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The ground-state wave function is investigated at strong magnetic field for a system that consists
of two parallel two-dimensional electron systems, which are coupled by the Coulomb interaction.
Ground-state wave functions for finite-size systems on a sphere are obtained numerically and com-

pared with Jastrow-type wave functions at Landau-level filling factors v=1, -', —,, and —,'. It is

shown that the layer separations at which Jastrow-type wave functions give a good approximation
to the ground state are filling-factor dependent.

The fractional quantum Hall effect is observed in a
two-dimensional electron system in a strong magnetic
field. ' This effect comes from the realization of in-
compressible ground states around certain Landau-level
filling factors v. (v=2mln, wh. ere l is the Larmor radius,
n is the electron density. ) The strongest anomalies are as-
sociated with incompressible states occurring at v= 1/q
(q odd) where wave functions are extremely well approxi-
mated by the Jastrow functions,

1~i (j~X
(z; —z )~exp —g ~z;~ !4l 2
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where rI=( i,yx) is the coordinate of the jth electron
and z =x iy is its c—om. plex representation. In Eq. (1)
the spin part of the wave functions, which is left implicit,
has each spin aligned with the magnetic field. The re-
striction of attention to this class of wave functions is
usually accepted because of the strong magnetic field. On
the other hand, Halperin suggested the possibility of re-
versed spin s at some filling factors and proposed
Jastrow-type wave functions for two-component i.e.,
spin-up and spin-down fermion systems. Although such
states are unlikely to be realized under the usual experi-
mental conditions, the possibility that some of the elec-
trons have reversed spin becomes realistic at lower mag-
netic fields and in particular at v= —,

' =2+ —,', where the
fractional quantum Hall effect was observed recently. In
fact, Haldane and Rezayi have suggested a ground-state
wave function to explain this experiment, in which half of
the electrons have reversed spin. Their wave function,
however, is not a simple Jastrow type, and cannot be be-
cause of the following facts. The Coulomb interaction

between electrons is spin independent. Thus the total
spin S of the system is conserved. As a result, the orbital
part of the wave function must satisfy a condition known
as the Fock condition. It can be shown that there is no
Jastrow-type wave function at v= —,

' which satisfies this
condition. Haldane and Rezayi noticed that the Jastrow
wave function, when multiplied by the permanent of a
certain matrix, does satisfy the Fock condition for an
S =0 state. This rmodification drastically alters the corre-
lations in the state, however, and in our judgement is un-
likely to lead to a strong anomaly. (The observed anoma-
ly at v= —', is weak. )

These developments have motivated us to investigate
the conditions under which Jastrow ground states, ex-
pected to produce strong anomalies, can be realized in
two-component systems. Fortunately, it has become pos-
sible to fabricate multilayer semiconductor structures,
where parallel sheets of two-dimensional electrons are
realized with quite high mobility. ' '" When there are
only two sheets, we can consider the system as a two-
dimensional electron system with pseudospin one-half,
where the up and down of the z component of the pseu-
dospin corresponds to the sheet index. In this sense this
system is equivalent to a single-layer two-dimensional
electron system with negligible Zeeman energy. Howev-
er, due to the separation between the two layers, the
Coulomb interaction depends on the pseudospin of the
electrons, and the Hamiltonian does not conserve the to-
tal pseudospin S. This fact profoundly influences the set
of filling factors at which Jastrow-type wave functions be-
come good approximations to the ground state for finite
layer separation.

The model we consider here is as follows. There are
two ideal two-dimensional electron systems separated by
distance d. By ideal we mean that the spread of the wave
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function in the direction perpendicular to the plane is
negligible. The dimensionless parameters which charac-
terize the system are v=2ml. n, and 5=d/I. Here n is
the total areal electron density of the two layers. For
present purposes we limit our attention to the case where
the electron density is the same (n/2) in each layer and
neglect the possibility of tunneling between the layers so
that the z component of total pseudospin is a good quan-
tum number. We emphasize that neither assumption is
necessary and that interesting phenomena can occur
when either assumption is relaxed. In particular, the
difference between subband energies in the two layers acts
like a Zeeman term which influences the z component of
the isospin for which the ground state occurs and which
can be controlled with a gate. It is our opinion that the
fabrication of two-layer systems of sufficiently high quali-
ty to allow the observation of the phenomena discussed
here will open up a rich and fruitful area for fractionally
quantized Hall effect (FQHE) studies. " Chakraborty
and Pietilainen' have previously investigated this model
by diagonalization of finite-size systems. They considered
only the excitation spectrum of the system with v= 1 and

5=2. In this paper we investigate the ground-state wave
function as a function of 5 for various values of v. For
v=1 and 5=2 our results are consistent with those of
Ref. 12. We remark that as d approaches zero our model
becomes equivalent to a single-layer model with vanish-
ing Zeeman energy. In this limit the Hamiltonian is in-
variant under all rotations in pseudospin and the ground
state must be a pseudospin eigenstate.

The general wave function for such a system with N
electrons is written as

1
''' N)= [/l'P( 1 ''' N/2 [1] ' z[N/2])

X u, u2 . . uN/2d[, ] d[N/2]], (2)

where 3 is the antisymmetrization operator,
[i]=i +N/2, z, =x; iy;, and —u; and d,. are eigenstates
for the pseudospin component which measures the layer
to which an electron belongs. We consider the following
Jastrow wave function for the ("Roman-Greek" ) wave
function %(zi, . . . , zN/2, z[,], . . .z[N/2] ):

m m n 1 i i N/2i [1]~ [N/2] )

(z ~ zJ )

N/2 N/2

(z, —z['.])"exp —g ~z, ~
/41 —g ~z[, , ]~ /4l

1 ~i (j~N/2 1 ~i'( j' ~ N/2 1 +i"+N/2
1~j"~N/2

The filling factor v for this function is 2/(m +n) and m

must be odd. This wave function generally does not satis-
fy the Fock condition. However, for special choices of m
and n it does. For example, if m —n =0, this wave func-
tion gives the total pseudospin S =N/2, and S,=0 state.
This is the same state as Laughlin's Jastrow wave func-
tion at v=1/m rotated in the pseudospin space. There-
fore it gives a very good approximation to the ground
state for v=1, —,', etc. , at least as d approaches zero, since
there the interaction is nearly isotropic in the pseudospin
space. For m —n =1, the wave function can be shown to
give a total pseudospin S =0 state which closely approxi-
mate the ground states as d goes to zero. For other
values of m —n the Jastrow wave function is not a pseu-
dospin eigenstate and cannot be the d =0 ground state.
For larger layer separations the Jastrow-like ground
states may occur for larger values of m —n until as d ap-
proaches infinity they occur only for n =0, correspond-
ing to isolated layers.

To determine where Jastrow ground states will occur,
we diagonalize the Hamiltonian of a finite-size system
and calculate the overlap between the ground-state wave
function and 4 „. The actual calculations are done
for spherical systems. ' As a convenience we consider
two concentric spheres with the same diameter for each
layer. The surfaces of these spheres are separated by d in
the fourth spatial dimension. The interaction between
the electrons is the ordinary Coulomb interaction using
geometrical distances. Thus

2

U (Q„Q2)=
(Q 2~Q1 Q2~2+d2fi )1/2

(4)

where R is the radius of the spheres, 01 and Q2 are two
unit vectors on the sphere that give the position of two
electrons, o. =+1 indicates the two layers, and e is the
dielectric constant.

In the calculation we use pseudopotential parameters
Vi calculated from Eq. (4). This Vi has the meaning
that it is the energy of pairs of particles with relative an-
gular momentum l. The expression for VI is given by
Haldane' for an infinite-size system and that for finite-
size system is given by Fano et ah. '

VI is defined with
obvious replacement. It is important to realize that for
an infinite-size system the filling factor is given by
v =n /n&, where n

&
is the magnetic Aux density measured

in units of h/e. However, for a finite-size system on a
sphere, the Jastrow-type wave function for v is not real-
ized at v=N/N&, where N is the total number of elec-
trons and N& is the total number of Aux quanta. For ex-
ample, Laughlin's wave function, Eq. (l), is realized at
N&=q(N l). ' Similarly, 0—'» o and %3 3 2 give filling
factor v= —', for the infinite-size system, but they are real-
ized at N&= —,'N —5 and —,'N —3, respectively, for finite-
size systems.

The calculation is done in the second quantized form.
We obtain the Jastrow function 4 „ in this form nu-
merically with appropriate choice of N& and by use of the
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FIG. 1. Overlap between the ground-state wave function +0

and the Jastrow function +» &
as a function of d/I =6. The

filling factor v is 1. Three choices of the total number of elec-
trons, lV =6, 8, and 10, are shown.

FIG. 3. Overlap between the ground-state wave function and
the Jastrow functions +3 3 2 and %5 5 o. The filling factor v is —', .
The total number of electrons is X=6.

model pseudopotential parameters:

1, l &m
@OCT1 P E&yg

and

l &rn
l~n .

At the appropriate value of N& the ground state with
these potentials is nondegenerate, has zero energy, and is
the 4 „state. We have considered four different
filling factors to illustrate the different possibilities. The
results are presented in Figs. 1 —4.

At v=1 we have only one Jastrow wave function,
%'& i &. As noticed above, this is the pseudospin polarized
filled Landau-level state, which is rotated in the pseudos-
pin space. Therefore the overlap is unity at d =0, and
decays as 6=d/l becomes larger. We believe that this
state is responsible for the excitation gap in a v= 1 two-
layer system noticed by Chakraborty and Pietilainen. '

(Notice that their definition of v divers from ours by a
factor of 2.)

At v= —,', W3 3 i is realized. This state is not an eigen-
state of S. Thus it cannot be the eigenstate of the Hamil-

tonian at d =0. However, the overlap approaches unity,
when 5 is around 1.5. (There is a possibility that for
some pseudopotential parameters %'3 3 $

has much larger
overlap with the ground state at d =0.) Since this func-
tion has better short-range correlation than the hollow
core model ground state of Haldane and Rezayi, this
state may be related to the fractional quantum Hall effect

6, 16
2'

At v= —', we can consider two Jastrow functions, +3 3

and %5 5 0. As mentioned above, I)'3 3 2 is the state sug-
gested by Halperin, and it is known that the ground state
at d =0 is well approximated by it. ' ' On the other
hand, as 6~ ~, the system separates into two indepen-
dent systems with filling factor —, each. In this limit it is
evident that +5 5 o gives a good approximation. The
ground state crosses over between these two states as 6
changes. The numerical calculation suggests that this is a
first-order transition. Since %'3 3 2 and 4'5 5 o are realized
at different N&, both can be approximate ground states at
the same value of 6. In the thermodynamic limit there
should be a first-order phase transition at 6=2, accom-
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FIG. 2. Overlap between the ground-state wave function and
the Jastrow function %3 3 ~

The filling factor v is 2. The total
number of electrons is X=6.

FIG. 4. Overlap between the ground-state wave function and
the Jastrow functions +3 3 3 and 0 5 5 ] The filling factor v is 3.
The total number of electrons is N =6.
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panied by a large change in p associated with the
change in activation energies. '

Similarly, at v= —,
' we have two Jastrow functions % 3 3

and %55 &. The former is the S=X/2 Laughlin state,
and the overlap at d =0 is almost unity. For 5~ ~ we
have two v= —,

' systems. The ground state there is not
known but obviously differs from 45 5 &. Thus +5 5 &

is
realized at an intermediate value of 5.

We have seen that simple Jastrow-type wave functions
for two-component systems give a good approximation to
the ground state of the two-layered system for certain
choices of the parameters. Although quantitative con-
clusions will require investigations of the excitation spec-
trum, it is clear that large excitation gaps and strong
anomalies in the transport properties will be associated

with these Jastrow-like ground states.
Crossovers in the ground states occur for d of the order

of l, =100 A. This value may change slightly when we
take into account the finite spread of the electron wave
function in the direction perpendicular to the two-
dimensional plane, and if we take into account the hop-
ping between the two layers. However, if the value does
not change drastically, it should be possible to perform
interesting experiments.
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