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Modified Thomas-Fermi theory for depletion and accumulation layers in n-type GaAs
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A modified Thomas-Fermi approximation (TFA) developed originally for inversion layers is used

to calculate electron-density profiles, the spatial dependences of the potential, surface potentials,
and the energies of bound states of depletion and accumulation layers in n-type CxaAs. Remarkable
agreement with recently published results of self-consistent calculations of Ehlers and Mills [Phys.
Rev. B 34, 3939 (1986)] is achieved. All deficiencies of the conventional TFA discussed there are re-

moved. Methodological advantages of the modified TFA are discussed.

Recently, Ehlers and Mills' presented self-consistent
calculations of depletion- and accumulation-layer profiles
in n-type GaAs. Accumulation layers in metal-
insulator-semiconductor (MIS) systems have been investi-
gated since the mid-1960's but much more attention
has been devoted to inversion layers. Thus, especially in
connection with new experiments, interest in the elec-
tronic structure of accumulation and depletion layers
continues. In self-consistent solutions of the Schrodinger
equation and Poisson's equation for accumulation layers,
bound and mobile electron states must be included. As in
other works, Ehlers and Mills' fitted the self-
consistent potential to an analytic form which allowed
them to use a series method to obtain a single-particle
bound state.

Ehlers and Mills' compared their results for the sur-
face potential, the spatial variations of the potential, and
the electron-density profile to results obtained from the
Thomas-Fermi approximation (TFA). They found "the
Thomas-Fermi description rather poor for the parameter
range considered. " Actually the spatial dependences of
band edges and densities, respectively, differ considerably
not only quantitatively but also, especially in the Hat-
band case, qualitatively. (i) In the TFA the density exhib-
its generally a monotonic variation with position up to
the surface and remains finite up to the surface, whereas
the boundary condition for the wave function actually re-
quires the density to decrease smoothly to zero (the small
tail which leaks out into the insulator can be ignored).
(ii) As a consequence of this qualitatively wrong picture
for the density, the potential also becomes erroneous in
the TFA and in the flat-band case qualitatively. (iii) The
TFA is not capable of yielding the bound states (bottoms
of two-dimensional subbands) in the accumulation case.
Ehlers an Mills' attributed the deficiencies of the TFA in
the discussion of their results to the fact that the bound-
ary condition for the wave function is not fulfilled. But
additionally they stated that the TFA assumes the de
Broglie wavelength to be small compared to the screening
length, an inequality satisfied nowhere in the carrier den-
sity range considered.

We wish to show that there exists a possibility of in-
cluding the boundary condition for the wave functions by
properly modifying the TFA [MTFA (Ref. 9)]. The ap-

plication of the MTFA to depletion and accumulation
layers removes the above-mentioned deficiencies of the
TFA. Further advantages of the MTFA will be given at
the end of this Brief Report. The MTFA was developed
by us for the description of inversion layers (denoted as
modified local-density approximation). The basic idea
was the derivation of an analytic approximation for the
density which takes into account the boundary condition
for the envelope wave functions at the surface or inter-
face (at z =0, the semiconductor in the half-space z &0)
modeled by a high potential barrier. For a semiconduc-
tor with an isotropic parabolic conduction band and a
position-dependent band edge V, (z) one obtains for the
electron density in the conduction band, averaged over
atomic dimensions
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m„ is the effective mass of the conduction band (GaAs:
m„=0.069m, ), p is the chemical potential determined by
the bulk neutrality, and k~T is the thermal energy. The
expression (1) smoothly vanishes to zero at the interface
[jo(z~0)~1] as the wave functions do. For large dis-
tances z »L from the interface [jo(z~ oo )~0] (1) is re-
duced to the usual TFA for the density for an arbitrary
degree of degeneracy. Equation (1) and its extensions to
many-valley semiconductors' and to semiconductors
with nonparabolic band structure" were successfully
used to calculate the electronic subband structure of in-
version layers. ' '

For the application of (1) to accumulation layers one
has to be aware of the fact that (1) describes both bound
and mobile electrons. This problem will be discussed in
more detail in a subsequent paper. ' With (1) one im-
mediately can solve Poisson's equation
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numerically' (e is the dielectric constant of the semicon-
ductor). For the effective concentration ND+(z) of donors
as a function of the band bending, the common descrip-
tion'
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(where V,
" represents the bulk potential) is used with the

donor energy Ez ——6.5 meV (Ref. 1) and the bulk effective
donor concentration ND+. Once the potential V, (z) is ob-
tained we can use the modified Bohr-Sommerfeld quanti-
zation formula'
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to calculate for the accumulation case the bound-state en-
ergies E, and hence the subband E, + fi ( k, + k ) /2m„.
The a, are the roots of the Airy function and z;+ the clas-
sical turning point, V, (z;+ ) =E; .

Calculations were carried out for depletion and accu-
mulation layers in n-type GaAs at T =300 K. Figure 1

shows the dependence of the bound-state energies E, —V,
"

and the valence-band bending, or surface potential,
V,.(0)—V, , on the total charge

Q = —(ceo/e)(dV, /dz)!, o (e=11.9)

for three different donor concentrations. Whereas the
original TFA is of limited quantitative validity, most par-
ticularly in the accumulation region Q &0, as pointed out
by Ehlers and Mills, ' the MTFA shows a good overall
agreement with the self-consistent results. ' Of special
importance is the fact that the tlat-band case (the point
where the potential vanishes) occurs correctly not for
Q =0 but for a positive value of Q by virtue of the bound-
ary condition for the wave functions which causes a
deficit of electron charge. But not only this qualitative
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FIG. 1. For the three donor concentrations (a) XD+ =5&& 10'
cm ', (b) 10' cm, and (c) 3)&10' cm ' the subband energies
E; and the surface potential V, (0), both relative to the bulk po-
tential V," and in units k& T, are shown vs the total carrier con-
centration Q per unit area (normalized as in Ref. 1: a unit
length L =4.62 nm is used). The solid lines are the results ob-
tained by the modified Thomas-Fermi approximation (MTFA)
and the dashed lines are the results of Ehlers and Mills (Ref. 1).

FIG. 2. For the three donor bulk concentrations given in Fig.
1 the upper row shows the spatial variation of the potential and
the lower row the electron concentration for three values
of Q: I= —0.02e/L = —0.937X 10''e/cm, II=0.Oe/L, III
=0.02e/L, respectively. The solid lines are the MTFA results
and the dashed lines are calculated in Ref. 1.

peculiarity is reproduced well by the MTFA. It is seen
that there is a remarkable overall agreement. This con-
cerns also the fact that the surface potential changes
more strongly with Q than in the simple TFA. Only for
the highest donor concentration in Fig. 1 do small
differences to the results of Ehlers and Mills' occur. In
Fig. 2 we show the spatial variation of the potential (the
band bending) and the conduction-electron-density distri-
bution. Both quantities are shown for three values of
donor concentration and for three values of the total
charge Q. The upper row for the potentials shows the
good agreement of the MTFA with the full theory, '

whereas the usual TFA provides a rather poor fit. ' The
electron density in the TFA exhibits a monotonic behav-
ior and remains finite up to the surface, whereas the
MTFA, as does the full theory, yields a decrease to zero.
Quantitatively the agreement with the full theory is re-
markable. Again for the highest donor concentration the
deviation becomes larger. But this may be connected
with the fact that in Ref. 1 another expression for Xz+(z)
was used.

In conclusion, the MTFA yields results for depletion
and accumulation layers in good qualitative and quantita-
tive agreement with a full self-consistent Hartree theory.
This indicates that the deficiency of the conventional
TFA is connected with the violation of the boundary con-
dition for the wave functions at the surface, which is
properly taken into account in the MTFA. At the same
time the MTFA is numerically practically as simple as
the usual TFA. In addition, contrary to the full self-
consistent theory„ the MTFA requires no different treat-
ment for inversion, depletion, and accumulation. Finally,
of course, the calculated potential can be fitted to analytic
forms for further applications.
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