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Electronic structure of A1As-GaAs superlattices
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The electronic structure of (001) AlAs-GaAs superlattices is studied for (2,2) ~(n, m) ~(22, 22),
where n (m) is the number of principal layers of AlAs (GaAs). Four distinct regions are identified
in the (n, m) chart. Only one has an indirect gap. Besides energy eigenvalues, especially band-edge
levels, attention is paid to confinement problems and the spatial dependence of the local amplitude
of several representative states. The results show a very diversified spectral phenomenology. The
calculation is based on an sp s* model and on a surface Green-function matching analysis, partly
using formalism previously developed and partly based on further formal developments presented
and used here.

I. INTRODUCTION

The advances in modern growth techniques with good
control of epitaxial crystal structures have caused a con-
siderable interest in new varieties of artificially syn-
thesized semiconductor materials. ' In particular,
GaAs/A1As superlattices have received considerable at-
tention as prototypes of artificial heterostructures com-
bining alternate slabs of a direct-gap material (GaAs) and
an indirect-gap one (A1As), which results in novel elec-
tronic features such as band mixing or spatial
confinement. These have been extensively studied by
means of optical and/or electrical measurements ' as
well as in numerous calculations with varying degrees of
sophistication. "' Kronig-Penney or envelope-function
models have been often used since their early introduc-
tion in this problem. " However, recent experiments
with short-period superlattices in which at least one of
the constituent slabs is less than 30 A thick ' indicate
that their electronic properties cannot be sufficiently well
described in terms of a single-band efFective-mass theory
and more elaborate models of the constituents as three-
dimensional crystals are needed.

We shall study (001) superlattices and use the term iay-
er meaning a principa/ layer consisting of two atomic lay-
ers, i.e., Al and As or Ga and As. The number of A1As
layers will be denoted as n and that of GaAs as m, while
SL will denote a superlattice. Although these SL's have
received considerable experimental and theoretical atten-
tion, two important issues still require further discussion,
namely, the direct or indirect nature of the gap of short
period SL's and the possible relationship between their
electronic properties and those of ternary alloys with the
corresponding concentrations. In fact, there is a substan-
tial lack of agreement on both these questions. For in-
stance, tight-binding, ' ' pseudopotential' and first-
principles self-consistent calculations' predict direct-gap
materials for n =m with n )2, although they differ on
the degree of hybridization of the lowest conduction
band, and therefore on the preferential confinement of
the band-edge states in either of the constituent slabs. A
different picture was obtained from an empirical pseudo-

potential calculation, ' where it was concluded that for
(n +m)(8 the conduction-band-edge wave functions do
not show any confinement and the short period SL's have
direct or indirect gap according to the direct or indirect
character of the corresponding alloys. A more recent
tight-binding study' presents an intermediate picture
with three regions in an (n, m) chart. (1) For m ) 10 and
irrespective of n, the lowest conduction-band state is as-
sociated with the GaAs I state (direct gap). (2) For
m & 10 and m ~ n it is assigned AlAs X character and it
is concluded that electrons and holes are then separately
confined in both real and momentum spaces. (3) There is
an intermediate region, with m ) n and both n and
m & 10, where the SL is claimed to have alloylike behav-
ior. A similar situation prevails on the experimental side.
While some authors claim that for n )2 the SL's have
direct energy gap, others predict indirect gap for partic-
ular values of n and m. More recently, ' SL's where
electrons and holes are separated in both real and
momentum space have been reported for (n, m)=(8, 10),
(19,19), and (31,29).

It should be noted that different calculations used
different input parameters chosen to give different band
offsets, when the crossing of zone-center- and zone-edge-
related states is expected to be very sensitive to the rela-
tive alignment of the AlAs and GaAs band structures, '

whence the direct or indirect character of the gap should
also depend strongly on the band offset. This might ex-
plain some of the scatter found among the theoretical re-
sults. On the other hand, it is rather difficult experimen-
tally not only to determine precisely the thickness of the
SL period but also to assign direct or indirect character
to an optical transition. For instance, scattering by disor-
der has been invoked to explain the comparable lumines-
cence efficiency of direct- and indirect-gap samples. '

Most electronic and optical properties of semiconduc-
tor SL's, both theoretically and experimentally, tend to
be discussed in terms of k states of the constituent bulk
semiconductors. However, folding and remapping make
the Brillouin zone of the SL different, and it is in terms of
this new Brillouin zone that the electronic and optical
properties of the SL must be discussed. Momentum for-
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bidden transitions in an extended-zone scheme may be-
come direct transitions in the reduced-zone scheme of the
SL. On the other hand, most of the studies, either
theoretical or experimental, are restricted to particular
sets of values of (n, m), which are insufficient to obtain an
overall view and to establish general trends.

The purpose of this paper is to study these issues with
a sufficiently broad range of values of ( n, m ) and
sufficiently detailed questions to obtain an overview from
which some general pattern may emerge. Our approach
is to study the SL material as a whole and to discuss the
electronic properties in terms of the Brillouin zone of the
SL. Special emphasis will be given not only to energy lev-
els and dispersion relations but also to the local density of
states associated with diff'erent SL states. The local pro-
jection of their spectral strength on all atomic layers of
the SL period gives a direct picture of the spatial
confinement in real space and this will be here studied in
some detail.

The calculations will be based on sp s* empirical
tight-binding models, which give a good account of the
respective bulk band structures, and on the surface
Green-function matching (SGFM) method.

II. THEORY: St"FM ANALYSIS
OF THE SUPERLATTICK

The general formal theory for discrete superlattices has
been given elsewhere. ' Here we summarize the main
formulas, with emphasis on the practical aspects of the
method for actual calculations. We also present some
further formal theory which proves very useful in prac-
tice to calculate local densities of states. Geometry and
notation are shown in Fig. 1. As in previous applications
of this method we shall employ the concept of ppin-
cipal layer, which is defined so that it interacts only with
nearest-neighbor principal layers, and this accounts for
all interactions in the crystal. The principal layer may
contain one or more atomic layers, depending on the
geometry and on the range of the interactions considered.
After Fourier transform parallel to the interfaces, which

introduces a two-dimensional crystal momentum ~, one
atomic layer is described with as many basis states as are
needed to describe the states of one atom. This deter-
mines the size of the diagonal term, a matrix in general,
representing the local layer projection of, say, a Hamil-
tonian or Green-function matrix. In the following the
term /ayer will indicate principal layer. Let XM denote
the number of layers of each material (M = A, B) and P„
the projector onto a slab of material A, bounded on the
left (right) with B slabs having projectors P& (P„) (Fig. l).
The projector of the left boundary (8i) consists of a B
part (lz ), contained in P&, and an A part (lz ), contained
in P„. Likewise, the right boundary (8„) consists of
(rz ), a part of P~, and (re�), a part of P„. We concen-
trate initially on an A slab and take 4=8&+8"„as the
unit of the entire interface projection domain. Projec-
tions and inverses are defiaed in their natural subdomains
and then combined through the algebra in increasingly
larger domains. For one interface each local projection
yields matrices of a given size. Then through the cou-
pling across the interface, these matrices are put together
in a larger domain 4i =l~+lii, thus obtaining superma-
trices in (2 X 2) format. Finally, left and right are put to-
gether, through the propagation across the slabs, in a
(4X4) supermatrix format, corresponding to 8=8i+ d„.
The size of this supermatrix is twice that corresponding
to the (2 X 2) supermatrices integrated in it. The essence
of the SGFM analysis is that all the matching features of
the superlattice problem are included in this projection.
This fixes the size of the superlattice secular matrix, ir-
respective of any increase in the size of the supercell.
This is manifested only in the values of the cross elements
of the corresponding Green functions, which contain all
the propagating aspects of the superlattice problem. The
superperiodicity is contained in the phase factor
f =exp(igd), where d =d„+dpi. We now give the main
SGFM formulas ' to be used in the applications to fol-
low.

Consider a homogeneous medium and start from the
general definition

(EI H)G =I, — (2.l)

d-dg+dA

dB
B

Rm

8 A J

dA

A

fA ~cP
~r

n& n

H being a tight-binding Hamiltonian and I the complete
unit of the space in which H and 6 are defined. In a su-
perlattice I is the sum of alternate P~ and P~ projectors
and H„with resolvent G„contains the corresponding
PMH~PM terms and the cross terms embodying the 2-B
or B-3 interactions across the interfaces. By definition of
principal layer all these interactions are contained in the
nondiagonal parts of subspaces like 8i or 8„. Working
now in the diagram of Fig. 1 we define

P =P(+P„, (2.2)

the sum of the two P~ projectors limiting P~. Then all
desired matrix elements of G, can be obtained from

pi

FICx. 1. Notation for the difl'erent projection domains in the
superlattice. (See text).

=P~G~P~+PqG~G ~'(G, ~
—G~)G q'G~P„,

(2.3a)
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PG, PA =PGB6 B 'G, „6A
'G cPA, (2.3b)

detiG, A'i =0, (2.5)

which yields the energy band structure E (i~, Q) of the su-

perlattice. The subscript 3 in G, ~ is to remind us that
we have chosen to project on the boundaries of an 3 slab.
A complete set of dual formulas exists with the roles of 3
and 8 interchanged.

where all the projections entering (2.3) have been defined
elsewhere ' and the (E,x,f) .dependence must be un-
derstood throughout.

The matching formula, yielding 6, A, i.e., d"6, d, is

G, „' =dE cP 8H—, [PGB (f )G B '+ P„6„G A
'] . (2.4)

The spectral functions are calculated from the diagonal
terms of 6, and the secular equation is given by

6 (n + l, n}=TG (n, n),
6(n —l, n) = TG (n, n),
6(n, n + 1)=6(n,n)S,
G(n, n —1)=6(n,n)S .

(2.6)

These can all be calculated by the same iterative pro-
cedure. The SGFM formulas needed for actual calcula-
tions can then be cast in the following form:

In order to perform real calculations one must obtain
the Green-function elements entering the above formulas
in a numerica1 way, for which it is essential to have a fast
and reliable numerical algorithm. Here we use an itera-
tive transfer-matrix algorithm which has very fast con-
vergence. Diferent transfer matrices can be defined for a
given medium, namely,

6 —1

s, A

lB(E —H, )lB —lBDBlB
—l,a, l,

rBDB lB

—l~H, l~

lA« —H. }lA lA&AlA—

0

&A (E —H, )&A
—

&ADA &A

AH;rg

lBDB r8

0
—r~H, rJ

rB(E H )rB BDB B

(2.7)

where

HA(1, 2) 0 l~D„l~ l~Dq r~—
1

(2.8a)

HB(2, 1)

0

0 l~D~ l~ l~D~ r~—1

B ~ ) rBDB lB rB+B rB (2.8b}

PA {vA i)
A

T{
A 1A

T~ lq
(2.9a)

fT B —(

f—lT B —1

+B fTB'
f—1 T"a

(2.9b)

TM, TM (M = A, B) being the transfer matrices introduced in (2.6) for medium M.
The local spectral strength in the layer n ~ is obtained from

{"-i~-{-,+i-"~6.(nA nA)=~A+(TA' ' TA' "
)VA (. +(-. )A

A

(2.10)

(2.11)

0
gA 0 g ~ ~A GA(+A&nA)~ ~A

A

lq S~
(2.12)
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The labeling of the layers and the meaning of v~ and v~
are shown in Fig. 2. In order to obtain the local density
of states for given i~ we must integrate over Q, the per-
pendicular component of the wave vector. The above
formulas cannot be literally applied to the particular case
in which one of the slabs is reduced to just one layer.
This is the situation for periodic intercalation com-
pounds, but the same method can be readily adapted to
this case. Note that a principal layer may, and usually
does, contain more than one atomic layer. The local den-
sity of states is obtained from the trace of G, (n, n) and
this sums over the atomic layers forming the layer n, . The
separate contributions from each atomic layer yield the
corresponding local spectral strengths.

Now having calculated the LDOS in the 3 layers, the
question is how to do the same in the 8 layers. The
straightforward way would seem to be to resort to the set
of dual formulas, with 3 and B and their roles inter-
changed. This would be correct, but not very practical,
as the projections are then not in the domain (l, r) but in,
say, (r, n). G, ~, for instance, is not the same matrix as

G, „,although both yield the same secular determinant.
A parallel calculation of the dual formulas requires a re-
calculation of secular matrix and Green-function ele-
ments which would seem somewhat redundant as all the
physical information should be contained in the projec-
tion on (i, r) We sh. all now prove that an alternative for-
mulation for the B part is possible, with considerable
practical advantage concerning both memory require-
ments and computer time. For this it is necessary to
again set up the SGFM analysis on a formal basis.

All the formulas derived so far have been obtained by
considering the response of the superlattice system to a
standard unit input acting at some point of an A slab and
by projecting on the boundaries (I, r) of A. We now con-
sider a unit input acting at some point of 8, say P/ [Fig.
3(a)j and express the matching again at the boundaries
(l, r) of A. We can write down the form of the amplitude
in PI and Pz, take PI to lz and Pz to 1&, i.e., make B and
A meet at the l interface and then take P&' to l~. In this
process PI' always stays in B material and in the P& slab,
whence the amplitudes everywhere in PI and Pz retain
the same form. With this we can effect the (l, l) part of
the matching. But we cannot take P~ and P& to r and,
moreover we cannot take PI' to r while keeping the input
on the same side of the matching domain, i.e., keeping
constant the form of the amplitudes. The points to note
are as follows. (1) One side of the matching domain con-
sists of P„. The "other side" consists of the PI and P, .
Thus, when the input point scans the other side it must

l
l

l p
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FIG. 3. The (matching) projection domain is chosen as I +r.
A unit input outside the 3 layer requires another one with
definite phase correlation at the point on the other side of A

which is connected to the first one by a translation through +d.

PI GsPI PI G~PI +PI G~ l lR~PI +PI 6~m mR~PI

(2.13)PA Gs PI —P~ G~ l ./T~ PI'+ P~ G~ r rT~ P
t

P„G,PI' =P„G~ tP,'f+P„Gz n nR+ Pi'+ P„G~r .rR & PI .

We want to express this in terms of excitation of the
matching domain d=l+r, and then remission from it.
By taking into account that rG~P,'=mG&PI' and by fol-
lowing the procedure developed in Refs. 24 and 25 we ob-
tain

scan both PI and P„. (ii) This is to be an eigenstate of a
system having periodicity d, i.e., phase factor
f =exp(igd ) and translations t through d. We must
strictly keep this phase correspondence. Thus, for "ma-
trix element" P~G, P/ (j =l, A, r), we evaluate the ampli-
tude at P when a standard unit input 5 acts at PI' and
also an input fo acts at P„'= tP&', as shown in Fig. 3(a).

We must now study
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FIG. 2. Each square represents a principal layer. Shown are the labels used to denote them.
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P! s ! ! a !+ LGa ( a i! lGa !+Ra!r mGa ! f)+f iGam (Ra rl aP! +Ra rr mGa ! f)
P~G, P/ =PqG„l.(T~ i! lGap/'+T„ i„mGaP!' f)+P„G~r (T~ „! lGaP!'+T„„„mGap/! f),

G P! P GatP!'.f +f P, Gan (Ra, ii. lGap! +Ra, i, .mGap! f)+P,Gar. «a, ! lGap! +Ra, mGaP!' f )

(2.14)

With this we have all the elements P G, P/ . (j =l, A, r). Now we need P G,P.„'. Then the standard input 5 is at P„'
whereas we have an input f '5 at P!' [Fig. 3(b)].

Now we must consider

P!G, P„' =P!Ga t 'P„' f '+P!Ga l lRa P„'+P!Ga m .mR a P„,
GsPr =P~ G~ I ITg P&'+ Pg Gg I re Pr

P„G,P„'=P„G~P„'+P,G~n nR~P„'+P„G~r. rR~P

By taking into account that mRaP, '=f ' rRaP„', the above formulas are finally written in the form

(2.15)

PiG, P„'=PiGat 'P„' f '+PiGal'(Ra i!'nGap„'.f '+Ra i, rGaP,')+f 'P!Gam. (Ra „! nGaP„' f '+Ra „„rGaP„'),

P~G, P„'=P„G~l (T„ i! nGaP„' .f '+T~, !.rGap„')+P„G~r. (T„„!nGaP„' f '+T„„„rGaP„'),

P„G,P„'=P„GaP„'+f P„Gan (Ra!! nGaP„' f '+Ra i„rGaP„')+P„Gar (Ra „! nGaP„' f '+Ra „„rGaP,') .

(2.16)

We now define the following objects in the (2 X 2) supermatrix format with (l, r) labeling:

P!Gal f 'P!Gam
PGg8= fp G p G ~ 8GgP

lGa P!' f 'n Ga P„'

fmGaP!' rGaP„' (2.17)

lGal f 'nG r
dGa8= f G PGgP '= P!Gap! f 'P!Ga t 'P'

fP„Gatp! P„GaP„'
(2.18)

By using these expressions Eqs. (2.14) and (2.16) can be compacted into

PG, P '=PG$P '+PGad. Ra.GgP ', P~G, P '=P~G~4 T~ cPGaP ', (2.19)

Ra and T„can be obtained by projecting (2.19) on the 4 domain. Then

Ra=Ga'(G.
, ~

—Ga)Ga' T~=G ~'G., ~a'. (2.20)

Then the equations involving always projections on the domain (l, r) are written as

P~ G,P~ P„G„P~+P„—G„P G „'(G, „—G~ )G „' PG~P„,
P~G.P'=P~G~& G ~'G., ~& a' ~GEP

'

PG, P ' =PG1!P '+ PGg 8 0 a '( G, „—Ga )G a
'

cFGg P ',
PG, P~ =PGgd. G a 'G, ~ G ~' PG~pg

(2.21)

The local spectral strength in an na layer (Fig. 2) is then obtained

—(n~ —1) ) (v~+ I —n~ )
G, (na, na)=Qa+(T a,f Ta )!!t,a

—(n~ —])
B
(v&+1 —

n& )

8
(2.22)

pa 'ra (G w ga)ua (2.23)

0
(Ta, Qa=Ga(na, n~ ), oa =

B,

la f 'Sa

fSa'
(2.24)
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Now the same scheme of calculation and the same projec-
tions are employed for the A and 8 parts of the superlat-
tice in such a way that no redundant calculations must be
performed.

The above formulas are prepared so that once the
transfer matrices are evaluated by the iterative algo-
rithm, these are directly inserted in the algebra yielding
the secular matrix and then the diagonal layer projec-
tions. Altogether, this provides a very efficient computa-
tional procedure.

III. RESULTS AND DISCUSSION

A. Band-edge states

Figure 4 summarizes the overall picture. %'e refer al-
ways to the SL as a whole in every respect, including en-

ergy levels and momentum states. The top of the valence
band (VB) is always at the I point and the corresponding
wave function amplitude is always confined to the GaAs
slabs, in agreement with all previous calculations. The
bottom of the conduction band (CB) shows a variety of
behaviors. Here we find four different regions. Region I:
The gap is direct and the amplitude is confined to GaAs.
This corresponds approximately to region I of (Ref. 19).
It is customary to say here that in this region the conven-
tional Kronig-Penney model is valid. However, we stress

3
1

~ ~ 0 ++~

—~ $ ~

~ ~ ~ ~5- ~o

Ga As
11 15 19

A1As )3

21—

FIG. 4. The number of principal layers of A1As-GaAs is
n /m. A superlattice is a point in this chart. The four regions
discussed in the text are shown here. The dots denote indirect
gap SL's.

We have calculated the electronic properties of (001)
A1As/CzaAs superlattices with n layers of A1As and m of
CxaAs for 2+n, m ~22. One layer is 2.83 A thick and
contains two atomic layers, one of anions and one of cat-
ions. In the energy reference used here, E, (A1As)
=0, E, (A1As)=2.30 eV, E„(GaAs)=0.55 eV, and E,
(GaAs)=2. 10 eV. The band off'set is within experimen-
tally accepted values. We have employed an sp s* basis
with the empirical tight-binding parameters of Vogl .

et al.

that this only holds for the band-edge-energy levels but
nothing more, as will be seen later. Region II: The
lowest CB state is confined to the AlAs slabs. In bulk
A1As crystal this would be an X state and the gap would
be indirect, but we stress that in the SL the minimum E,
(SL) is at the I" point of the SL and the gap is direct.
Electrons and holes are separated in real space but the
two band extrema have the same momentum in the re-
ciprocal space of the SL. Region III: The boundaries of
this region cannot always be precisely defined but the
essence of it is that there is an intermediate zone between
I and II where the SL has direct gap and the spectral
strength of the bottom of the CB is distributed between
the two constituents. So far these three regions are alike
in that they all have direct gap but they differ in the spa-
tial confinement of the states of the CB.edge. Region IV:
Here the bottom of the CB is at in-plane X points of the
SL Brillouin zone, its amplitude is confined to the A1As
slabs and the gap is indirect. Electrons and holes are
then separated in both real and momentum space. This
region was also found in Ref. 19, although we find it for a
much smaller range of values of (n, m). These are shown
as dots in Fig. 4. The boundaries between zones can
change by one or two layers within plausible limits, e.g. ,
by taking a different value of the band offset within ac-
cepted experimental values, 0.4—0.56 eV. However, there
is always a fourth intermediate zone, here labeled III, and
this is significantly different from previous results. A
more detailed characterization of this region, as weH as
an interpretation of region IV at variance with the pro-
posed alloylike interpretation will be given below.

The energy levels E, and E, for the SL are given in
Table I for (5, 5)~ (n, m) ~ (12, 12). The row n =5,
14+m +22, and the columns 14 n 22, m =7, and 10
in Fig. 4 are included in Table II. This extends the cover-
age of Fig. 4 in as much as is needed to cover all
significant cases of regions I, II, and III. On moving
along a row, e.g., n =5, m increasing, both E, and E,
tend to the respective bulk values of GaAs crystal, but we
shall see other electronic properties later which differ
quite considerably. A different pattern is found on mov-
ing down a column, e.g. , m =10. Then E„E„and E
remain nearly constant. The same happens with column
m =7, which is partly in region III and mostly in region
II and, indeed, we have found the same for. columns
m =8,9, which are contained in region III. This approx- .

imate constancy does not depend on where the bottom of
the CB of the SL is confined. Region IV is detailed in
Table III, with (2,2) + (n, m) ~(4, 7). Here the lowest-
energy level for the I point of the SL raises above that
for in plane Xpoints and the gap is indirect.

Figure 5 gives the spatial distribution of the spectral
strength for the band-edge states of some representative
SL's corresponding to types I, II, and III. This has been
calculated from the diagonal projections (2.10) and (2.22)
of the composite Careen function for each SL, extracting
in each case the partial contribution giving the local spec-
tral strength for the anion and cation atomic layers con-
tained in each principal layer labeled n~ or nz. In each
case two separate curves run through the alternative local
values for the anion (cation) atomic layers giving the dis-
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TABLE I. Each (n, m) entry gives the corresponding values of E„E„and E~, from top to bottom. (n, m) ranging from (5,5) to
(12,12). An asterisk (plus) indicates that the corresponding state is con6ned to AlAs (GaAs). Absence of an asterisk or a plus indi-
cates type III (see text).

m —+GaAs

n

AlAs

10

12

2.297
0.40
1.897
2.29*
0.39
1.90
2.29*
0.39
1.90
2.30*
0.39
1.91
2.30
0.39
1.91
2.29
0.39
1.90
2.28*
0.39
1.89
2.28*
0.39
1.89

2.296*
0.43
1.866
2.29*
0.42
1.87
2.29*
0.44
1.87
2.29
0.42
1.87
2.29
0.42
1.87
2.28*
0.42
1.86
2.28*
0.42
1.86
2.28
0.42
1.86

2.294
0.45
1.844
2.29
0.45
1.84
2.29
0.44
1.85
2.29*
0.44
1.85
2.29*
0.44
1.85
2.28
0.44
1.84
2.28
0.44
1.84
2.28*
0.44
1.84

2.28
0.46
1.82
2.28
0.46
1.82
2.28
0.46
1.82
2.28
0.46
1.82
2.28
0.46
1.82
2.28
0.46
1.82
2.28
0.46
1.82
2.28
0.46
1.82

2.26+
0.48
1.78
2.26+
0.48
1.78
2.27
0.48
1.79
2.27
0.48
1.79
2.27
0.48
1.79
2.27
0.48
1.79
2.27
0.48
1.79
2.27
0.48
1.79

10

2.24+
0.49
1.75
2.25+
0.49
1.76
2.25+
0.49
1.76
2.25+
0.49
1.76
2.25+
0.49
1.76
2.25+
0.49
1.76
2.25+
0.49
1.76
2.25+
0.49
1.76

2.23+
0.50
1.73
2.23+
0.49
1.74
2.23+
0.49
1.74
2.23+
0.49
1.74
2.23+
0.49
1.74
2.24+
0.49
1.75
2.24+
0.49
1.75
2.24+
0.49
1.75

12

2.21+
0.50
1.71
2.22+
0.50
1.72
2.22+
0.50
1.72
2.22+
0.50
1.72
2.22+
0.50
1.72
2.22+
0.50
1.72
2.22+
0.50
1.72
2.22+
0.50
1.72

tribution of amplitude between the two species. As ex-
pected, the top of the VB is always confined to the GaAs
slabs and the amplitude is predominantly in the anions.
For the cases (5,14) and (10,14), type I, the bottom of the
CB is confined also to GaAs and the amplitude is mainly
in the cations. For the cases (5,4) and (10,4), type II, the
bottom of the CB is confined to AlAs and the amplitude
is somewhat larger in the cations but the difference is
rather small. For the cases (5,7) and (10,9), type III, the
amplitude for the states at the bottom of the CB is distri-
buted between the two constituent slabs, with larger
strength for the cations but the difference for the two

species is smaller on the AlAs side. This is simply a
diffuse intermediate region between I and II for which
states of both types are nearly degenerate in energy. The
calculation cannot resolve in energy the
states confined to GaAs from those confined to AlAs and
the picture gives all the spectral strength at energy E, . It
is clear that a greater energy resolution would also be ex-
perimentally unlikely. Thus in practice we have a hybrid
type of material, with spectral strength everywhere and a
direct-gap value intermediate between the bulk values of
Eg (GaAs, direct) and E, (A1As, indirect).

Figure 6 gives the dispersion relation for the highest

TABLE II. Same as Table I for the row n =5, 14~ m ~ 22, and for the columns m =7 and m =10,
with 14~ n ~22.

m ~AsGa
AsAl 14

2.19+
0.51+
1.68

16

2.18+
0.52+
1.66

18

2.17+
0.52+
1.65

20

2.16+
0.53+
1.63

22

2.15+
0.53+
1.62

GaAs

m =10

14

2.28*
0.44+
1.84
2.25+
0.49+
1.76

15

2.28*
0.44+
1.84
2.25+
0.49+
1.76

n ~AsA1
16

2.28*
0.44+
1.84
2.25+
0.49+
1.76

19

2.27*
0.44+
1.83
2.25+
0.49+
1.76

22

2.27*
0.44+
1.83
2.25+
0.49+
1.76
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TABLE III. Each (n, rn) entry gives the corresponding values of (from top to bottom) CB energy lev-
el at I, CB energy level at the in-plane X point, top of VB (always at I ), and E~ (asterisks and pluses as
in Tables I and II). Dots represent indirect-gap SL.

m ~GaAs
4

A1As

2.373*
2.30*
0.30+
2.00
2.327
2.30*
0.26+
2.040
2.316*
2.30
0.24+
2.06

2.370+
- 2.30*
0.37+
193
2.336*
2.30*
0.33+
1 97
2.304+
2.30*
0.31+
1 99

2.334+
2.30*
0.41+
1 89
2.328*
2.30*
0.38+

2.309
2.30*
0.37+
193

2.295+
2.30
0.44
1.86
2.325*
2.30*
0.41+
1.89
2.305*
2.30*
0.40
1.9

2.266+
2.30*
0.44+
1.83
2.301+
2.30*
0.44+
1.86
2.302*
2.30
0.43+
1 87

2.243+
2.30*
0.44+
1.80
2.275+
2.30
0.46+
1.84
2.291
2.30
0.45+
1.85

VB and lowest CB branches for three SL's representing I,
II, and III. Energy is plotted versus momentum perpen-
dicular (parallel) to the interfaces for I Z(I X). In the
first case, the bands are practically Aat, corresponding to
strong confinement. Note that this also happens for the

(5,7) case, of type III. This is in line with the discussion
of Figs. 5(e) and 5(f). The bottom of the CB for type III
SL's is confined, but both types of confinement I and II
appear at practically the same energy. In the second
case, E versus in-plane momentum, the extrema E, and

(a) 4.0— (a) 2.35—
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/
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FIG. 5. Local spectral strength of some selected states at the

I point of the SL for various values of (n, m). (a) and (b) corre-
spond to (5, 14) and (10,14) SL's, of type I; (c) and (d) to (5,4)
and (10,4) SL's, of type II; (e) and (f) to (5,7) and (10,9) SL's, of
type III. The figure displays the spatial distribution in the
different atomic layers of the SL. A solid line represents cation
layers and dashed line represents anion layers.

0.0
I I I I I

0.4 0.8 k2d
I I I I I

0.0 0.4 0.8 k „a

FIG. 6. Dispersion relation in the I"-Z and I -X directions for
the states at E, and E, . (a) and (d) correspond to the (5,14) SL
of type I, (b) and (e) to (5,4) SL of type II, (c) and (f) to (5,7) SL
of type III.
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E, appear at I and the VB branch is the more dispersive,
qualitatively as in bulk GaAs states. Interface states ap-
pear in the gap away from I, e.g. , for k=(0.6, 0,0) rr/a
in Figs. 6(d) —6(f). Note also that although E, tends
monotonically to the bulk value E, (GaAs) for increasing
thickness, the energy level for the in plane X point of the
SL stays at 2.3 eV, its bulk value for the A1As crystal
even for type I.

Similar dispersion curves are given in Fig. 7(b) for the
indirect gap (3.3) SL, type IV, showing also the appear-
ance of an interface state in the E versus in-plane momen-
tum curve. The separate confinement of holes and elec-
trons is seen in Fig. 7(a). For the latter we give the local
amplitude for both the X (E, =2.3 eV) and I (E=2.336)
points. For these short period SL's even equal amounts
of GaAs cannot compete with A1As to attract electronic
states at the bottom of the CB. These are all confined to
the A1As layers and the spectral strength at the anions is
only slightly lower than at the cations, as in type II.

B. Short-period superlattices versus alloys

The substitutional ternary alloys Al Ga& „As are
reasonably well described in terms of a virtual-crystal ap-
proximation because of the similar scattering properties
of the Al and Ga potentials. The key electronic proper-
ties among them E„E„and hence E correspond to the
weighted average of those for pure A1As and GaAs. It
has been suggested' ' that for small values of (n, m ) the
macroscopic composite SL should be rather similar to the

p (a)

ternary alloy with x =nl(n+m). A detailed study of
the present results does not support this view. Consider,
for instance, the value of E . For the x =0.5 alloy this
would be 1.39 eV. However, on moving along the diago-
nal n =m, the value of E starts above 1.99 eV and de-
creases steadily.

Moreover, the SL is an indirect-gap material only up to
n =5 and then, for increasing n, it becomes a direct-gap
material with E (1.99 eV, while the x =0.5 alloy has
indirect gap, and crosses all the regions described above.

Furthermore, the SL's (2,3) and (4,6), for which
x =0.4, have indirect gap, while the corresponding alloy
has direct gap. We conclude that there are no grounds to
view short-period A1As-GaAs SL's as alloylike materials.
The size of the constituent slabs is too small for any mac-
roscopic feature to appear. The properties of the indivi-
dual ionic layers tend to predominate, but the existence
of a regular superperiodicity determines a type of materi-
als for which the electronic structure must simply be cal-
culated.

C. General behavior of the energy gap

The direct or indirect nature of the gap has already
been discussed. Two plots of the value of E versus the
length of the period are given in Fig. 8. Curve (a) corre-
sponds to n =m, along the diagonal of Table I. The
steady decrease of E is again at variance with the notion
of alloylike behavior for short SL's. Existing experimen-
tal data show some scatter but follow the calculated
curve rather well, with a general tendency towards the
bulk value for GaAs. We note that this value is only ap-
proached for rather large values of n =m of order 20, at
least. The limit, of course, is at the GaAs value because

2.1—
QX

20—

~CB
p VB

1.9—

(a)

As Al

2.4—
2.2—
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&10
~ 0.0

1.0
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1 3 5 7 9 11 13 15171921 2325
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FIC. 7. (a) Same as Fig. 5, for the type IV SL (3,3). The state
at E„, (0.332 eV) is at I and that at E,. (2.300 eV) is at the in-

plane X point. Another state slightly above E, (E =2.336) ap-

pearing at-the I point is also displayed. (b) Dispersion relation
for the band-edge states of the same SL.

FIG. 8. Variation of the SL energy gap E~ with n and/or m

is represented by a solid line which is calculated. Open circles
and crosses are experimental for Refs. 9 and 7, respectively. (a)

Eg vs n =m; (b) Eg vs n for fixed m =5. (c) E vs m for fixed

n =5.
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on moving along the diagonal n =m we reach region I.
The same tendency is observed for curve (c), which scans
the row n =5 of Table I for increasing m. Curve (b) cor-
responds to the column m =5. For small n E increases
at first and then tends to a constant value, as remarked
above.

i2.45

D. Electronic structure near the band edges

2.53

2.39

—2.37

2.30

As At As Ga

C8

Folding effects accumulate states in a narrow energy
interval, amounting in practice to degenerate states
which may or may not be confined to the same constitu-
ent slabs. We have seen that this is the origin of region
III [Figs. 4, 5 (e) and 5 (f)] which we have discussed by
studying E, . It is also interesting to study energies near
the band edges. We shall take up the (5,5) and (5,14)
SL's, as representatives of types II and I. Figures 9 and
10 give the local spectral strength for some selected states
for given k points of the SL Brillouin zone.

Figure 9 corresponds to states near the band edges for
the (5,5) SL. The spatial dependence of their amplitudes
shows an interesting variety. The state at E, has its
strength in the A1As slab as corresponds to type II.
However, only slightly above E„ the amplitude is nearly
evenly shared and may even be larger in the GaAs slab,
e.g. , for E =2.39 eV. For the VB, we start from the spec-
tral strength confined to GaAs and on moving slightly
downwards in energy we find again a great variety. At
E = —0.03, for instance, the amplitude tends to pile up
near the interfaces and at E = —0. 19 eV the amplitude is

CB

As Al

0.51

As Ga

VB

0.46

~ M

0.40

0.24 r&
/ /

As Al As Ga

FIG. 10. Same as Fig. 9, for the (5, 14) SL, type I.

mostly in A1As.
The behavior found for the CB of a type-II SL has its

counterpart in Fig. 10 for the (5,14) case, of type I. At
E„the amplitude is confined to GaAs slightly above this
energy there is predominant confinement to AlAs and
then the amplitude returns to GaAs with oscillatory be-
havior. Starting from E, downwards we find the ampli-
tude confined to GaAs with increasingly fast oscillations.

Similar results are found in other cases. The spectral
phenomenology of the SL's is greater than one might an-
ticipate and the role of this in determining the various
electronic properties of the material may constitute an in-
teresting open problem. These properties are ultimately
determined by the values of both n and m, not only by the
SL period.

0.40 VB IV. FINAL COMMENTS

0.32

—0.03

As Al As Ga

FIG. 9. (5,5) SL, type II. Local spectral strengths, as in Figs.
7 and 3, for four energy levels near E, and four near E„as indi-
cated.

We have tried to produce a fairly comprehensive pic-
ture of (001) A1As/GaAs superlattices within the frame
of an sp s' model. These SL's show a great variety of
electronic structures. The top of the VB is always
confined to the GaAs slabs but the bottom of the CB
shows different behaviors. Folding effects cause the ap-
pearance of a region in the (n, m) chart, labeled as III in
Fig. 4, where comparable amplitudes are found in both
constituents. Altogether, we find four distinct types, only
one having indirect gap in the Brillouin zone of the SL.
We find no evidence anywhere of alloylike behavior. The
SL is a distinct material in which the values of both n and
m and the superperiodicity of the composite structure
determine a great variety of behaviors. This concerns not
only the band edges, but also the energy ranges near



M. C. MUNOZ, V. R. VELASCO, AND F. GARCIA-MOLINER 39

them.
The SGFM formalism proves a practical method for

doing the calculations for arbitrary values of n and m.
Ance the model has been specified the formulation is ex-
act and any arbitrary increase in the size of the SL period
can be handled with equal ease. The size of the matrices
involved in the calculations remains strictly constant. In
particular one can evaluate layer by layer the local ampli-
tude or spectral strength of a given state of the SL. In
this respect, the formal theory further developed in Sec.
II is rather practical as it avoids having to evaluate the
dual form of the secular matrix. The study of the energy
ranges near the band edges reveals a rich variety which
could not be surmised by simply studying the band edges.
For instance, the (5, 14) SL is definitely of type I. From
the study of E, and E, only one would expect that the lo-
cal electronic structure well inside the GaAs slabs is

practically the same as in bulk GaAs. However the re-
sults (Fig. 10) show that it is very diff'erent indeed.

This diversity of the spectral phenomenology of the
SL's is not a specific feature of the system studied here.
Similar results are found for phonons in W-Mo super lat-
tices. ' This is rather a general consequence of the ex-
istence of superperiodicity. Various physical properties
of the SL's, electronic, vibrational, electron-phonon in-
teraction, etc., may depend on this. An interesting open
problem lies ahead here.
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