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II. Triple-layer slab
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We consider the eigenproblem of a composite system of three different layer subsystems, assumed
to be coupled at their interfaces. General formulas for the eigenvectors and eigenvalues (charac-
teristic equation) of the total system, as well as its interface response-rescaling parameters, are de-
rived and expressed in terms of matrix elements of the indiuidual subsystem response functions and
the interface coupling parameters.

I. INTR&)DUCTION

In previous papers we have developed the interface-
response' as well as the interface-rescaling approaches to
the calculation of eigenvectors of composite systems.
Then, the unified interface response-rescaling treatment
was presented in paper I of this series in solving the ei-
genvalue problem of a double-layer slab. The basis for
the calculation of fundamental characteristics (eigenvec-
tors, characteristic equation, interface-rescaling parame-
ters) such composite systems resides in the knowledge of
the individual response functions for the constituent sub-
systems. The present paper deals with triple-layer struc-
ture, for which we shall derive similar formulas, express-
ing the fundamental characteristics of the composite sys-
tem by way of the response functions of the subsystems.
Recently, there is a strong demand from experimentalists
for knowing these fundamental characteristics of layered
composite systems (e.g. , to intepret spin-wave resonance
spectra observed in sandwich structures consisting of iron
layers inserted at different positions within nickel films ).

In the following presentation we restrict ourselves to
the case of finite one-dimensional systems only. Howev-
er, the application of our method to realistic finite three-
dimensional systems (layered structures) is straightfor-
ward. Due to translational invariance parallel to surfaces
of the system, one can perform the usual Fourier trans-

formation in the two in-plane directions, and all the
quantities involved become functions of the in-plane wave
vector k~~. Since this is the only difference which shows

up, the dependence on k~I, for simplicity, will not be ex-
plicitly written down in our presentation.

The outline of this paper is as follows: in Sec. II we
chose a simple model of triple-layer structure formulating
its eigenvalue problem in matrix form, then we derive the
formulas for eigenvectors (Sec. III) and eigenvalues (i.e.,
characteristic equation, Sec. IV). The results obtained for
the eigenvectors enables us to express the interface rescal-
ing parameters (Sec. V) defined before in terms of single
matrix elements of the inverse matrices of individual sub-
systems. The explicit forms of these inverse matrices for
homogeneous subsystems are presented in Sec. VI, which
concludes the paper.

II. THE EIGKNPRQBLKM

We are interested in a one-dimensional composite sys-
tem of three alternatively disposed subsystems at interac-
tion by way of the interfaces. %'ith each of the subsys-
tems separately described by a matrix H1, H2, or H3, re-
spectively, the eigenvalue problem of the system as a
whole can be expressed in the following form:

u1

hu:—

H1

Vz

0(L —N —R)XN

V12 0NX(1 —N —R)

H2 V~3
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0L X1 (2. I )
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V
(N —1)X(R 1) O(N —1) X1 0 p

21
(R —1)X(N —1) (R —1)X1

=(V)~)

V23
(R —1)X(L —N —R —1) O(R —1) X 1

0 'V

V 32
(L —N —R —1)X(R —1) (L —N —R —1)X1

= (V23)

p and y are coupling parameters between the respective subsystems and the one-column matrix u is the eigenvector of
matrix h describing the system as a whole [in the notation of Eq. (2.1), the eigenvalue E corresponding to u is included
in the diagonal elements of h]. Let us denote by I the spatial variable of Eq. (2.1); it takes the discrete values
l =—1,2, . . . , L. It proves convenient to introduce distinct indices for each range of the subspaces corresponding to the
three subsystems. We denote them as follows:

l =n =1,2, . . . , Ã in the subspace D1,
l —= I" =X+ 1,N +2, . . . , X+R in the subspace D2,
l—:p =X+R+1,%+R+2, . . . , L in the subspace D3

Moreover, we introduce the concept of "interface subspace, " and

l=X,%+1,N+R, X+R +1 in the interface subspace M,

(2.2a)

(2.2b)

(2.2c)

(2.3a)

l =1,2, . . . , L in the space D as a whole . (2.3b)

Thus, the interface subspace M is "projected out" as that part of the space D where all the interactions connecting the
subsystems take place.

We now proceed to define the following two matrices:

h =—H()+ VI, Ho=

H1

OR xN

ONxR

H2

O(L —N —R) X N O(L —N —R) X R

ON x(L —N —R)

OR X(L —N —R)

H3

ONxN

V21

O(L —N —R) XN

V

OR XR

V32

ON X(L —N —R)

V-3

(L —N —R) X(L —N —R)

(2.4)

The matrix Ho describes the unperturbed system (isolated subsystems) whereas VI is a perturbation which, when im-

posed on Ho, makes it the matrix of the initially considered combination of three mutually coupled subsystems. Clear-
ly, VI has nonzero elements only in the interface subspace M. We shall also need the inverse matrices:

G,=H, ', g=h-'

G =H 'G =H 'G =H
1 1 ~ 2 2 ~ 3 3

The general properties of inverse matrices lead to the following relation:

(2.5)

G, (D,D, )

Go(DD) = Ox xx

O(L —N —R) X N

ON XR

G~(DzD~)

O(L —N —R) X R

ON X(L —N —R)
e-+

OR X(L —N —R)

G3(D3D3)

(2.6)

As the essential result of the present work, we shall prove that it suffices to have available the inverse matrices of the
individual subsystems G„G2,G3 and the matrix VI that couples them into a whole in order to be able to determine the
eigenvalues E and the eigenvectors u of the matrix h, i.e., the matrix of the triple-layer system. Since we proceed
throughout Using matrical notation, we now have to introduce some new matrices. They will play an important role in
the proof. Thus, we define the following matrix:
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A(DD)=Vt(DD)GO(DD) . (2.7)

By (2.4) and (2.6), A(DD) possesses nonzero elements only in the four rows belonging to the interface subspace. These
elements are A (¹D2),A (N+1;D&), A (N+R;D3), and A (N+R +1;D2). We denote the rectangular matrix con-
sisting of these four rows by A(MD):

A~1XN ~ 12 ~1X(L —N —R)

( MD)A 21 01XR 01X(L —N —R)
A(MD) =

(MD) (2.8)
1XN 1XR 33

(MD)
~]XN A42 01X(L—N —R)

where

A ', 2
'=( pG2(—N +1,N + 1) pG2(—N +1,N +2) . pG2—(N + 1,N +R ) },

A2, '=( —pG, (N, 1) —pG, (N, 2) . —pG, (N, N)),
A 33

'=( —yG3(N+R +1,N+R +1) —yG3(N+R +1,N+R +2)

A42 '=( —yG2(N+R, N+ I) —yGq(N+R, N+2) . —yG2(N+R, N+R)) .

—yG3(N+R +1,L)),

It will prove useful to perform a further "projection, " leaving only those elements of (2.8) which bear strictly on the in-
terface subspace. This leads us to the 4X4 matrix A(MM):

A(MM) =
—pG, (N, N)

0

—pG~(N +1,N + 1) —pG2(N +1,N +R)

—yG2(N+R, N+1) —yGq(N+R, N+R)

0
—yG3(N+R +1,N+R +1)

In turn, (2.9) will serve to define yet another matrix —the
key to our further considerations —of the form

b, (MM) = I4+ A(MM),

~here I4 is the 4 X 4 unit matrix.

(2.10)

III. THE EIGENVECTORS

(3.1)

where [ ] stands for the transposed matrix and Uo(M) is
the 4X1 (column) matrix ["projected" out of the L X 1

column matrix Uo(D)] containing elements belonging to
the "interface" subspace only. Furthermore, it turns out
that if the perturbed system is finite (as is the case here)
the formula (3.1) can be reduced to the simpler form

[ll(D)] = —
~
~A(MM)~ ~[UO(M)] b, '(MM)A(MD) .

(3.2)

Equation (3.2) is just the formula that will serve us to

Let us write the eigenvectors of the unperturbed sys-
tem Ho in the form of the L X 1 (column) matrix Uo(D)
In a separate paper, ' we have shown that the eigenvectors
u(D) of the perturbed system can be expressed by way of
the eigenvectors of the unperturbed system Uo(D) as fol-
lows:

[u(D)] =[Uo(D)] —[Uo(M)] 6 '(MM)A(MD),

determine the eigenvectors of the triple-layer system. At
this point, we wish to note that the presence of the deter-
minant

~
~Z(MM)

~ ~

in (3.2) is only apparent since it can-
cels out with the denominator of the inverse matrix

'(MM).
Since the unperturbed system Ho consists - of three

noninteracting subsystems, the eigenvectors Uo(D) fall
into three classes, each of which belongs to one of the
eigenvector bases, H1, H2, or H3. Writing, quite general-
ly,

Uo(D) = Uo(D, )

Uo(D3)

(3.3)

++
0NX1

0R x1

U (D0)3

0NX 1

Uo(D~)

0(L —N —R) X 10(L —N —R) X 1

In particular, we are justified in choosing the vector

[Uo(M)] =(Uo(N) 0 0 0) (3 5)

as the vector Uo(M) of Eq. (3.2). The 4X4 matrix
b (MM), with regard to Eqs. (2.9) and (2.10), has the form

we find that the eigenvectors belonging to each of these
classes can be written in the form of vectors possessing
nonzero elements only in one of the subspaces D1, D2, or
D3.

Uo(Di )

0R X1 (3.4}
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—pG, (N, N)

0

p—G2(N + 1,N + I ) p—Gq(N + 1,N +R)

—
y 6~(N +R,N + 1) —y G2(N +R,N +R)

—yG3(N+R +1,N+R +1) (3.6)

On insertion of (2.8) and (3.5) into Eq. (3.2) we get

ph '(N, N+ 1)G, (N, n) for l =n ED&

at=- Uo(N)ll~(MM)ll X [pb, '(N, N)G, (N+ I, r)+yb, '(N, N+R+1)G2(N+R, r)] for l =r HD,

yQ '(N, N+R)G, (N+R+l, p) for /=p&D, .

(3.7a)

(3.7b)

(3.7c)

Now, on calculating from (3.6) the inverse matrix elements b, (MM) occurring in (3.7) and on omitting the constant
factor Uo(N), we finally arrive at the following expressions for the eigenfunctions:

p G, (N, n)IG~(N+1, N+1)+y G3(N+R +1,N+R +1)
X [G

2(
N +1, N +R )G 2(N +R, N +I )

—G2(N+1, N+1)Gz(N+R, N+R)]I for l =n CD&

pG2(N+1, r)[1—y G2(N+R, N+R)G3(N+R +1,N+R +1)]
+py G2(N+R, r)[G2(N+1, N+R)G3(N+R +1,N+R +1)] for l =r EDz

pyG3(N+R +l,p)G2(N+1, N+R) for l=p&D3.

(3.8)

These functions are as yet not normalized. For practical purposes, they still have to be multiplied by an appropriate
constant.

IV. THE EIGENVALUES

The response function g of the system as a whole can also be expressed by way of the "unperturbed" response func-
tions of the subsystems and the matrix elements of the perturbation applying the following relation first proposed by
0obrzynski:

g(DD) =Go(DD) —Go(DM)b, '(MM)A(MD) . (4.1)

The expressions obtained from (4.1) for the matrix elements g(DD) are lengthy and we refrain from writing them out
explicitly. It is, however, essential to note that the poles of g(DD) are given by the equation

~
~A(MM)~ =0. With re-

gard to Eq. (3.6) this leads to

[1 yG2(N+R, —N+R)G3(N+R +1,N+R +1)][1—p G, (N, N)G2(N+1, N+1)]
4 —p y Gq(N+1, N+R)Gi(N, N)G3(N+R +1,N+R +1)G2(N+R, N+1)=0, (4.2)

whence one can extract the eigenvalues E of our problem.
Obviously, using Eq. (4.2), the formulas (3.8) for the eigenfunctions can be expressed in diferent, equivalent forms.

The latter turn out to be the forms (we refrain from adducing them) we would arrive at had we used as unperturbed
eigenvector —in place of Eq. (3.5)—one of the following expressions:

[Uo(M)] =(0 Uo(N+1) Uo(N+R) 0) or (0 0 0 Uo(N+R +1)) . (4.3)

Since all alternative approaches lead to - mutually
equivalent results, one is justified in choosing the pro-
cedure involving the simplest calculations. We believe
this is what we have done in the course of the present in-
vestigation.

V. INTERFACE RESPO(NSE-RESCALING
PARAMETERS

In our earlier paper, we introduced the concept of in-
terface rescaling permitting the reduction of the eigenval-

ue problem of a composite system to that of one of its
component subsystems. The procedure involves the cal-
culation of certain new quantities which we refer to as in-
terface rescaling parameters. They have the property of
transferring comp/etc information on one of the subsys-
tems into the adjacent subsystem through the interface
between the two. In particular, we have shown that the
interface rescaling parameters can be expressed in terms
of elements of the response function of the "information-
giving" subsystem; we refer to the parameters thus calcu-
lated as interface response rescaling parameters. -In the
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present section, we shall calculate a pair of these rescal-
ing parameters, namely, the pair governing information
transfer through the interface separating the subsystem
H, from the other two. Moreover, the characteristic
equation of the system as a whole will be shown to be
particularly well represented by way of the product of the
two parameters.

We define the res caling parameters as follows:
R (H, TH2H3) —the parameter which rescales the sub-
system H, with respect to the subsystem (H2H3)—
satisfies the equation

pu„+, =R(a) la, a, }u~, (5.1)
i

whereas R (H ~
~
H2H3 )—the parameter rescaling the

subsystem (HzH~) with respect to H& —fulfills the inverse
relation

pu~ R—(H, ~ H2H3)u~+, . (5.2)

To calculate the rescaling parameters, we make use of the
relation (3.1). In particular, when applied to the interface
subspace, (3.1) takes the form

[u(M)] =[Uo(M)] —[Uo(M)] b, '(MM)A(MM) .

(5.3)

By the definition (2.10), Eq. (5.3) changes into

[u(M)] =[Uo(M)] b, '(MM) .

On insertion of Eq. (3.5) into (5.4) we finally obtain

uM = Uo(N)b, '(N, M),

(5.4)

(5.5)

whence, with regard to the definitions (5.1) and (5.2), we
immediately obtain

R (Hi ~H2H3)=pb, '(N, N+ I ) jb, '(N, N),

R(H, ~H~H3)=pb, '(N, N)lh '(N, N+1) .

(5.6a)

(5.6b)

The relations (5.6a) and (5.6b) [or, equivalently, (5.1) and
(5.2)] show that the product of a pair of rescaling parame-
ters "transporting" information through an interface in
both directions fulfills the following equation:

R (H& ~ H2H3)R (H& ~ H2H3)=p (5.7)

We now proceed to show that (5.7) is, in fact, equivalent
to the characteristic equation (4.2) and thus determines
the eigenvalues of the system. By (3.6) and (5.6a), we
have

2

R (H, H H )= [I G (N+1, N+1)+y2G (N+1,N+R)G (N+R, N+1)G (N+R +1,N+R +1)],I 23

where

(5.8)

I 23
=—1 —y Gq(N+R, N+R)Gq(N+R +1,N+R +1) .

We note that (as it could have been expected) the parameter R (H| ~ H2H3) is expressed by way of the coupling inter-
face parameter p and only those inverse matrix elements of the information-giving subsystems G2 and G3, which belong
to the interface subspace. On writing the following "partial" rescaling parameters for the transfer of information be-
tween individual subsystems:

R(H, H2)=p G, (N, N), R(H, ~H~)=p G2(N+1, N+1),
R(H2ta3)=y G2(N+R, N+R), R(aqpa3)=y G3(N+R+1, N+R+1)

Eq. (5.8) can be expressed as well in the form

, R (a,
~ H, )

—p'R(a, a, )
~ G,(MM)

~ i

R (a, I a,a, )=y'
y —R(H2 t H3)R(H2

~ H3)

where the determinant

Gq(N+1, N+1) G2(N+1, N+R)
G (N+R N+1) G (N+R N+R)

(5.9a)

(5.9b)

(5.10)

R(H, ~H~H3)=—R(H, ~H2)=p G~(N, N) . (5.11)

On the other hand, we note that transfer of information
regarding H, into H 2 is equivalent to its transfer into the
double (two-layer) subsystem (H, H2). Thus, we can write
[by Eq. (5.9a)]

Now, on insertion of (5.11) and (5.8) into Eq. (5.7) we ar-
rive at the characteristic equation (4.2). This proves that
Eq. (5.7) is an alternative form of the characteristic equa-
tion of the triple-layer system as a whole. We have writ-
ten out Eq. (5.10) in full in order to prove that the total
rescaling parameter can be expressed in terms of the par-
tial rescaling parameters.
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VI. EXAMPLE OF APPLICATION:
HOMOGENEOUS SUBSYSTEMS

The preceding formulas immediately enable us to ex-
press, in closed form, the eigenfunctions, the characteris-
tic equation and the rescaling parameters of a triple-layer
slab once the explicit-response functions of its individual
subsystems are known; strictly speaking, we need only
know those matrix elements (of the individual-response

matrices) which belong to the interface subspace. In
solid-state physics, when dealing with the properties of
multilayer structures, it is in most cases suScient to as-
sume that the individual subsystems are spatially (inter-
nally) homogeneous and that the sole inhomogeneity of
their characteristics is located on the surfaces. Systems
of this kind are characterized (in the approximation of
nearest-neighbor interactions) by a tridiagonal matrix of
the following form:

H;(a;, b; )=
x; EL ——p;

(6.1)

p; x—; EL, —b—; t. xL, .

involving the surface parameters a,- and b, describing the conditions on the surfaces of the ith subsystems. The inverse
of a matrix (6.1) is found to be

sin(lk; ) — sin[(I —1)k; ]

G(l l')= X '1

Wa;, b;

b-
X sin[(L; —l'+1)k;]— sin[(L, —l')k, ] for l'~l

a,.
sin(1'k; ) — sin[(/' —l )k, ]

(6.2)

b;
X sin[(L; —1+1)k;— [sin(L; —l )k;] for l'~ l

where

W(a, , b, ):—(P;sink;) [P;sin[(L;+1)k;]
—(a;+b, )sin(L, k, ).
+P; 'a;b;sin[(L; —1)k;][

x; EL =2P;cosk, ,
—

(6.3a)

(6.3b)

well.
By the way, an alternative approach to the eigenprob-

lem of composite systems proposed by us earlier may be
worth mentioning. It, too, is based on the concept of re-
scaling parameters: within the system as a whole, one
subsystem (referred to by us as the "nucleus" ) is selected
and the total rescaling parameters for its two boundaries
are calculated. The rescaling procedure makes the sur-
face parameters of the nucleus go over into "effective"
parameters:

l, l'=1, 2, . . . , L; . (6.3c)

The formulas (6.2) provide the key to the strict charac-
teristics (the eigenvalues and eigenfunctions) of our
triple-layer system. In practice, its application is trivial;
however, one should keep in mind that the indices (6.3c)
have to be shifted as follows: by N for the subsystem
i =2, and by N +R for i =3. In paper I of this series,
we have given some simple examples of the application of
Eq. (6.2) to calculations of bilayer structure characteris-
tics; they should enable the reader to carry out the ap-
propriate calculations easily for triple-layer systems as

a ~a,ft=a+R (left subsystems
~ H„„„,„,),

b ~b, tt
=b +R (H„„,„„,~

right subsystem) .
On solving the eigenvalue problem of the nucleus with
the effective (rescaled) surface parameters we get the solu-
tion of the eigenvalue problem of the system as a whole
(for the details, see Ref. 2).
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