbors.

M6(c)=5c+Ec +jc (3)
III. RESULTS AND DISCUSSION

(a) Reducible ( c) Skeleton

The sums of the type indicated in Eq. (2) were quite tedi-
ous as is evident by the large number of spin and site

Harris' has shown that there is little angular anisotro-

py in the correlation functions 6 for fixed l and different
m. Consequently it is acceptable to make the simplifying
assumtion of working with only two independent EQQ
spectral functions corresponding to the choice of 6i
and 62 for any m. The results of summing the
aforementioned diagrams are summarized in Table II.
For convenience, we have also included the results for the
second and fourth moments as well. Using the nomencla-
ture of Table II, a moment of order n and of specific I
may be written in the form

n/2
M„= g c'a;„.

i=1
(4)

(b) Nonskeleton
We have numerically evaluated the average moment ex-
pressions of Tables II for several concentrations and used

mi

FIG. 2. Undecorated graphs required for the sixth moment.
FIG. 3. An example of a decorated graph. The analytic ex-

pression associated with this diagram is given by Eq. (2).
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TABLE I. Nonzero EQQ vertices
pi

Q»(j) =xi
n (order)

TABLE II. Coefticients of Eq. (4).

(a) I = 1

and

F „(ij)=(70vr)' I o(a/rj) C „[I'~+ (0;Ji]*/9,

cc, =1, ao=v'2, p, =3v'2, po=&6, p, = —2v'3 .

Q & (ij)

2'
4a

6

2'
4a

6

280
22 040

799 200

168
5304

50411

189600
3.186X 10

(b) I =2

113760
1.159X 10

1.960 X 10'

1.153 X 10
10

20
21

2 —1

22

2m

2m

2m

1m

1m

1m

1m

1m

2n

2n

2n

2'
2n

2n

2n

&6mF „(ij)
—&3&6—m(m —1)F

& „(ij)
"1/'3 t/6 —m(m+1)F +& „(ij)

3&2mF „(ij)
pF —

~ „(ij)
j3 F-+i, -. (V )

2&3~ F,„(ij)
—2&3n F +,(ij)

maxent to reconstruct the l=1 and l =2 spectral func-
tions. These functions are related to T& by the usual for-
mula:

2

T) ' =—'cod g m G2 (mcoo)
m = 2

'References 10 and 11.

T) = A+B/T (6)

which is valid for B/T « A. (For the values of A and B
calculated by these authors this means T ))2 K, which is
adequately satisfied by the data we analyze. ) Hama and
Nakamura" performed infinite temperature extrapola-
tions by using Eq. (5). We will use their extrapolations of
the data of Amstutz et al. for comparisons with our
theory. We note however, that there is appreciable un-
certainty in this procedure: Jn fact, a comparison of the
extrapolated experimental values and our spectral func-
tions lead to predictions of I,s varying by =5%.

The maxent approach to the moment inverse problem
leads to the following functional form to which the
theoretical moments must be fitted:

1

+—2', g m G, (meso),
m= —1

G(ci)) =exp —g A, ;co' Xo ~ (7)

where co, =7. 15 X 10 /sec and cod =3.62 X 10 /sec are fre-
quencies characterizing the coupling between the molecu-
lar and nuclear spin systems, coo is the frequency at which
the nuclear spins resonate, and G is normalized to m in
Eq. (4). The present work has been carried out in the
infinite temperature limit, which is all that is practical
within the present formalism. Thus comparisons with ex-
perimental data must involve a procedure for extrapolat-
ing the data to the infinite temperature limit. Harris and
Hunt' and Harris' have obtained the leading order
terms in a high-temperature expansion for the second
moments for the EQQ functions. They find that the tem-
perature dependence of T& takes the approximate form

In this equation A,; refers to undetermined Lagrange mul-
tipliers which are determined by the condition that G
have the desired moments, and n is the number of known
moments. Since the functions we are dealing with are
even, all odd )i, vanish. In Table III(a) and III(b) we
present the A,; as a function of concentration. We mea-
sure frequencies in units of [M2(c)]'~, and the spectral
functions so obtained are normalized to unity. Table
III(a) contains the Lagrange multipliers for the l =1
functions, Table III(b) for 1=2. These functions are then
used in conjunction with Eq. (6) to find T„and to esti-
mate the EQQ parameter in the solid state, I,tr. We illus-
trate these functions for several difFerent concentrations

TABLE III. Reduced moments and lagrange multipliers for spectral functions.

1

0.75
0.5
0.2

1

0.75
0.5
0.2

2.699
2.793
2.98
3 ~ 823

4.22
4.28
4.41
4.97

10.42
10.93
11.98
17.10

26.77
27.60
29.25
36.84

(a) I = 1

2.46
2.30
2.02
1.21

(b) I =2
1.85
1.84
1.82
1.71

0.661
0.907
1.42
4.19

1.37
1.38
1.41
1.57

—0.107
—0.213
—0.436
—1.62

—0.241
—0.242

0.244
—0.265

1.33 X 10
2.38 X 10
4.67~10 '

0.170

1.45 X 10
1.44 X 10-'
1.41 X 10
1.42 X 10
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in Fig. 4. We also show the Gaussian fit for comparison
for both I = 1 and I =2.

We take the c = 1 data to make our best estimate of
I,z. Since we are effectively calculating T& for an "aver-
age" site (in the sense of configuration average moments),
it is important that this distribution have a small width.
Clearly this width is a minimum at c =1, the limit of
translational invariance. Also, inspection of the data at
c =1 shows that a fairly reliable linear extrapolation as
required by Eq. (5) is possible. We find a surprisingly
high value of I,&=0.92 K, in contrast to the accepted ex-
perimental value of =0.83 K. There are several kinds of
error in the present problem which account for this
discrepancy. We believe the main source of error to be
the extrapolation to infinite temperature: this depends
upon the rapid convergence of a high-temperature expan-
sion and upon the uncertainty in the experimental data.
These effects cannot be estimated to better than about
5%, and as we mentioned above, using several different
concentrations we found about a 5%%uo variation in the es-
timated I,z. Other sources of error are the intrinsic lim-
its imposed by incomplete information (only six mo-
ments) and computational approximations including the
neglect of second and further neighbors and angular an-
isotropy in the moments. All of these effects amount to
about a 10%%uo imprecision in the estimate of I,s..

Taking I =0.92 K we find reasonable agreement with
the data of Amstutz et al. We illustrate this in Fig. 5.
For concentrations ~0.4 we note a dramatic change in

0.6

O. 4-

0.2

'0
0.6

0 4

0.4

o

O. I—

0
0

f

0.4
I

0.6 I.O

FIG. 5. Comparison of experimental T& and the present cal-
culation with I",~=0.92. The experimental T& values are taken
from Ref. 11 which provides an infinite temperature extrapola-
tion of the data of Ref. 20.

the slope of the theoretical T, versus c curve. This also is
reAected in the experimental data. In the concentration
range 0.2 & c &0.4, there is still reason to believe that the
EQQ interaction provides a mechanism for the rapid
thermalization of the molecular spins. So we conclude
that the change in slope around c=0.4 is a consequence
of the increasing variety of spatial configurations experi-
enced by the ortho molecules, while relaxation via the
EQQ interaction is still dominant. For concentrations
less than =0.2 however, isolation of the spins leads to a
qualitative change in the physics as the EQQ interaction
becomes quenched by the dilution. As we indicated in
the Introduction, it is not correct to interpret the relaxa-
tion purely in terms of the average moments for that re-
gime.

In view of our rather high value for I,& we are led to
compare our results to those of Hama and Nakamura, "
who report a I,z of 0.81 K which is closer to experiment.
First we note that the functional form chosen to fit the
fourth moment in their paper is completely arbitrary, and
other equally reasonable choices can produce sig-
nificantly different results. Also, it is not obvious how to
extend their approximation to higher order, their fit is not
an expansion of the spectral densities on a complete set,
so that it is not clear that in the limit of an infinite num-
ber of moments that such a function would converge to
the exact solution. Consequently we regard their excel-
lent agreement with experiment as being somewhat for-
tuitous.

02 IV. CONCLUSION

0
0

Cil

FKJ. 4. Frequency dependent EQQ spectral functions recon-
structed from configuration averaged moments for several con-
centrations. (a) depicts the I = 1 functions, (b) illustrates l =2.

In this paper we have calculated the high-temperature
autocorrelation functions for o-H2 at high temperatures
and obtained a new estimate of the EQQ coupling con-
stant I,z based on high-concentration nuclear relaxation
data. We also have illustrated the practical calculation of
a sixth moment for a complicated spin-spin coupling. In
this paper we only have addressed the high-concentration
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regime, much work remains to be done to gain a
thorough understanding of the more complicated low-c
solid. We are currently looking into this problem.
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