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Semiconductor heterojunctions and superlattices have recently shown tremendous potential for
device applications because of their flexibility for tailoring the electronic band structure. A theoret-
ical model is presented to predict the band offsets at both lattice-matched and pseudomorphic
strained-layer interfaces. The theory is based on the local-density-functional pseudopotential for-
malism and the “model-solid approach” of Van de Walle and Martin. This paper is intended as a
self-contained description of the model, suitable for practical application. The results can be most
simply expressed in terms of an “absolute” energy level for each semiconductor and deformation
potentials that describe the effects of strain on the electronic bands. The model predicts reliable
values for the experimentally observed lineups in a wide variety of test cases and can be used to ex-
plore which combinations of materials and configurations of the strains will lead to the desired elec-

tronic properties.

I. INTRODUCTION

In recent years, tremendous developments have oc-
curred in the field of semiconductor heterojunctions and
superlattices and their applications in electronic devices.
The introduction and improvement of novel growth tech-
niques (in particular, molecular-beam epitaxy) have made
it possible to produce extremely high-quality epitaxial in-
terfaces, not only between lattice-matched semiconduc-
tors, but even between materials which differ in lattice
constant by several percent. Such a lattice mismatch can
be accommodated by uniform lattice strain in sufficiently
thin layers.! The resulting so-called “pseudomorphic”
interface is characterized by an in-plane lattice constant
which remains the same throughout the structure. These
strains can cause profound changes in the electronic
properties, and therefore provide extra flexibility in de-
vice design. Knowledge of the discontinuities in valence
and conduction bands at semiconductor interfaces is
essential for the analysis of the properties of any hetero-
junction, but has remained rather limited due to experi-
mental difficulties, and the absence of reliable theoretical
predictions.

Only recently has it become possible to perform first-
principles calculations of the band offsets at a semicon-
ductor interface. Such calculations, based on local-
density-functional theory and ab initio pseudopotentials,
have been carried out for a wide variety of lattice-
matched interfaces,? and also for representative examples
of strained-layer interfaces.’ Unfortunately, the compu-
tational complexity of such calculations is very high,
which limits their use as a tool in the exploration and
design of novel heterostructures. Particularly in the case
of strained-layer interfaces, carrying out a self-consistent
calculation for every imaginable strain configuration
would be unfeasible. This clearly illustrates the need for
a reliable model theory that can predict band offsets for a
wide variety of interfaces without the need for heavy cal-
culations. Several model theories have been developed in

39

the past, with variable degrees of success.* The so-called
“model-solid” theory that will be discussed here yields re-
sults for lattice-matched interfaces which are at least as
good as those achieved by other model theories. Even
more importantly, it provides a natural way of dealing
with strained-layer interfaces. None of the other model
theories includes a prescription for incorporating strain;
attempts to add these effects a posteriori have not been
very successful so far. Particular attention will therefore
be paid in this paper to the features of the model-solid
theory that allow us to examine strained layers.

A theory that can predict the band lineups at interfaces
in the presence of strains should also be able to predict
the behavior of valence and conduction bands under
strain in a single semiconductor; the shifts of the band
edges under strain are described by deformation poten-
tials. It is important to make the distinction between de-
formation potentials which describe changes in the rela-
tive energies of different electronic states, and the so-
called band-edge deformation potentials, which describe
shifts of particular states with respect to a fixed reference
energy. It is the latter type of deformation potentials that
enters in expressions for electron-phonon scattering.’
The dilations associated with longitudinal waves in a
crystal induce shifts in conduction and valence bands,
which affect the carrier mobilities. This effect can be de-
scribed in terms of scattering by a potential, which is pro-
portional to the volume changes introduced by the acous-
tic phonon.

Changes in relative energies of different states in the
same macroscopic region of the crystal (for instance,
band-gap changes under pressure) can be measured or
calculated with conventional techniques. Changes in the
band energies with respect to an absolute reference, how-
ever, are much harder to derive; the problem is actually
similar to that of deriving the band offsets at interfaces.
This connection between heterojunction: theory and the
deformation potential problem was pointed out by Mar-
tin,® and values for deformation potentials in representa-
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tive semicondutors have been obtained using self-
consistent interface calculations.” Here we will see that
the results we obtain from the model theory directly lead
to values for the band-edge deformation potentials; we
will compare them to the experimental evidence that has
recently become available, with promising results.

The model theory, and its connection to the full self-
consistent first-principles calculations, has been described
in detail elsewhere.”%° Those references also contain
more background on the reasons why the model-solid
theory works, and a discussion and comparison with oth-
er models. Here I will only briefly summarize the under-
lying theory, and concentrate on its applications. Section
II discusses the structure of the interface, and devotes
particular attention to the determination of strains in
strained-layer systems. Section III describes how to
derive band lineups for arbitrary materials combinations.
In Sec. IV we focus attention on the effects of shear strain
on the band offsets. Various examples of interfaces that
have recently attracted experimental attention are dis-
cussed in Sec. V. Section VI concludes the paper.

II. ATOMIC STRUCTURE
OF THE INTERFACE —STRAINS

Before we can analyze the electronic structure of an in-
terface, we must define exactly what the positions of the
atoms are. First, let me point out that throughout this
paper all interfaces are assumed to be ideal, i.e., the bulk
atomic structure of each of the semiconductors is main-
tained up to the interface. This completely defines the
structure of any lattice-matched interface. Imperfections
(such as impurities, dislocations, ...) can influence the
values of the band lineups in many ways which are gen-
erally not yet understood. The first step, however, is to
obtain values for the band lineups at ideal interfaces. For
strained-layer interfaces, one must include the appropri-
ate strains in each of the materials to construct a pseu-
domorphic interface. Furthermore, the atomic positions
in the neighborhood of the interface are not a priori
known here, even though only the case of perfect pseu-
domorphic (commensurate) dislocation-free interfaces is
considered. Practical growth of such structure is only
possible for layers that do not exceed a certain critical
thickness; this thickness depends on the material and on
the degree of lattice mismatch. The determination of this
critical thickness is an interesting experimental and
theoretical problem in itself that is not discussed here.

Since the thickness of the layers in modern multilayer
structures can be very small (down to a few monolayers),
the problem of determining the structure is one that
should be treated on the level of a quantum-mechanical
energy minimization of the macroscopic system with
respect to the various parameters (strains and atomic dis-
placements). Such a study was performed for the proto-
typical case of a Si/Ge heterojunction,’® with results that
are expected to be of general validity, and that have been
confirmed by experimental observations.!® The major
conclusion is that the structure of the interface can, to a
very good approximation, be determined using macro-
scopic theory. The following description of the pro-
cedure is similar to Sec. II of Ref. 3, but is included here

for completeness and to establish notation.

The strains in a pseudomorphic (or commensurate) sys-
tem can be determined by minimizing the macroscopic
elastic energy, under the constraint that the lattice con-
stant in the plane, a, is the same throughout the struc-
ture (I denote the lattice constant by the symbol a; the
subscripts || and 1 are used to indicate quantities parallel
or perpendicular to the plane of the interface). We will
derive the strain tensors €, in each of the materials; we
can avoid choosing a particular coordinate system at this
point by expressing the tensor components parallel and
perpendicular to the plane of the interface. For a system
in which h; and h, are the respective thicknesses of the
(unstrained) layers of semiconductors 1 and 2, this yields
the following results:

_ a,Gh,+a,G,h,

TG Gy, ta)
€ %—1 R (1b)
a;,=a;[1—D;(a;/a;—1)], (2a)
61’1:%_1 ) (2b)

where i denotes the material (1 or 2), a; denotes the equi-
librium lattice constants, and G; is the shear modulus,

G,=2(c}, +2¢i,)1—D, /2) . 3)

The constant D depends on the elastic constants ¢;;, ¢},
and ¢, of the respective materials, and on the interface
orientation,

c
D°°‘=2;l—2- , (4a)
11
10— cppt3c,—2c4 (4b)
cipteppt2cy,

D111:2C11+2C12—2C‘44 ) (4C)
ci1t2c,T4cy,

Note that for orientations other than the (001) ¢ and a,
do not represent the actual lattice constant in the crystal-
lographic plane of the interface, but merely express how
the dimensions of the unit cell change under strain, as
given by Egs. (1b) and (2b).

Equation (1) allows us to observe that when
hy/h,—> o, then a —a;; this corresponds to a substrate
of semiconductor 1 with a strained overlayer of semicon-
ductor 2. In general, if a thin overlayer is grown on a
substrate, the value of a, is determined by the substrate
and may be varied by using different substrates. Howev-
er, for free-standing superlattices a; must be determined
using Eq. (1). Once a is known, g;, can be obtained us-
ing Eq. (2).

Those formulas determine the strains in the layers, and
all atomic positions, except the interatomic distance at
the interface itself. The first-principles total-energy cal-
culations showed that the interplanar separation between
the outermost layers of semiconductors 1 and 2 at the in-
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terface is close to the average of the layer spacings in the
two (appropriately strained) bulk materials.

For the (111) and (110) interfaces, strains reduce the
crystal symmetry in such a way that the separation of the
two atoms in the bulk unit cell of the diamond or zinc
blende structure is not uniquely determined from the
macroscopic strain. When the materials are distorted
along these directions, internal displacements of the
atoms occur.!! These displacements are described by a
parameter &, and can have an important effect on the
magnitude of certain deformation potentials that describe
splittings of degenerate bands under shear strain. The ex-
act knowledge of the atomic positions is not required for
application of the theory that I will present; only macro-
scopic quantities, such as strains, will enter. It is impor-
tant, however, to realize that effects such as internal dis-
placements do occur, and that they are properly included
in the calculated values that will be presented.

Table I lists values of lattice constants and elastic con-
stants for a wide variety of semiconductors. Some of the
values for lattice constants are slightly different from the
exact experimental values. That is because, in an attempt
to establish classes of closely lattice-matched materials, I
decided to neglect any mismatch that is less than
~0.5%. Such a small mismatch would only lead to
strain effects in the lineups which are significantly smaller
than the accuracy of the present calculations (and of most
experimental measurements). Many of the references for

elastic constants were obtained through the Landolt-
25

tions, as defined in Egs. (3) and (4),

Examples. Using these values, and appropriate infor-
mation on boundary conditions or layer thicknesses, a.
determination of the strains with Egs. (1) and (2) is
straightforward. Let us illustrate the procedure for a
ZnS/ZnSe (001) interface: first, consider the case of a
thin ZnS overlayer on a ZnSe substrate. This fixes
a, =35.65 A; no strains are present in ZnSe. Further,

_5.65
€zn81 ™ 5 40

€705, = —1.248X0.046=—0.058 ,

—1=0.046 ,

and
Agns1 =5.09 A .

If we choose a Cartesian coordinate system with x and y
axes in the plane of the interface, and z axis perpendicu-
lar to the interface [hence the notation (001)], the com-
ponents of the strain tensor for ZnS are €,, =¢,, =0.046,
€,,=—0.058. All off-diagonal components are zero.
This results in a volume change AQ/Q=Tr(€)=0.035.
This volume change determines the hydrostatic contribu-
tion of the strain, and will enter into the overall band
lineups. The nonhydrostatic strain components (shear
strains), which determine the uniaxial (or biaxial) strains,
will cause splittings of degenerate bands.

As a second example, we consider a superlattice with
equally thick layers (h4,g. =hz,s). Equation (1) yields

Bornstein tables.

Where available, low-temperature
values were used. For convenience, I also give the values
of the constants D and G for different interface orienta-

(5.65)(1.447)+(5.40)(1.803)

1.447+1.803

=551 A .

TABLE I. Lattice constant a (in A) and elastic constants ¢,;, ¢, and c44 for various diamond and zinc-blende structure semicon-
ductors. Also given are values of the parameters G and D for different interface orientations, as defined in Egs. (1) and (2). The elas-
tic constants and G are given in Mbar; D is dimensionless.

a e c Cas Dol Gt po G110 pt G
Si® 5.43 1.675 0.650 0.801 0.776 3.641 0.515 4.417 0.444 4.628
Ge® 5.65 1.315 0.494 0.684 0.751 2.876 0.450 3.570 0.371 3.751
GaAs® 5.65 1.223 0.571 0.600 0.934 2.522 0.580 3.359 0.489 3.574
AlAs® 5.65 1.250 0.534 0.542 0.854 2.656 0.616 3.207 0.550 3.361
InAs® 6.08 0.833 0.453 0.396 1.088 1.587 0.674 2.306 0.570 2.487
GaP* 5.43 1.439 0.652 0.714 0.906 3.000 0.559 3.953 0.470 4.198
AlP¢ 5.43 1.320 0.630 0.615 0.955 2.697 0.623 3.554 0.536 3.778
InPf 5.87 1.022 0.576 0.460 1.127 1.897 0.727 2.768 0.625 2.990
GaSb® 6.08 0.908 0.413 0.445 0.910 1.891 0.569 2.482 0.480 2.635
AlISb" 6.08 0.877 0.434 0.408 0.990 1.763 0.641 2.372 0.550 2.530
InSb 6.48 0.659 0.356 0.300 1.080 1.261 0.698 1.785 0.600 1.920
ZnSée’ 5.65 0.826 0.498 0.400 1.206 1.447 0.716 2.340 0.597 2.556
ZnS* 5.40 1.067 0.666 0.456 1.248 1.803 0.814 2.845 0.704 3.109
ZnTe 6.08 0.713 0.407 0.312 1.142 1.311 0.751 1.907 0.651 2.060
CdTe' 6.48 0.562 0.394 0.206 1.402 0.807 0.974 1.386 0.863 1.535
HgTe™ 6.48 0.597 0.415 0.226 1.390 0.870 0.949 1.499 0.837 1.660

“Reference 12.
"Reference 13.
‘Reference 14.
dReference 15.
‘Reference 16.
fReference 17.
EReference 18.

"Reference 19.
iReference 20.
JReference 21.
*Reference 22.
'Reference 23.

mReference 24.
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Strain components can easily be obtained from Eqgs. (1b)
and (2).

I end this section with a word of caution. The model-
solid theory, as I will describe it, performs very well in its
predictions for band offsets at ideal interfaces. While
many of the present technologically important hetero-
junctions fall into that category, it should be kept in mind
that certain classes of interfaces may significantly deviate
from ideality. One example is that of interfaces between
a group-IV element and a III-V or II-VI compound, or
between compounds which do not have any elements
(cations nor anions) in common. The (110) orientation
poses no problem for these systems, since it is nonpolar
and avoids charge accumulation at the interface; howev-
er, the (001) or (111) orientations are polar in nature and
require atomic mixing of the semiconductors at the inter-
face.?6 It has been shown that different types of mixing
can set up different dipoles, which significantly alter the
band lineups.?’ Effects of this nature are clearly beyond
the scope of the model-solid theory, and indeed of any
theory which relies on the lineup of reference levels
which are intrinsic to the bulk materials. One can, in
principle, describe the effect in terms of certain dipoles,
which would be added on to the model-solid lineup. Such
dipoles, induced by atomic rearrangements, could con-
ceivably also become significant in cases where a common
anion is present, such as for (001) or (111) oriented
strained-layer interfaces, or at an interface such as
ZnSe/Ge, where the difference in Zn-Ge versus Se-Ge
bondlengths could drive atomic displacements. While no
specific cases have been reported so far where the model-
solid approach would break down, one should always
bear in mind what its underlying assumptions and conse-
quently its limitations are.

III. MODEL-SOLID THEORY

The model-solid theory has two main aspects: first, the
generation of an accurate band structure, and second, the
alignment of this band structure on an “absolute” energy
scale. The first part is accomplished by performing
density-functional calculations®® on individual bulk semi-
conductors,? described by ab initio pseudopotentials.*°
The accuracy and margin of error of band structures pro-
duced by these calculations is well established by now,
and changes in the bands induced by hydrostatic or shear
strains are reliably predicted. The calculated band struc-
tures include scalar relativistic effects (included through
the use of the pseudopotentials of Ref. 30), but no spin-
orbit splitting effects; these will be added a posteriori. A
discussion of intrinsic deficiencies of density-functional
theory and their effect on band lineups was presented in
Refs. 2 and 3. The best-known deficiency is the failure of
density-functional theory to produce the correct band
gap.3! Our procedure has been to use the calculated
valence-band position, and then add the experimental
band gap to obtain conduction-band positions. Even the
valence-band positions themselves may be subject to cer-
tain errors within local-density-functional theory. How-
ever, these errors are expected to be smaller than those
for conduction bands, and similar in magnitude for most
of the semiconductors that are studied here.3? They

therefore tend to cancel when we look at differences, as in
the band-lineup problem. The largest errors are expected
to occur in the case of lineups between semiconductors
with very different ionicities; in particular, heterojunc-
tions between group-1V or III-V semiconductors on the
one side, and II-VI compounds on the other side should
be treated with caution.

The second part of the problem is that of establishing
an absolute energy scale. Such an absolute reference can
only be present when the energies in the bulk semicon-
ductor can be referred to the ‘“vacuum level.” Since typi-
cal bulk calculations are carried out for an infinite crys-
tal, no such reference is available; the calculated energy
bands are referred to an average electrostatic potential
within the solid, which is only defined to within an arbi-
trary constant.®* The principal feature of the model-solid
theory consists of a particular way of relating this aver-
age electrostatic potential to the vacuum level. This puts
all calculated energies on an absolute energy scale, and
allows us to derive band lineups by simply subtracting
values for individual semiconductors. The common
reference is accomplished by modeling the solid as a su-
perposition of neutral atoms. In each atom, the electro-
static potential is rigorously defined with respect to the
vacuum level. The average electrostatic potential in this
“model solid” is therefore, by superposition, also well
specified on the absolute energy scale.’* I should em-
phasize that this choice of an absolute energy scale is by
no means unique. It is, however, well defined by the
prescription of superposition of neutral atomic3® charge
densities, calculated within the local-density approxima-
tion (LDA) for the pseudopotentials that are used in the

. band-structure calculations.3°

Taken separately, the results for band position with
respect to the average potential and for the average po-
tential itself contain no information, since they depend on
the choice of pseudopotential and of angular momentum
used for the local part of the the potential. Only the
combination of both, which gives the band positions on
an absolute energy scale, is meaningful and independent
of choices in the pseudopotential. Table II contains an
overview of all results for elemental, III-V and II-VI
semiconductors. Listed in the table are values for E, ,,,
which is the average over the three uppermost valence
bands at I" (known as the light and heavy hole bands, and
the spin-orbit split-off band). The reason I introduce this
average is that splittings of the valence bands will occur
due to shear strains and/or spin-orbit splittings. These
splittings can be easily expressed in formulas that refer
the individual bands to the average. In the first step, it is
therefore convenient to determine the position of E, ,,. 1
stress that these “‘absolute” values for E, ,, do not carry
any physical meaning when taken by themselves, and
should certainly not be related to the ionization potential.
They are only meaningful relative to similar quantities in
other semiconductors.

Besides the position of the (average) valence band on
an absolute energy scale, E, ,,, the model-solid approach
can also give us information about the variation of this
energy when strain is present in the system. Shear com-
ponents of the strain can have a profound effect on de-
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TABLE II. Spin-orbit splittings Ao, and energy gaps E, of various semiconductors (Ref. 25). Values of E, ,, (average of three up-
permost valence bands at T'), a,=d(E,,,)/d(InQ), a,=d(E,)/d(InQ), and a =d(E,—E,,,)/(dInQ) are calculated within the
model-solid approach. For indirect-gap semiconductors, values of E,, E,, a., and a are given for both direct and indirect gaps.

AO Ev,av a, Egdir E;’m acdir adir Egind Eg“d aénd aind
Si 0.04 —17.03 2.46 3.37 —3.65 1.98 —0.48 1.17 —5.85 4.18 1.72
Ge 0.30 —6.35 1.24 0.89 —5.36 —8.24 —9.48 0.74 —5.51 —1.54 —2.78
GaAs 0.34 —6.92 1.16 1.52 —5.29 —7.17 —8.33
AlAs 0.28 —7.49 2.47 3.13 —4.27 —5.64 —8.11 2.23 —5.17 4.09 1.62
InAs 0.38 —6.67 1.00 0.41 —6.13 —5.08 —6.08
GaP 0.08 —7.40 1.70 2.90 —4.47 —17.14 —8.83 2.35 —5.02 3.26 1.56
AlP —8.09 3.15 3.63 —4.46 —5.54 —8.70 2.51 —5.58 5.12 1.97
InP 0.11 —17.04 1.27 1.42 —5.58 —5.04 —6.31
GaSb 0.82 —6.25 0.79 0.75 —5.23 —6.85 —7.64
AlSb 0.65 —6.66 1.38 2.32 —4.12 —6.97 —8.36 1.70 —4.74 3.05 1.67
InSb 0.81 —6.09 0.36 0.24 —5.58 —6.17 —6.53
ZnSe 0.43 —8.37 1.65 2.83 —5.40 —4.17 —5.82
ZnS 0.07 —9.15 2.31 3.84 —5.29 —4.09 —6.40
ZnTe 0.91 —7.17 0.79 2.39 —4.48 —5.83 —6.62
CdTe 0.93 —7.07 0.55 1.59 —5.17 —3.96 —4.52
HgTe 1.05 —6.88 —0.13 —0.30 —6.83 —4.60 —4.48

generate bands; they lead to splittings of the valence
bands (and of indirect conduction bands) which are well
described with deformation potential theory, as I will dis-
cuss later. These splittings are averaged out, however,
when considering the average E, ,,, which is subject only
to shifts due to the hydrostatic component of the strain
(corresponding to a volume change). Once again, two
contributions occur in the calculation. On the one hand,
there is the effect on the band structure when the solid is
compressed; the bands shift with respect to the average
potential in the solid. On the other hand, the average
electrostatic potential itself is shifted due to the (hydro-
static component of the) strain, because it is inversely
proportional to the volume.?* The total effect leads to a
hydrostatic deformation potential for the valence band:

_ dEu,av
@ gma

which expresses the shift in E,,, per unit fractional
volume change (note that d InQ=dQ/Q). A similar
definition applies to the conduction-band deformation po-
tential a.. The band-gap deformation potential is, of
course, equal to @ =a,—a,. Values for a,, a,, and a are
listed in Table II. I will discuss these and their connec-
tion to experiment in more detail in Sec. V.

When dealing with bulk semiconductors, one usually
considers only the relative shift of the conduction band
with respect to the valence band (expressed by the defor-
mation potential a); for the heterojunction problem, how-
ever, values for individual band edges are essential, since
they influence the discontinuities at the interface. These
effects are expressed as

(5)

AEU, av— @ ’ (6)

where a, is the hydrostatic deformation potential for the

valence band, and AQ/Q=Tr(€)=(¢,, +€,, +¢€,,) is the
fractional volume change. Similarly,
AQ

AE. =a, o @)

Even when no shear strains are present the valence
band is usually split due to spin-orbit effects. The experi-
mental spin-orbit splitting is listed in Table II, and allows
us to derive the position of the topmost valence band:

A
+=2 (8)

Eu :Ev,av 3

Table II also contains values for conduction-band posi-
tions, including indirect conduction-band minima when
these determine the lowest gap. They are derived based
on valence-band positions and experimental low-
temperature gaps (also listed in Table II), with the formu-
la

E,=E,+E,, ©)

where E, itself is obtained from Eq. (8).

By comparison with fully self-consistent interface cal-
culations,? the error bar on band offsets determined from
the model-solid theory is ~0.2 eV. The error bar on the
values of band-edge deformation potentials is estimated
to be =1 eV. The list of semiconductors in Table II is di-
vided into several blocks, each of which contains materi-
als with similar characteristics (namely group IV elemen-
tal, III-V compound, and II-VI compound semiconduc-
tors). The model-solid approach is expected to give the
most reliable results for lineups between materials be-
longing to the same block. When two semiconductors be-
long to different blocks in Table II, the resulting lineups
should be regarded with more caution. I also point out
that within the model-solid theory no distinction exists
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between different interface orientations. The band line-
ups at lattice-matched interfaces are therefore indepen-
dent of interface orientation, which has been confirmed
for a large class of interfaces by full self-consistent calcu-
lations.?3¢ For strained-layer interfaces, the strains may
of course depend on the particular orientation, and thus
affect the lineups.

Examples. To conclude this section, let us illustrate
how to derive band offsets for a heterojunction 4 /B
starting from the values in Table II. For lattice-matched
interfaces, the discontinuity in the average valence bands
is simply

AE, .,=EZ,—E}, . (10)

v,av v,av

The sign convention is such that AE, ,, is positive when
the valence band in B is higher in energy than the valence
band in A. To obtain the position of the individual bands
with respect to the average, the spin-orbit splitting A has
to be introduced, as in Eq. (8). As an example, we find
for AISb/GaSb:

AE, ,,=(—6.25)—(—6.66)=0.41 eV .
and
AE,=0.41+(0.82/3)—(0.65/3)=0.47 eV .

Similarly, for the conduction-band discontinuity (which
occurs between the direct conduction-band minimum in
GaSb and the indirect minimum in AISb,

AE,=(—5.23)—(—4.74)=—0.49 eV .

The minus sign indicates that the conduction band in
GaSb is below the conduction band in AlSb; the lineup is
“type I,” meaning that the band gap of one material
(GaSb) falls completely inside the band gap of the other
(AISb). These lineups are illustrated in Fig. 1.

For strained-layer interfaces, one first has to determine
the strain components in each of the materials, as de-
scribed in detail in Sec. II. Continuing our example of a
thin layer of pure ZnS deposited on a (001) ZnSe sub-
strate, we have the strains: €, =¢€,,=0.046, ¢,
= —0.058. These result in a volume change AQ/Q
=0.035. The positions of E, ,, and E, are affected by the
volume change in the layers. The relation

ind
EC
AEC=—0.49
EC
E_"'=1.70
g =1 Eg=0.75
EV
AE,=0.47 fag3=027 E
E v _ v,av
e A,/3-0.22 | AE, =041
v,av
AISb GaSb
FIG. 1. Band lineups at an AIlSb/GaSb interface. The

discontinuity in the average valence bands, AE, ,,, is obtained
from the model-solid theory. Spin-orbit splittings and energy
gaps are taken from experiment. All energies are in eV.

A0
' Q
[based on Eq. (6)] expresses E, ,, in terms of its value in
the unstrained material (i.e., the equilibrium-volume
value from Table II), the hydrostatic deformation poten-
tial for the valence band a,, and the fractional volume
change AQ/Q=Tr(€)=(¢,, +¢€,, +¢€,,). AE,, then fol-
lows immediately. Conduction bands can be positioned
in a similar manner, using the E, values listed in Table II,
and including the appropriate shifts due to strain.
From Table II and Eq. (6):

=E°
v,av v,av

E +a (11)

Elpe=—8.37eV,

v,av

and

EZS=—9.15+2.31X0.035=—9.07 eV .

This leads to AE, ,,=0.70 eV (higher in ZnSe). For the
conduction bands, we find

EZnSe=—540 eV ,

and

nS_ Zn AQ
EZS=EI50+q, A
=—5.29-+(—4.09)0.035=—5.43 eV .

This results in AE.=0.03 eV. The lineups are shown in
Fig. 2.

So far, we have only derived AE,,, for this system.
The shear strains in ZnS cause significant splittings of the
valence bands. To determine the position of the individu-
al valence bands we must use formulas that properly
combine strain and spin-orbit splittings. This will be the
subject of Sec. IV.

IV. STRAIN SPLITTINGS
AND DEFORMATION POTENTIALS

In Sec. III I described how to obtain band lineups from
the model-solid theory, using the values listed in Table II.
For strained-layer interfaces, we saw how to include the
effects of hydrostatic strain in the overall lineups (for
AE, ,,); important effects on the band structure also

E; E,
T E =2.83
g
E,=3.38 E"
v,av
AE =0.58 4,=0.43
E AE._=0.70
v v,av °
E 0.424
v,av
ZnS ZnSe

FIG. 2. Band lineups at a ZnS/ZnSe interface. The discon-
tinuity in the average valence bands, AE,,,, is obtained from
the model-solid theory. Strain shifts and splittings are described
in the text. Spin-orbit splittings and equilibrium energy gaps
are taken from experiment. All energies are in eV.
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occur, however, due to shear strains which break the
symmetry and split otherwise degenerate bands. These
effects are well documented in the literature,’’ and their
description is independent of the model-solid theory that
is used here to line up the overall band structures. Nev-
ertheless, I think it is worthwhile to present the theoreti-
cal description here, in the same notation as introduced
in previous sections, in order to obtain a comprehensive
overview of band-offset calculations for strained-layer in-
terfaces.

A. Valence bands

All the semiconductors discussed here (listed in Table
II) have the zinc blende (or diamond) structure, with a
band structure that includes three degenerate valence
bands at I'. These bands are strictly degenerate only in
the absence of strain and spin-orbit splitting. They are
labeled here by E, |, E, , (the light and heavy hole bands,
respectively), and E, ; (the split-off band). The average of
these bands is referred to as E,,,. When no strain is
present, spin-orbit effects raise E, , and E, , with respect
to E, ;; the shift of the uppermost bands with respect to
E,,, was described in Eq. (8). Shear components of the
strain lead to additional splittings, which interact with
the spin-orbit splittings to produce the final valence-band
positions. The strain splittings themselves are propor-
tional to the magnitude of the strain, and are well de-
scribed in terms of deformation potentials.?” For strain
along [001], the following shifts are calculated with
respect to the average E, ,,: :

AE, ,=1Ag—18E, , (12a)
AE, ;= —+Ayt+18E
+ 1A+ AWBE g +2SEq,; *1'?, (12b)
AE, ;= —¢Agt38E
—1[AF+ABEq; +2SEq, )1 . (12¢)
In these equations 8 Ey, is given by
8E gy =2b(e, —€,,), (13)

where b is the shear deformation potential for a strain of
tetragonal symmetry; b is negative for all the semicon-
ductors discussed here. Experimental values for this
quantity are available for some but not all semiconduc-
tors. The deformation potential b can also be calculated
by analyzing changes in the band structure when strain is
applied;® such theoretical values for b have proven to be
reliable. Table III lists experimental and theoretical
numbers for many semiconductors.

The total splitting of the bands in the absence of spin;
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A V3 Ve
_32_%(8E001+38E“1) _T3(8E001_8E111) T6
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TABLE III. Theoretical and experimental (Ref. 25, except
where indicated) values for deformation potentials b and d for
various semiconductors. All values are in eV.

b (theor) b (expt) d (theor) d (expt)
Si —2.35 —2.1 —5.32 —4.8
Ge —2.55 —2.9 —5.50 —5.3
GaAs —1.90 —1.7 —4.23 —4.5
AlAs
InAs —1.55 —1.8 —3.10 —3.6
GaP —15 —4.6
AlP
InP —1.6 —4.2
GaSb —2.0 —4.8
AlSb —14 —4.3
InSb —2.1 —5.0
ZnSe —1.20 —1.2
ZnS —1.25 —0.8%
ZnTe —1.26
CdTe —1.10 —1.2 —2.8
HgTe —1.15

#Reference 38.

orbit splitting is equal to 2[8Ey,|. Note that Egs. (12)
and (13) were derived in the linear regime, as were all the
expressions for strain-induced shifts or splittings in this
paper; they might therefore become invalid for large
strains. However, the linear approximation is expected
to be adequate for any strain that can be achieved in
practical pseudomorphic layer growth. The band v, is a
pure |3,3) state, while v; and v; are mixtures of [3,1
and |1, 1).

The case of uniaxial strain along [111] is very similar;
Egs. (12) remain valid, with 8E, replaced by 8E,;;,
where

8E,;; =2V 3de,, (14)

with €,,=1(€,—¢,). Values for the deformation poten-
tial d are listed in Table III. It should be noted that the
calculated values of this deformation potential are quite
sensitive to the internal displacement parameter which
describes displacements of the atoms in the unit cell un-
der (111) strain (see Sec. II). I have used values for this
parameter which were calculated with the same methods
and potentials as in the present work.?® The agreement
between theory and experiment for d supports the validi-
ty of this approach.

The case of unaxial strain along [110] is somewhat
more complicated. No analytical expressions can be
written down for the energy levels, and the strain split-
ting is a consequence of a mixture of the deformation po-
tentials b and d. The valence-band positions correspond
to the eigenvalues of the matrix:*’

(SE(X)I _8E111)

(8Ego; +38E,;;)
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where now

8Eyy =4b (e, —€,,) (15a)
and

8E,;;=(4/V3)de,, . (15b)

Example. At this point we can go back to our example
of (001) ZnS/ZnSe, and include the strain splitting of the
valence band in ZnS. Recalling that €,, =¢,, =0.046 and
€,,=—0.058, and using b =—1.25 from Table III, we
obtain with Eq. (13): 8Ey, =0.26 e¢V. Equations (12)
then give

AE,,=—0.11,
AE,,=+0.26,
AE,;=—0.16 .

Notice that AE, |+ AE, ,+AE, ;=0 (within the roundoff
error), as appropriate for shifts expressed with respect to
the average. We see that the uppermost valence band
(v,) in ZnS is 0.26 eV above EZ"S. In ZnSe, the upper-

v,av"*
most valence band is A;/3=0.14 eV above EUZ:VSC We
previously had: E,,,=0.70 eV (higher in ZnSe). The
final valence-band offset becomes: AE,=0.70+0.14

—0.26=0.58 eV. The lineups are shown in Fig. 2.

B. Conduction bands

The procedure outlined above for valence bands also
applies to degenerate conduction bands (with the
simplification that no spin-orbit splitting enters). Direct
conduction bands (at I') are nondegenerate and therefore
only subject to hydrostatic strain shifts, as outlined in
Sec. III. In semiconductors where the band gap is in-
direct, however, we need to analyze the strain splitting of
the indirect conduction-band minima. These usually
occur close to the X point (along the (001) direction,
also referred to as A) in the band structure (Si,AlAs,. . .),
or at the L point ({111) direction) (Ge). Because there
are six equivalent (001) directions, and eight (111)
directions, the conduction-band valleys all coincide in
equilibrium, but can be split by the application of strain
in appropriate directions. In that case, the value En
listed in Table II should be considered an average over
the conduction-band valleys in spatially distinct direc-
tions. This average is shifted due to hydrostatic strains,
using the a, values listed in the table. Following the no-
tation of Herring and Vogt,*° the energy shift of valley i
for a homogeneous deformation described by the strain
tensor € can be expressed as

AE!=(2,T+E,{3,3,}):

m

, (16)

where 1 is the unit tensor, 4, is a unit vector parallel to
the k vector of valley i, and { } denotes a dyadic product.
The shift of the mean energy of the conduction-band ex-
trema is

AE

>

1z 0T%. (17)

I}

4t

c,av=(

The quantity (£, +1Z,), sometimes also denoted as E
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(see Ref. 40), corresponds to a., the hydrostatic deforma-
tion potential for the conduction band (listed in Table II).
Values of Z, for selected semiconductors are listed in
Table IV. ‘

Starting from Eq. (16) we can once again express the
shifts of individual bands with respect to the average
E,,,. Conduction-band minima along A are not affected
by uniaxial strain along (111). Under unaxial strain along
(001) or (110), the bands along [100] and [010] split off
from the one along [001]. The splittings of the bands
with respect to the average is then given by

AEX'=2E%e,, —¢€ (18a)

XX)’

AE!00= —1Z8(e, —¢,.) . (18b)
The superscript A on =, indicates which type of
conduction-band valley (at A or at L) we are considering,
while the superscript on AE, refers to the direction of the
particular conduction-band minimum. Z, is often denot-
ed as E, (see Ref. 40).

Next we consider conduction bands at L. (001) strain

has no effect now. Strain along [111] leads to
AE:”:ZEi‘Exy , (19a)

AE}“’ITI'“T:"‘%Eﬁé}C (19b)

y -
Finally, strain along [110] yields

AE}“"IT:-*-%E‘,%G (20a)

xy

AEcTn,m: —25Le, (20b)

y -

Values for =, are listed in Table IV. Eﬂ‘, like d, turns
out to be sensitive to the value of the internal displace-
ment parameter £.'?° Once again, the choice defined
earlier appears to give good results. Note that experi-
mental information is often only available for the lowest
conduction-band minimum. Strain may cause a cross-
over in the band structure, however, requiring informa-
tion on higher-lying bands. Calculated values are very
useful in such cases.

V. DISCUSSION

A. Band offsets

In this section we will examine a number of technologi-
cally important examples of lattice-matched as well as
strained-layer interfaces. Cases where reliable experi-
mental values are available provide a good test of the

TABLE 1IV. Theoretical and experimental (Ref. 25) values
for the deformation potentials Z4 and EZL, for selected semicon-
ductors. All values are in eV.

=4 (theor) E% (expt) EL (theor) EL (expt)
Si 9.16 8.7 16.14
Ge 9.42 15.13 16.3
GaAs 8.61 14.26 19.6
InAs 4.50 11.35 —3.6
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model. I will also attempt to show how the model theory
is useful for examining trends and quickly analyzing a
wide variety of systems for specific applications.

As emphasized before, the model-solid theory was
developed based on the results and insights provided by
full self-consistent interface calculations for a wide
variety of systems. Many lineups derived from Table II
have been compared with results obtained from full self-
consistent  interface  calculations, where avail-
able.23%%4L42  The results of the model are typically
within 0.2 eV of the fully self-consistent values, both for
lattice-matched and strained-layer interfaces. This
theoretical justification, along with favorable compar-
isons with experiment, gives us confidence in the model
and values presented here.

In Sec. III we used the example of AlSb/GaSb to illus-
trate the derivation of offsets at lattice-matched inter-
faces, and found AE,=0.47 eV. This value is very close
to the experimental value, 0.411+0.1 eV, obtained by
Gualtieri et al. from x-ray photoemission spectroscopy
(XPS) measurements,* and 0.45+0.08 eV, obtained by
Menéndez et al. with a light-scattering technique.**

Our other example was that of a ZnS/ZnSe (001) inter-
face, which resulted in a very small conduction-band
offset: AE,=0.03 eV. Because the model-solid theory is
expressed in terms of analytical formulas and tabulated
parameters, it lends itself easily to systematic studies of
band offsets for a variety of situations. For instance, in
the case of ZnS/ZnSe one might want to explore whether
variations in the strain (created by growth on different
substrates, or in free-standing superlattices with various
layer thicknesses) can lead to significant variations in the
conduction-band offset, perhaps with the goal of develop-
ing a device structure for which a sizable AE, is essential.
In the case of ZnS/ZnSe, we find that the conduction-
band offset is always small. This prediction was
confirmed by experimental observations.* Model-solid
predictions for other II-VI compound interfaces are dis-
cussed in Ref. 41.

The list of cases where model-solid predictions agree
well with experiment is long and still growing. Very
good results were found for Si/Ge strained-layer inter-
faces, as discussed in Ref. 9. Many lattice-matched junc-
tions were discussed in Ref. 2. As an example, AE, for
AlAs/GaAs is predicted to be 0.60 eV, and measured as
0.45-0.56 eV.*"*8 For InAs/GaSb, the model predicts
the correct ‘“broken gap’ lineup, with the valence band of
GaSb above the conduction band of InAs. In the case of
CdTe/HgTe, the model solid*? favors the “large valence-
band offset,” giving AE,=0.24 eV (to be compared with
the x-ray photoemission value*® of AE, =0.35 eV).

Heterostructures are often based not only on pure ma-
terials, but also on alloys. Varying the composition of an
alloy yields variations in the lattice constant, which are
well described by a linear interpolation such as in the
virtual-crystal approximation. This provides additional
flexibility in tailoring the electronic properties of the sys-
tem. To derive valence-band positions for an alloy, linear
interpolation between the pure materials is appropriate.
This approach comes naturally in the context of superpo-
sition of atoms in the model solid. When the constituent
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materials are not lattice matched, one should actually
also consider a strain contribution, since in an alloy
A.B,_,C [with lattice constant ay,=xay(AC)
+(1—x)ay(BC)] one material is effectively expanded,
whereas the other is compressed. For an energy level E;,
with deformation potentials a;, this leads to the following
expression:>°

E(x)=xE(AC)+(1—x)E(BC)

+3x(1—x)[—a,~(AC)+a,~(>BC)]%, 21)

0
where Aa =ay( AC)—ay(BC).

The linear-interpolation approximation may be less
adequate for conduction bands. In cases where large
bowing is present (i.e., nonlinear behavior of the band gap
as a function of alloy composition) I recommend the use
of experimental values for the alloy band gap (including
bowing), in conjunction with model-solid values for
valence-band positions. Strain-induced shifts of the
bands in the alloy can always be reliably predicted using
linearly-interpolated values of deformation potentials.

Heterostructures based on combinations of GaAs,
InAs, and InP are attracting increasing attention. As an
example, we consider lattice-matched Gag 4;Ing 53As
grown on a (100) InP substrate and find [with Eq. (21)]
AE,=0.35eV. Lang et al.’' applied the novel technique
of admittance spectroscopy to this lattice-matched inter-
face, leading to a valence-band offset of 0.35 eV. Skol-
nick et al.>? found AE,=0.38 eV in an optical spectro-
scopy study. Forrest et al.,” using capacitance-voltage
(C-¥) techniques, obtained AE,=0.36 eV. They also es-
tablished that the relationship AE, =0.40AE, holds for a
series of lattice-matched InGaAsP/InP interfaces, span-
ning the alloy range from In; 5;Ga, 4;As to pure InP. Fi-
nally, Westland et al.>* reported optical absorption and
photoluminescence measurements on Gag 47Ing 43As/InP
quantum wells, leading to AE,=0.325 eV. All these
values are in excellent agreement with the theoretical pre-
diction.

Only one publication seems to give a somewhat
different result, namely the photoluminescence experi-
ments of Sauer et al. on Inj5;Gag47As/InP quantum
wells.®  They report AE,=0.40AE, (and AE,
=0.60AE, ), and consider this inconsistent with other ex-
perimental offsets (quoted above). However, with the
AE, value used in their work we find AE,=0.25 eV.
This is only 0.1 eV different from other values (and the
model theory), which seems to be within the error bar of
even the most reliable experiments to date.

When the composition of the Ga,In,_,As alloy is
changed, strains are introduced during pseudomorphic
growth on a InP substrate. The band alignments in the
resulting heterostructures have recently been analyzed by
People,’® using our values for the lineups. Gershoni
et al. have performed low-temperature photolumines-
cence and photocurrent experiments on such
In,Ga,_ As/InP strained-layer superlattices.’’ Good
agreement with their data is obtained if they assume a
valence-band offset for the lattice-matched system of
59% of the band-gap discontinuity; a 15% variation in
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this value does not cause any appreciable change in the
calculated curves, however. With the AE, value used in
their paper, AE,=0.59AE, leads to AE,=0.37 eV for
Gag 47Ing 53As/InP, in very good agreement with the oth-
er experiments, and with the theoretical value.

A word of caution is appropriate here: when experi-
mental data for band offsets are expressed as a percentage
of the band-gap discontinuity AE,, it is important to
check which values for the band gaps were used by the
authors. These values may be different from the ones list-
ed in Table II, due to several reasons: different measure-
ment temperature (values in Table II are for low tempera-
tures), or bowing which causes a derivation from lineari-
ty. To compare with the theory, one should use the AE,
value quoted in the experimental work to calculate AE,
(in eV).

A closely related system is that of Al 4Ing 5,As/
Ga, 47Ing s3As, which was examined by People et al.®
using a C-V profiling technique. They found AE,=0.50
eV, and AE,=0.20 eV. Using Eq. (21), we obtain with
the model-solid values, AE, =0.21 eV, in good agreement
with the experimental value. Rao et al.® used C-V
profiling to measure valence- and conduction-band
discontinuities at the lattice-matched Ga, 5;In; ,oP/GaAs
interface. They found AE,=0.24 eV. Our theoretical
value is 0.36 eV.

Smith and Mailhiot have recently proposed InAs/
Gag ¢Ing 4Sb superlattices as novel infrared photodetec-
tors.®® In their analysis, they assume that the valence
bands of unstrained InSb and GaSb line up. From Table
IT we see that the theory predicts the valence band of
InSb to be higher in energy by 0.16 eV than the valence
band of GaSb (the spin-orbit splitting is similar in both).
This actually implies that the predicted properties of the
superlattices are better than for the band offset used by
Smith and Mailhiot. Based on Table II, we predict a
value for E, ,, at a InAs/Ga,¢In, ,Sb heterojunction of
~0.48 eV. Note that this can lead to a “broken-gap”
lineup of the type that occurs in InAs/GaSb, but also
that strain-induced shifts and splittings of the bands can
lead to widely different values for AE, .

B. Band-edge deformation potentials

The values for band-edge deformation potentials listed
in Table II have already been used extensively in our pre-
dictions of band offsets at strained-layer interfaces. The
good agreement with experiment obtained in many test
cases already provides an indication of the reliability of
these values. I also pointed out that the model-solid de-
formation potentials agree very well with values obtained
from fully self-consistent calculations that produce the
actual displacement of the band edges due to an inhomo-
geneous deformation of the crystal.” It is interesting,
however, to investigate the practical significance of these
values in their own right.

While values for the band-gap deformation potentials
can be directly compared with reliable experimental data,
the individual band-edge deformation potentials a, and
a. are much harder to obtain experimentally, and have
been quite controversial. Measurements are indirect, and
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require a significant amount of analysis and interpreta-
tion, including some assumptions. Here I will only men-
tion some of the recent results; a more detailed discussion
is presented in Ref. 7.

In principle, the deformation potentials can be deter-
mined from mobility measurements on high-purity ma-
terials. Only in GaAs does there seem to be a growing
consensus about the value for |a,| determined in this
fashion, which is around 7 eV.®! The model-solid value is
a.=—7.17 eV.

A second class of measurements is based on the use of
transition-metal impurity levels as reference levels in
band-structure lineups. This approach relies on the ob-
servation that several substitutional transition metal im-
purities give rise to deep levels that exhibit a universal be-
havior, i.e., they can serve as reference lineups to line up
band structures at heterojunctions.®?> At this point in
time, no rigorous theoretical justification exists for this
approach, and no information is available about its gen-
erality and accuracy. Based on its success for a number
of heterojunctions, however, it seems attractive to apply
the approach to the deformation potential problem.
Based on their own DLTS experiments, Nolte et al. 63
found a value of a,=—9.3 eV for GaAs, and —7.0 eV
for InP. They also derived a value of a,=2.4 eV for Si,
based on other published work.% In a similar approach,
Samuelson and Nilsson®® used photoluminescence to
determine the hydrostatic pressure derivatives, and found
a.=—7.7 ¢V in GaAs. All of these values are in reason-
able agreement with the present first-principles calcula-
tions.

A third class of measurements relies on the effect of
heavy doping on the lattice constant. A large concentra-
tion of shallow donors, for instance, can lead to a volume
change which lowers the conduction band, and reduces
the total energy of the system. This effect has to com-
pete, of course, with the increase in elastic energy; formu-
las have been developed by Yokota.®® The change in lat-
tice constant in general not only depends on this electron-
ic effect, but also includes a “size effect” due to the pres-
ence of a different type of atoms. A way of separating
these effects was proposed in recent work by Cargill
et al., who used x-ray scattering to determine the
changes in lattice constant, and extended x-ray absorp-
tion fine-structure (EXAFS) measurements to extract the
size effect.®” For Si, they found a,=3.3 eV, very close to
the theoretical value.

With regard to other theories, we can compare the
values of band-edge deformation potentials listed in Table
IT with those obtained by Cardona and Christensen®®
based on a dielectric screening model. There appears to
be a remarkable difference between the values for the
valence-band deformation potentials: ours are all posi-
tive, whereas those obtained by Cardona and Christensen
are all negative. All these values are quite small in mag-
nitude, however, so that the difference may not be very
significant. The model-solid values show better agree-
ment with the most recent experiments.

An important overall conclusion to be drawn from
Table II is that the valence-band deformation potentials
are small compared to the deformation potentials for the



39 BAND LINEUPS AND DEFORMATION POTENTIALS IN THE . . .

direct gap; for direct-gap semiconductors, most of the
variation under strain occurs in the conduction band.

C. Pressure dependence of band offsets

The values in Table II allow the derivation of band
discontinuities, including cases where strains are present.
So far, we have only considered situations where these
strains are built in, due to a lattice mismatch. The ap-
proach can also be used, however, in the case of external-
ly applied pressure. The investigation of heterojunctions
under pressure is indeed becoming an important experi-
mental tool.%° 7!

Theoretical values for changes in band offsets at
lattice-matched interfaces under applied hydrostatic pres-
sure can be obtained by taking differences of the band-
edge deformation potentials listed in Table II. When this
procedure is applied to valence-band offsets, the resulting
pressure derivative will be small because the individual
numbers for the valence bands are similar in magnitude.
Since they are also subject to an error bar of =1 eV, the
relative error will be rather large. For AlAs/GaAs we
obtain from Table II: [d(AE,)]/[d nQ]=al%¢
—aAlAs=—1.31 eV. Self-consistent interface calcula-
tions for this system under hydrostatic pressure? pro-
duced a value [d(AE,)]/[d InQ]=—0.64 eV. We see
that the difference between model-solid theory and full
calculations is well within the error bar. The result that
[d(AE,)]/[d InQ] is small indicates that AE, remains
rather constant under pressure, an assumption essential
for the interpretation of the experiments in Ref. 69.

Another very interesting case is that of InAs/GaSb,
which has a so-called staggered lineup: the GaSb valence
band is higher in energy than the InAs conduction band.
Investigators therefore often concentrate upon the mea-
surement of the energy difference between these two
bands. Claessen et al.’® used magneto-optical methods
to determine the change in energy separation between
E!"As and ES*5® under hydrostatic pressure, and found
d(ES**—E!nAs) /dp=—5.8 meV/kbar. From an
analysis of transport measurements on InAs/GaSb het-
erostructures under hydrostatic pressure, Beerens et al.”!
derived

d (ES*°—E!"As) /dP = —67 meV /GPa
= —6.7 meV /kbar .
Using the values from Table II, we find that
d (ES*SP— E!"A%) /d InQ=(0.79)—(—5.08)
=5.87 eV .

This value was confirmed by carrying out a full self-
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consistent interface calculation, which agreed with the
model solid to within 0.3 eV. The theoretical values are
expressed as energy shifts per fractional volume change.
In order to convert to energy shifts per unit pressure, one
can use the relationship P =—BAQ/Q, where B is the
bulk modulus. B can quite easily be obtained from Table
I, using the formula B =(c,;+2c,,)/3. This leads to
B =580 kbar for InAs, and B =578 kbar for GaSb. We
thus find d (ES*®*—E!"4%) /dP = —10.1 meV/kbar. The
error bar on the @, and a, values in Table Il is £1 eV,
which leads to an error bar of +3 meV on the value of
the pressure derivative. Because of the error bar on the
theoretical (and presumably also on the experimental)
value, the theoretical result is not inconsistent with the
experiments quoted above. However, the deviation may
indicate that other factors are playing a role in the exper-
iment or its interpretation. One possible factor is uniaxi-
al strain. The theoretical value is derived under the as-
sumption that the strain is purely hydrostatic. In the ex-
perimental situation, even if the applied stress is purely
hydrostatic, small uniaxial components may arise because
of the anisotropy of the sample (e.g., due to the difference
in elastic constants between the two materials). Uniaxial
strain does not affect the InAs conduction band, but leads
to a splitting of the GaSb valence bands; this may reduce
the observed rate of decrease of the band discontinuity.

VI. CONCLUSIONS

I have presented a theoretical model to calculate band
lineups at lattice-matched and strained-layer interfaces,
and tabulated parameters to calculate band lineups for a
wide variety of semiconductors. The important effects
due to strains in the layers were emphasized, and
prescriptions for evaluating the strain components were
given. These strains are determined by the lattice con-
stants (i.e., choice of materials and alloy composition),
the boundary conditions (i.e., choice of substrate), and
the thickness of the layers (in a free-standing superlat-
tice). This provides wide flexibility in the design of new
heterostructures. The model-solid theory, developed
based on full self-consistent interface calculations, com-
pares well with experiment in various reliable test cases.
The model and values presented here therefore provide a
basis for analysis and design of novel interface structures,
as illustrated in many examples.
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