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Interface response and rescaling approach to the eigenvectors of layered composite systems.
I. Double-layer slab
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We consider the eigenproblem of a composite system of two different layer subsystems, assumed
to be coupled at their interface. Eseneral formulas for the eigenvectors and eigenvalues of the total

system, as well as its response function, are derived and expressed in terms of matrix elements of the
individual subsystem response functions and the interface coupling parameter. Explicit expressions
for the case most frequently considered in the literature —that of homogeneous subsystems (with ar-
bitrary asymmetrical boundary conditions) —are also given, illustrating the applicability of our gen-
eral formulas to arbitrary double-layer systems.

I. INTRODUCTION

Recently, layered composite materials (inultilayers, su-
perlattices, etc. ) have become of great interest. Such sys-
tems are produced by various technique, e.g. , molecular-
beam epitaxy, among others. The theoretical studies of
such systems began only a few years ago. In such studies,
when the physical properties are analyzed within a ma-
trix representation, one is faced with the analysis of com-
posite matrices formed out of homogeneous parts corre-
sponding to individual subsystems related together
through the interface interactions. For superlattices
which are formed out of a periodic repetition of two or
more slabs, such an analysis is simplified due to this
periodicity. In this paper, we address mainly finite-
layered composite materials (multilayers) which do not
show a periodicity. For such materials, when studying
their physical properties within a matrix representation
approach, one is in general faced with the necessity to
deal with large composite matrices. A direct numerical
analysis of such a matrix would, in general, lead to huge
numerical computations. ' Alternative analytical ap-
proaches were recently proposed.

The first approach to the analysis of a composite ma-
trix consists in the calculation of its inverse, called also a
response function or Green's function. This can be
achieved from the knowledge of the inverse bulk or slab
matrices of individual constituent subsystems. The sur-
face Green's-function matching method was used to ob-
tain the eigenvalues for quantum wells and superlattices.
The interface response theory was formulated for per-
forming eigenvalues and eigenvectors" calculations for
any composite system. These calculations can be done
within the last theory from the knowledge of the bulk
response function of each subsystem. They can be done
also from the knowledge of the surface response functions
of each subsystem, as explicitly done in the present paper
for a double-layer film.

The second approach calculates the eigenvalues and
eigenvectors of the finite composite system by performing
the reduction of its eigenproblem to that of one of its in-
dividual constituent subsystems. This approach was re-
cently presented as a recurrential interface rescaling
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We consider the following eigenvalue problem:
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method of solving the eigenproblem of secular equation
contraction or composite systems. Another method for
searching eigenvalues of composite structures appeared
also and was called matrix reduction formalism.

Finally let us stress that the knowledge of the eigenvec-
tors is essential in many physical investigations as, for ex-
ample, in recently observed spin-wave resonances of mag-
netic multilayer films.

In the present paper, for the case of a double-layer
slab, we use the interface response theory starting from
the inverse matrices (or surface response functions) for
each single slab. The results obtained for the eigenvec-
tors of the double-layer slab enable us to express the re-
scaling interface parameters defined before in function of
a single interface element of the single-slab response func-
tions. What emerges, then, is a clear physical picture of
this interface rescaling as well as new explicit results for
the eigenvectors of a double-layer slab.

The outline of this paper is as follows. In Sec. II we
chose a simple model of layered composite system, name-
ly the one composed of two subsystems separated by an
interface; then the response function (or an inverse ma-
trix) of the system is calculated in terms of the inverse
matrices of individual subsystems (Sec. III). Finally, the
formulas for the eigenfunctions and eigenvalues (i.e. ,
characteristic equation) are presented in Secs. IV and V
in general form, and in their explicit form (for some spe-
cial cases) in Sec. VI. The paper concludes with some
general remarks.
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where

V12
0(N —1)x(L —N —1) 0(N —1)x1

0 (2.la)

0 E
V21

0(L —N —1)X (N —1) 0(L —N —1)X 1

=(Viz) . (2.1b)

The indices labeling the matrix elements take the follow-
ing values [u is a L X 1 (column) matrix; h, Hi, and Hz
are square matrices]:

Hi(n, n') for n, n'=1, 2, . . . , N;
Hz(m, m') for m, m'=N+1, N+2, . . . , L;
h(l, l') for l, l'=1, 2, . . . , L;
u(l)—= ut for l =1,2, . . . , L .

In the notation of (2.1) the eigenvalue F corresponding to
eigenvector u is implicit in the diagonal elements of H1
and H2. We moreover define two matrices Ho and Vr
fulfilling the following relation:

Gl(D (D) ) ON x(L —N)

G()(DD) =
(L —N)XN G2(D2 2 )

(2.3)

We moreover define the following L X2 ("two-column" )

matrix, which is the "innermost" two columns extracted
out of the full matrix G„(DD):

Go(DM) =

G, (1,N)

G, (2, N)

Gi(N, N)

0

0

Gz(N+ 1,N+ 1)

Gz(N +2,N + 1)

(2.3a)

l—:I =N+1,%+2, . . . , L; in the whole space D, let
I =1,2, . . . , L; in the "interface" subspace M, let I =N
and %+1. Obviously, the subspace referred to as the in-
terface is determined by those elements of the "interac-
tion" matrix Vr that are nonzero.

With regard to the properties of the inverse matrix, we
have

h=H +V (2.2)

0(L —N) x N

0NxN

ON X(L —N)

H2
(2.2a)

Vr= +-+

V21 0(L —N) X (L—N)
(2.2b)

G()=(H()) ', g=h

The notation (2.2) enables us to reinterpret our problem
as that of two finite subsystems (characterized by the ma-
trices H, and Hz) entering into interaction described by
the matrix Vr and forming a new system, the properties
of which are described by the matrix h. For convenience,
we introduce the following indices for the spatial vari-
ables of the respective subspaces: in the subspace D„letI:—n = 1,2, . . . , X; in the subspace D2, let

I

V1 has only two nonzero matrix elements:
Vt(N;N+ 1)= Vt(N + 1;N) = —e. We also write the in-
verse matrices as

G, =(H, ) ', Gz=(H2)

0 Gz(L, N+1)

A-(MD)
121XN0

A(MD) = ~(MD)
+21 01 x (L —N)

where

(2.5)

. We shall show that if the inverse matrices G„G2of the
subsystems and the matrix Vr coupling them to each oth-
er are available, we are fully able to determine the eigen-
values F. and the eigenvectors u of the system as a whole.
To this aim, we introduce a new matrix A(DD); the latter
will be essential in proving our theorem. We define it as
follows:

A(DD)=Vt(DD)GO(DD) . (2.4)

By (2.2b), (2. la), (2.1b), and (2.3), the matrix A(DD)
possesses nonzero elements only in the two rows belong-
ing to the interface subspace; these are A (N;Dz) and
A (N + 1;D, ). We denote by A(MD) the 2 XL ("two-
row") matrix, projected out of the "innermost" two rows
of the full matrix A(DD) so as to contain nonzero ele-
ments only,

A'iz =( —eG2(N + 1,N + 1) —EGz(N + 1,N +2) —EGz(N + 1,L)),
Azi '=( —eG)(N, 1) —EG)(N, 2) . FGi(N, N)) . —

(2.5a)

(2.5b)

A(MM) = —eG, (N, N) 0 (2.6)

It will prove useful to further project the matrix A(MD)
in a manner to retain only those of its elements that are

, strictly related with the interface subspace. In this way,
we arrive at the following 2X2 matrix:

—EG2(N +1,N + 1)

III. THE INVERSE OF A MATRIX
(RESPONSE FUNCTION)

We now proceed to calculate the inverse matrix g of
the system as a whole. This can be done using Dyson's
equation if Vt in Eq. (2.2) is dealt with as a perturbation
in the system Ho. Dobrzynski has shown that Dyson's
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equation, for composite systems, can be written in a form
in which the only essential operations to be carried out
shall take place within the interface subspace M. This
leads to the relation

g(DD) =G0(DD) G—D(DM)b, '(MM)A(MD), (3.1)

where the essential role belongs to the following 2 X 2 ma-
trix, defined in the interface space:

b, (MM) —= Iz+A(MM) =
EG, (N, N)

I

—eGz(N+1, N+1)

EGz(N+ 1,N + 1)

(3.2a)

'(MM) = ll&(MM) II sG, (N, N) 1

~~A(MM)
~~

=—detb, (MM) =1—E G&(N, N)Gz(N + 1,N + 1),

(3.2b)

(3.3)

where Iz is the 2 X 2 unit matrix. With regard to (3.1), on performing the necessary operations and having recourse to
(3.2b), (2.5), and (2.3a), we obtain g in the form

g(D, D) ) g(D)Dz)
g(DD) =

g(DzD&) gg DzDz)
(3.4)

where the elements of the respective submatrices are for gg D, D, ),

g(n, n')=G, (n, n')+ ~b(MM)~~ '[c, Gz(N+1, N+1)G, (n, N)G, (N, n')];
for g(DzDz),

g(m, m')=Gz(m, m')+~~6(MM)~~ ' [e G&(N, N)Gz(m, N+1)Gz(N+ 1,m')];
for g(D, Dz),

g(n, m)=E~~b(MM)
~

'G, (n, N)Gz(N+1, m);

for g(DzD, ),

g (m, n) =Ella(MM) II

' Gz(m, N +1)G&(N, n) .

(3.5a)

(3.5b)

(3.5c)

(3.5d)

IV. GENERAL FORMULA
FOR THE EIGENVECTORS

Let us denote the eigenvectors of the unperturbed
system H0 by the L X 1 (column) matrix U0(D). On the
basis of (3.1) we can derive a similar relation between the
eigenvectors of the perturbed system u(D) and the
column vectors UD(D):

[u(D)] = [UD(D)] —[U0(M)] Q '(MM)A(MD), (4.1)

where [ ] symbolizes the transposed matrix, whereas
UD(M) is the 2 X 1 (column) matrix containing only those
two elements of the L X 1 column vector UD(D) which be-
long to the interface subspace. For finite systems (such as
our system h) Eq. (4.1) reduces to

[u(D)] = —[[h(MM)[[ [U0(M)] b, '(MM)A(MD) . (4.2)

We immediately note that the presence of detb, (MM) in
(4.2) is only apparent since it cancels out with the denom-
inator of the inverse matrix b, '(MM) [see Eq. (3.2b)].
The formula (4.2) presents the advantages of (i) permit-
ting the calculation of the eigenvectors of the perturbed
system from those of the unperturbed system, and (ii) in-
volving operations bearing on the interface subspace
only. However, it should be kept in mind that the vec-
tors (4.2) are not normalized and still have to be multi-
plied by an appropriate constant; in practice, when it

comes to using formula (4.2), this poses but a simple nu-
merical problem.

Since the unperturbed system HD consists of two nonin-
teracting subsystems H, and Hz, the eigenvectors UD(D)
fall into two classes: the one belonging to the basis of
eigenvectors of H& and the other to that of H2. On
representing UD(D) in the general form

U0(D) )

UD(D) = (4.3)
0 2

we find that the eigenvectors of either class can be ex-
pressed as vectors possessing nonzero elements in only
one of the subspaces D, or D2.

Uo(Di )
(basis H, )

0(L —N) x 1

(4.4)

0NX1
(basis Hz) .

Obviously, we are justified in writing quite generally

[Ua(M)] = [ UD(N), U0(N + I ) ] . (4.5)

On insertion of (4.5), (3.2b), and (2.5) into (4.2) we arrive
at the following formulas for the eigenfunctions:
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EG&(N, n)[ EUO(N)Gz(N+1, N+ I)+ Uo(N+1)] for l =n HD,

sG 2(N+I, m)[Uo(N)+ DUO(N+1)G, (N, N)] for l =m HD2 .

(4.6a)

(4.6b)

Next, inserting —in conformity with formulas (4.4)—
Uo(N) —=0 or Uo(N + 1 )—:0 into (4.6) (and omitting
unessential constant factors shared by the subspaces D&
and D2) we obtain, respectively, for the eigenvector de-
rived from the H2 basis,

EG, (N, n) for l =n HD, , (4.7a)

s G, (N, N)G2(N+ l, m) for l =m &D2 (4 7b)

su~+, —R (H, ~ H2)u» (5.2a)

whereas R (H, ~ H2) —that rescaling the subset H2 with
respect to H, —fulfills the equation

The procedure resides essentially in the introduction of
interface rescaling parameters, defined as follows:
R (H

& ~ H2 )—the parameter rescaling the subset H
&

with

respect to the subset H2 —fulfills the following equation:

Eu~ R—(H, ~ H2)u~+, . (5.2b)

and for the eigenvector derived from the H, basis,

E. Gz(N+1, N+1)G&(N, n) for l =n ED&, (4.8a)

EG2(N+ 1,m) for l =m ED& . (4.8b)

The next section will be devoted to the interpretation of
our results.

Quite obviously, once use is made of (5.2a) and (5.2b), the
subsets (5.1a) and (5.1b) become accessible to solution in-

dependently of each other. Thus, the problem reduces to
that of determining the rescaling parameters explicitly.
We shall now show that the latter are determined com-
pletely by those elements of the inverse matrix G0 which
belong to the interface subspace M. By (4.7) and with re-

gard to the relation (5.2a) we obtain directly
V. INTERFACE RESCALING

Our initial set of equation (2.1) can be rewritten in the
form of two mutually coupled subsets:

R(H, lH2)=E G2(N+l, N+1)

and similarly from (4.8) and (5.2b)

R (Hi ~
H2)=c. Gi(N, N) .

(5.3a)

(5.3b)

Q

Hi (5.1a)

+N+1

+%+2
H) (5.1b)

~N+M

Elsewhere, one of us has shown that applying a pro-
cedure referred to as "interface rescaling, '* the two sub-
sets can be "split apart" and then solved independently.

I

Very significantly, the formulas (5.3) state that in order to
"carry over" complete information concerning one of the
two subsystems into the other subsystem, it su%ces to
make use of onIy one inverse matrix element of the
"information-giving" subsystem, namely, the element be-
longing to the interface subspace. The formulas (5.3) are
equivalent to those derived by us earlier using a re-
currential procedure. In Ref. 6 we moreover show how
to derive relations equivalent to (4.7) and (4.8) of the
present paper by applying the recurrential procedure of
interface rescaling.

We shall now apply the concept of interface rescaling
parameters to interpret the formulas (4.7) and (4.8) de-
rived by us in Sec. IV. We rewrite them as follows:

eG&(N, n) for l =n HD& (basis Hz)

R (H&
~
H2)G2(N+ 1,m) for l =m HD2 (basis H~)

'

(5.4a)

(5.4b)

R (H, ~ Hz)G, (N, n) for l =n ED, (basis H, ),
eGz(N+ 1,m) for l =m HD~ (basis H, ) .

160
O(L —NjxN

We note that the eigenvectors of matrix h are "construct-
ed" on elements of the inverse matrix G0 only which be-
long to the interface subspace; the elements in question
can be symbolized as follows:

ON x(L —X)
(5.6)

2

(5.5a)

(5.5b)

I

the parameter c of coupling between the subsystems and
the respective interface rescaling parameter R (H, ~H2).

The eigenvalues of our problem are determined by the
poles of the matrix g(DD). By (3.5), we find them to be
determined by the equality ~~b, (MM)~~=0. In explicit
form, this gives the following characteristic equation [we
make use of Eq. (3.3)]:

In Eqs. (5.4) and (5.5) these elements occur multiplied by 1 —E~Gi(N, N)G2(N+1, N +1)=0 (5.7)
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or, with regard to Eqs. (5.3),

B(H, IH, W(H, IH, )=s'. (5.8)

Since the characteristic equation (5.8) makes the relations
(5.4) and (5.5) go over into each other, each of the equa-
tions (5.4) and (5.5) obviously contains the complete set of
eigenvectors. Thus, in one situation or another, we are
free to choose among the formulas derived from the non-
perturbed eigenvectors of one of the subsystems, i.e., for-

I

mulas (5.4) or (5.5). In the next section we shall give a
simple illustration of the use of the above derived rules
for the case when the subsystems are bulk homogeneous
and their sole inhomogeneity exists on their surfaces.

VI. AN EXAMPLE:
APPLICATION TO HOMOGENEOUS SUBSYSTEMS
We assume the homogeneous system with asymmetric

boundary conditions as described by the tridiagonal ma-
trix:

x; —E —a,.

x; —E

H;=
—P; x; E—

—P x E b- —
i 1 L. XL.

t

(6.1)

x; E=2P, co—sk, (6.2)

one readily finds that G; =H, , the inverse of H;,
possesses the following matrix elements,

where the index i =1,2 labels the subsystems. The quan-
tities a, , b; are the surface parameters, whereas x; and /3;
characterize the homogeneous bulk. F. is an eigenvalue.
On introducing the variable k, (the wave number) defined
as

I

and magnons, respectively;' for simplicity, we shall as-
sume symmetric boundary conditions for the subsystems.

A. "Electron" case (a; =b; =0)

(6.5a)

The interface response-rescaling parameters are, re-
spectively [by Eqs. (5.3) and (6.3)],

sin[(L —N)k2]
p2sin[(L —N + 1)k2 ]

At(a; )Bt.(b, ) for I' ~ l (6.3a)

~(a. , b. ) Bt(b; ) At (a; ) for I' ~ l, (6.3b)
sin(Nk, )

(6.5b)

where we have introduced the following notations: Thus, by (5.8), the characteristic equation takes the form

A t (a; ) =—sin( lk; ) — sin[( l —1 )k,.], (6.4a)
sin(Nk, )sin[(L —N)kz]

C =1
/3&P2sin[(N + 1 )k, ]sin[(L —N + 1 )k2 ]

(6.6)

Bt(b; )—:sin[(L, —l +1)k, ]

b;
sin[(L, —l)k;], (6.4b)

W(a;;b; )
—= (sink, ) {P;sin[(L;+1)k;]

—(a;+b, )sin(L, k, )

+P, 'a, b, sin[(L, —1)k, ] I . (6.4c)

sin(lk, )
for l HD,

sin[(L —l +,1 )k2]
for l ED2,

P2 sin[(L N 1+)k~]—

(6.7a)

(6.7b)

with all common factors omitted.

and, with regard to Eqs. (5.4), the eigenfunctions in Hz
basis become, respectively,

Above, the indices l, l' take the values 1,2, . . . , I,
We can regard the system as a whole as constructed

from the subsystems i =1 and 2. This is equivalent to
construction of a "new" space D (see Sec. II) composed of
the two subspaces D, and Dz. Accordingly, when apply-
ing Eq. (6.3) to the subsystem i =2, one should keep in
mind that the indices l, l' of Eq. (6.3) have to be shifted by
N, i.e., with respect to the subsystem i =2 the G2(l, l') be-
come elfective matrix elements Gz(N + l, N + l'). We
shall now consider a simple example of the use of Eq.
(6.3), assuming for the surface parameters such values as
occur most commonly in the theory of electron states

B. "Magnon" case (a; =b; =P; )

cos( —,
' kz )cos[(L N —

—,
'

)k2 ]—
—

Pepsin(kz )sin[(L N)k2]—
cos[(N —

—,
' )k, ]cos( —,

' k, )

(6.8a)

(6.8b)

The characteristic equation (5.8) now takes the following
form:

The interface response-rescaling parameters, respec-
tively, equal, with regard to Eqs. (5.3) and (6.3)
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cos( —,'k, )cos( —,'k2)cos[(N —
—,
' )k, ]cos[(L —N —

—,
' }k2]

P&Pepsin(k, )sin(kz )sin(Nk
&
)sin[(L —N}k2]

(6.9)

whereas the eigenfunctions in Hz basis take the form [by
(5.4) and with constant factors omitted]

cos[(l —
—,
' )k, ]

cos[(N —
—,
' )k

& ]

cos[(L —l + —,
' )kz]

lED
P2 2 sin( —,

' k 2 )sin[(L —N) kz ]

(6.10a)

(6.10b)

T~(x) xg) P)cosk) —P2cosk2 (6.11)

The above relation permits the elimination of one of the
wave numbers, if necessary.

The above formulas are equivalent to those derived by
one of us in a separate paper applying recurrential inter-
face rescaling procedure. The corresponding case for
"phonon" will be presented in a separate paper.

The preceding expressions (6.5)—(6.10) involve two
wave numbers k, and k2. The two, however, are mutual-

ly dependent since they have to correspond to the same
eigenvalue E for the system as a whole. The relation be-
tween k

&
and k2 is obtained determining E from Eq. (6.2)

for i = 1 and 2 separately, and then equating the two ex-
pressions:

Our next paper (paper II) will deal with triple-layer
structures. There, we shall derive similar formulas, ex-
pressing the fundamental characteristics of the composite
system by way of the response functions of the subsys-
tems.

Finally, let us note that the preceding interface
response-rescaling theory can be formulated even more
generally on admitting the interactions between the sub-
systems as given by a matrix c rather than by a scalar c..
This extension of the theory will be the subject of a
separate paper. We also note that, in fact, from the
mathematical point of view, our procedure can serve, in
general, as a method for the calculation of the inverse of
a block matrix.

In this presentation we have restricted ourselves to the
case of finite one-dimensional systems only. However,
the application of our method to realistic finite three-
dimensional systems (layered structures) is straightfor-
ward. Due to translational invariance parallel to surfaces
of the system, one can perform the usual Fourier trans-
formation in the two in-plane directions, and all the
quantities involved become functions of the in-plane wave
vector k~~. Since this is the only difference which shows
up, the dependence of k~~, for simplicity, has not been ex-
plicitly written down in our presentation.

VII. CONCLUDING REMARKS ACKNOWLEDGMENTS

Above, we have derived formulas for the following
characteristics of a double-layer system: its interface
response-rescaling parameters, eigenfunctions, and
characteristic equation. The basis for their calculations
resides in the knowledge of the individual response func-
tions for the constituent subsystems. Equations (6.3) and
(6.4) permit the expression of the above characteristics in
explicit form for homogeneous subsystems with arbitrary
asymmetric boundary conditions. The case of nonhomo-
geneous subsystems would first involve the calculation
(for each concrete case separately) of the respective sub-
system response functions.
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