
PHYSICAL REVIEW 8 VOLUME 39, NUMBER 3 15 JANUARY 1989-II

Anisotropic superexchange and spin-resonance linewidth in diluted magnetic semiconductors
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The Dzyaloshinski-Moriya (DM) anisotropic superexchange constant and the resulting electron-
paramagnetic-resonance (EPR) linewidth in Mn-based II-VI-compound diluted magnetic semicon-
ductors {DMS) such as Cd 1 Mn Te are calculated quantitatively. An Anderson Hamiltonian,
developed in a previous study of isotropic superexchange, describing correlated Mn 3d states hybri-
dized with semiconducting s- and p-derived levels, is generalized to include the anion spin-orbit cou-
pling responsible for anisotropic superexchange. DM exchange is shown to be the dominant aniso-
tropic interaction, with magnitude -Sgo of isotropic superexchange. The EPR line shape is calcu-
lated with use of a moment expansion of the magnetic response function to first order in inverse
temperature together with a maximum-entropy ansatz. The calculated infinite-temperature
linewidths are in good agreement with extrapolated experimental values. A novel fit of the theoreti-
cal temperature dependence to existing experimental linewidth data provides the first empirical
value for the anisotropic exchange constant, in excellent agreement with the theoretical value. Cal-
culated chemical trends for the exchange constants yield the experimentally expected linewidth
trends.

I. INTRODUCTION HDM= —g'D(R;I).S;XS., D —= —,
' QE Isr/ter(R;j) .

We establish by quantitative calculation the existence
of significant anisotropic superexchange having the
Dzyaloshinski-Moriya (DM) form in Mn-based II-VI-
compound diluted magnetic semiconductors (DMS) such
as Cd, Mn Te. The high-temperature electron-
paramagnetic-resonance (EPR) linewidth' is calculated
quantitatively. Anisotropic superexchange is shown to be
predominantly responsible for the linewidth. The analyt-
ic form of the expression for the temperature-dependent
linewidth yields the first empirical value for the aniso-
tropic coupling constant through a novel fit to existing
experimental linewidth data.

The Mn-Mn exchange is described by the effective spin
Hamiltonian

;„=—g' gS, 8 P(R;I)SJII=HH+HDM
i~J' a,P

Here S, is the ctth component (a=x,y, z) of the Mn spin
(S =—,') at site R;, and R; =R —R, . The prime indicates
that only Mn-occupied sites are to be included. [With
our convention the total interaction between two spins is—2+ p8 &(R&2)S, S2&. ] The dominant interactions '"
contained in the exchange tensor ot &(R; ) are isotropic
exchange J(R,") described by the Heisenberg Hamiltoni-
an H~,

HH= —g' J(R;~)S; S,-, J(RI):——,
' go (R,J), (1.2)

and when significant spin-orbit interactions are present,
the Dzyaloshinsky-Moriya anisotropic exchange,

(1.3)

Here E & is the completely antisymmetric third-rank
Levi-Civita tensor. The rapid decay with distance of the
exchange constants permits restricting the sum to
nearest neighbors (NN) only. The isotropic exchange
constant for nearest neighbors, J, , is ——10 K in
DMS, ' and arises almost entirely from superexchange.
Anisotropic superexchange in DMS has not been calcu-
lated or measured previously. Significant anisotropic
Mn-Mn exchange is expected to be of importance for un-
derstanding the properties of the presumed DMS spin-
glass phase, " ' and may give insight into switching
times of DMS-based magneto-optical devices. '

The calculation of D, (Sec. II), follows closely the for-
malism described in a preceding paper for isotropic su-
perexchange. The starting point is a microscopic An-
derson Hamiltonian, par ametrized from experiment,
describing correlated Mn 3d states hybridized with semi-
conducting s and p-derived levels. The sp bands are
modeled using a semiempirical tight-binding formalism. '

A single new tight-binding parameter characterizes the
anion spin-orbit coupling. The novel effect of the anion
spin-orbit coupling in causing NN anisotropic interac-
tions in a nonmetal is similar to the mechanism generat-
ing long-ranged DM interactions in metals. ' Well-
studied magnetic nonmetals like MnO and KMnF3 in-
volve anions with atomic numbers Z and associated
spin-orbit couplings -Z which are smaller than those of
the first transition series, ' or possess crystalline phases
with suKciently high symmetry to exclude DM interac-
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tions. The only previous realistic calculations of DM ex-
change for a nonmetal were those of Pearson for /3-

MnS. ' The inclusion there of Mn spin-orbit interactions
led to complexities preventing the results from having
more than order-of-magnitude accuracy. By contrast,
our D, calculations benefit from the simplifying neglect
of Mn spin-orbit interactions relative to those of the
anion.

We calculate J& and D& microscopically by exploiting
the equivalence for the ground-state manifold between
the Anderson Hamiltonian and H, ;„[Eq. (1.1)]. Bril-
louin zone sums are evaluated using the special k-points
method, ' ' avoiding the spherical approximations made
in Ref. 8. The calculated J, = —5.6 K for Cd, Mn Te
is in excellent agreement with experiment. We find
D& =0.3 K for Cd, Mn„Te, and calculate chemical
trends in J& and D& for other DMS, using parameters
determined for a three-level model developed in Ref. 8,
with anion spin-orbit parameters obtained from pub-
lished tight-binding parametrizations for CdTe, CdSe,
and CdS. Comparison with other anisotropic interac-
tions establishes DM exchange to be the dominant micro-
scopic anisotropy. This fact has direct implications for
EPR linewidths.

The high-temperature EPR line is exchange nar-
rowed, due to the large size of Ji relative to aniso-
tropic interactions. Experiments show that the linewidth
decreases by almost an order of magnitude through the
anion series: Te,Se,S. ' Samarth and Furdyna
showed that the magnetic dipole-dipole interaction could
not explain the magnitude or trend of the linewidth, and
suggested DM exchange might be responsible. We devel-
op a quantitative theory of linewidths and linewidth
trends.

Our EPR calculation (Sec. III) makes use of a number
of previously developed techniques. We compute the first
two nonvanishing frequency moments ' ' of the micro-
scopic magnetic response and memory functions and
their first-order inverse temperature corrections using the
calculated exchange and NN dipole-dipole interactions.
The line shape is obtained from the moments using the
maximum-entropy method. A detailed account of
these calculations is given in Ref. 2.

We find the temperature-dependent linewidth hH(T)
is given by

D, =0.28+0.03 K in excellent agreement with the (in-
dependent) theoretical value. The good agreement vali-
dates the theoretical framework developed previously '

which is extended here.

II. ANISOTROPIC SUPEREXCHANGE

A. Model Hamiltonian and calculation

H =HD+Hd +H d, (2.1)

The calculation of DM exchange for Cd& Mn Te
starts from a consideration of the necessary relativistic
modifications to the electronic structure. As in Ref. 8 the
important features of the electronic structure are sub-
sumed by a model Hamiltonian for calculating magnetic
properties. The electronic structure is based on rela-
tivistic empirical-tight-binding —coherent-potential-
approximation (ETB-CPA) calculations. For
Hg& Cd Te (Ref. 16) and Hg& Mn„Te (Ref. 37) these
calculations achieved good agreement with experimental
values of the valence-band I 8-I 7 splitting, which depends
crucially on spin-orbit interactions. More recent ETB-
CPA calculations for Cd& „(Mnl)„&2(Mnl)„&2Te show
that the location and hybridization of spin-split Mn 3d
states is largely unafFected by spin-orbit efFects. Mn is
relatively light (Z =25), so relativistic effects are small.
The main relativistic efFects associated with the sp
valence-band states are (1) a uniform shift to lower energy
due to the mass-velocity term (estimated to be -0.4 eV)
and (2) a spin-orbit splitting of the sixfold-degenerate I i~
into a higher-energy quartet I 8 and lower doublet I 7.
The ETB-CPA results indicate that the important
features of the alloy electronic structure are well
represented by the virtual-crystal approximation (VCA).
This follows from the local character of the exchange
constants, their predominant dependence on anion-
derived intermediate states, and the lack of disorder on
the anion sublat tice. In position space, a nearest-
neighbor (NN) exchange process between two Mn atoms
involves principally the single intervening (Te) anion.
The disordered occupation of other cation sites is there-
fore of little consequence.

A model Hamiltonian suitable for calculating aniso-
tropic exchange is

Od+0
AH(T)=b, H„1+

T
(1.4)

Here hH is the infinite temperature linewidth, 0 is the
experimental paramagnetic Curie temperature, and Od is
a spin temperature to be discussed below. We calculate
hH for Cd, Mn, 8 ' (8 '= Te,Se,S). The results
confirm the experimental anion trend and yield —30%
agreement with the extrapolated experimental hH
values. Equation (1.4) is also used in a novel reanalysis of
the experimental linewidth data which regards the
theoretical quantities (b,H, Od ) as parameters to be fit

by experiment. Values of AH from 12 Cd, Mn Te
samples ' ' ranging from x =0. 12 to x =0.53 yield
the first empirical value of the DM coupling constant

H0= g s„(k)a„ka„k (2.2)
p, k

describes the sp electronic structure. Here a„i, creates an
electron in band p with wave vector k in Bloch state
~pk ). Since the spin-orbit potential mixes spins, the state
~pk) is a linear combination of spin-up and spin-down
components. As before, the s„(k) are calculated using
the ETB-VCA with a basis of one cation (Mn or Cd) s or-
bital and three anion (Te) p orbitals. Except for the in-
troduction of the spin-orbit interaction A,, = (p„~(A'/
4m c r)(B V/r)r) ~p„), and a compensating —10%%uo x-
independent shift of the cation on-site energy, the elec-
tronic parameters have the same values as those used for
the ETB-VCA bands in Ref. 8. V(r) in A,, is some op-
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timal one-electron crystal potential in anion-centered
coordinates, which is spherically symmetric suSciently
near the anion nucleus r =0. Ip„) is the p, -symmetry
basis function on the anion.

Hd = g' g (ed+ U,s(n; ) )n,
l m, o

(2.3)

describes five Mn d electrons per site with site-localized
linearized correlations. Here n, , =d, d; and d;
creates a d electron of spin cr at Mn site i in state limo )
having e or t2 symmetry within the zinc-blende point
group. We use the primed sum to indicate that only
Mn-occupied sites are included. Mn spin-orbit interac-
tions are neglected. The Hamiltonian of Eq. (2.3). is as-
sumed to act on a subspace of d, d, or d configurations
(per. site). ' The parameters Ed and U, tr can be regarded
to be m independent, and take the values —3.4 eV (rela-
tive to the valence-band-edge energy zero at E~), and 7.0
ev, respectively. However, in computing the vector
quantity D(R;i), accurate account must be taken of the
point symmetry of dN'erent d orbitals. Thus the form of
Hd difFers from that used in Ref. 8 in that the full symme-
try of the d functions is taken into account. As before we
assume (n; ) =0, 1, in accord with Hund's rule and
with the experimental moment of 5pz.

H d= g' g g [V~d(p, k;m, o. )e 'd; a„k+H. c. ]
i mo pk

NI3= ——", [—,'(pdo ) ——2(pdm. )]

X [(Ey s—
d ) '+( Udr+Ed E—~) '] . (2.6)

The ground state of the Hamiltonian Ho+ Hd has a de-
generacy of 2S+1 per site corresponding to difFerent
orientations of the Mn spin- —,

' moments. This degeneracy
is partially 1ifted by the perturbation H d. The resulting
spectrum of weakly excited states is described by the
effective spin Hamiltonian H, ;„[Eq. (1.1)]. H,~;„ is
equivalent to H [Eq. (2.1)] in all respects within the
ground-state manifold. Fol1owing Anderson and Moriya,
we assume that the most important terms in H, ;„are HH
[Eq. (1.2)] and HDM [Eq. (1.3)].

The exchange constants are calculated by a generaliza-
tion of the method used in Ref. 8. First, the Hamiltonian
[Eq. (1.1)] is expressed in a more convenient form using
the operators S;+—=S;~+iSfy,

H,„;„=—g' J(R; )[S;,S,+ —,'(S;+Si +S; S.+)]
1+J

2
——D, (R; )(S; S + —S;+S. )

+ D(R; )—(S,,S.+ —S;+S,)
2

(2.4) 2
D+ (R; }(—S,,S —S; S,, ) (2.7)

describes hybridization of Mn d with sp band states. The
k-dependent hybridization functions

V~d (p, k; m, o )= ( m o I Hick ) are given within the ETB-VCA model de-
scribed above by

V~&(p, k;m, o )

(uk' ipk) [(pdcr }A (k)

J(R; )= —(4S) '((S —1,SIH, ;„IS,S —1)

+ &s,s —1IH„,„IS—l,s &),

D, (R, . )=(4iS) '((S —1,SIH,„;„is,s —1)

(2.8)

The exchange constants appearing in the spin Hamiltoni-
an (2.7) are given by

&x '&y 'Pz

+(pdm)B (k)] .

(2.5)

—(s,s —1 iH, „,„is—l,s &),

D (R; )=i (Sv'2S ) '(S,SIH, ;„IS,S —1),
and

(2.9)

Here iako ) is the ket corresponding to a spin-cr Bloch
sum of orbital a on the Te anions. The functions A (k)
and B (k) have the k dependence familiar from tight-
binding theory. These functions are independent of the
hopping parameters and have the same form for any
zinc-blende crystal. The spin-parallel position-space
Slater-Koster hopping parameters are (pdo ) and (pd~)
in the two-center approximation. The ratio (pdo )/
(pd~) is assumed to have the constant value —2.18 (with
(pdo ) (0) in agreement with Harrison's scaling rule ac-
cording to which both (pd o ) and (pd m. ) vary as d
with distance d. The values (pd0 ) and (pdm ) are then
determined by noting that the experimentally measured
valence-band-edge sp-d exchange constants NP (= —0.88
eV} (Ref. 45) provide the linear combinations

D (R; ) =i (S&2 S) '(S —1,SIH, ;„IS,S ) .

Here the states IM, ,M, ) refer to the magnetic quantum
numbers ( ——', ~M;, M&

(—,') of the Mn spins at R; and
Ri, D+(R;~)=D (R;, )+iD (R, ), and we have "used the
antisymmetry of the DM interaction [D (R; )

D(R; )] in obta—ining Eq. (2.9). The specification of
IM, ,M ) implicitly includes filled valence bands and
empty conduction bands.

Microscopic expressions for the exchange constants are
obtained by computing the matrix elements on the right-
hand side of Eqs. (2.8) and (2.9) using the more funda-
mental Hamiltonian H [Eq. (2.1)] in fourth-order pertur-
bation theory. We find (suppressing R; )

i —,
' &5D~—= (s l, slH, II, ) &I IH,—II &&I IH, II ) &I IH, Is,s)

(2.10)
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~ = 1 &s,s —IIH„, lz, ) (I~, la„„lz, & &I~, la,„le, & &x, IH„ls —l,s &

J+iD, =—
EK )(E EK )(E EK )

(2.11)

1J iD—,=—
L L L

(s —I,sla, „ll-, &&I-, lH„II-, ) &I-, H,dll-, &&L, IH,„ls,s —»
(ED E,—)(Eo E2—)(Eo E3—)

(2.12)

The intermediate states I&,I2, I3, characterized in Fig. 1,
are specified by occupation of sp-band states and Mn sites
containing four, five, or six electrons. Eo,E„E2,E3
denote the ground-state and intermediate-state energies,
respectively. Because the material is a semiconductor,
the energy denominators cannot vanish, and no singulari-
ties arise. Figure 1 shows a schematic picture of process-
es contributing to (a) J(R,J ) and (b) D(R;~ ). For simpli-
city the figure is constructed as though D(R;-) were com-
puted only to first order in k, . Our calculation, however,
uses valence-band wave functions fully incorporating the
mixing due to spin-orbit interactions. The initial- and
Anal-state spin configurations are indicated by solid and
dashed arrows, respectively. The total spin in 1(b) de-
creases by one in going from the initial to the final state,
while the total spin in 1(a) is conserved. Figure 1(a)
sho~ing processes contributing to isotropic superex-
change is equivalent to Fig. 4 of Ref. 8, and is included
here only for comparison. The expression for J(R; ), ob-

I

tained by adding Eqs. {2.11) and (2.12), is equivalent to
that of Ref. 8. The only significant contributions are due
to the hole intermediate states.

In the first step (A) an electron is transferred from
valence-band state (p, k) to a spin-down state on R, in or-
bital m creating the intermediate state I, , with associated
energy denominator e (k) —(Ed+ U,s. ). In step 8 an elec-
tron is transferred from a spin-up state on the Mn ion at
R. in orbital m' to the valence-band hole at {p, k) created
in step A. The spin-fiip ( 3 ') occurs between A and 8.
The energy denominator associated with B is just U, ff.
Steps C and D, leading to the intermediate state I3 and
the final state, respectively, have the net effect of a spin-
parallel transfer of one electron from i back to j. The en-
ergy denominator associated with C is E„.(k') —(Ed
+ U,s ). Addition of the six possible processes, summed
over d orbitals m, m', and valence bands (p, k), (p', k'),
and divided by 5'~ (from the final-state normalization),
leads to

and

D +iD =
—,',

m, m' p, k p', k'

sin [(k —k' ) .R; ]V d (p, k; m, $ ) V *d (Au', k', m, 1 )

[c (k) —(Ed+ U,s-)][e„(k')—(Ed+ U,s-)]

X( V d(p', k', m', 1)V ~d(p, , k;m', J, )

X {U, ir'
—[E„(k)—(Ed+ U, ir)]

' —[e„(k')—(ed+ U,ir)]
—V~d(p', k';m', 1') V "d(p, k;m', $)U,~ ) (2.13)

V„*d(p,k;m, 1)V d(p, , k;m', 1)V *d(p', k', m', $ ) V d(p', k', m, 1)J(R;.) = —
—,', g g g cos[(k —k') R. ] [e„(k)—(Ed+ U,s) j[e„(k')—(ed+ U,s)]

X {U,~
—[E„(k)—(Ed+ U,s)] (2.14)

Equation (2.14) differs from its counterpart [Eq. (4.4)] in
Ref. 8 only in the inclusion of spin-orbit coupling. A per-
turbative calculation for a simple three-site model shows
D/J-A, , /(Ei, —

Ed
—U,s. ) seen here as the dimensionless

factor associated with the wavy line, which expresses the
numerical reduction in processes leading to anisotropic
relative to isotropic exchange.

B. Results for Cd& „Mn„Te

The k sums in Eqs. (2.13) and (2.14) were evaluated us-
ing the special-points method of Baldereschi. ' '" Cal-
culations of J(R,") [Eq. (2.14)] using two special points
differed by only —5' from those using the next-larger

I

set of ten points in the irreducible wedge of the first Bril-
louin zone. The tenpoint calculations, which include the
contributions from all plane waves e'" for R within the
set of the 36 nearest-neighbor shells of direct-lattice vec-
tors, are therefore adequately converged.

The first column of Table I contains the resulting value
of Jj together with input parameters, and the corre-
sponding values obtained from the spherical approxima-
tion of Ref. 8, and experiment (J '). The experimental
exchange constants J;"i"= —6. 3 K (Ref. 9) and —6.1 K
(Ref. 10) are seen to lie between the two theoretical
values, which differ by only -25%.

The same ten-special-point scheme was used to com-
pute D(R; ) for NN in Cd, „Mn„Te. The computed
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magnitude of D(R;, )=D, =0.3 K is shown in the first
column of Table I, as is the ratio ~D, /J, ~

=0.05. D, will
be seen to dominate other anisotropic coupling mecha-
nisms. The direction of D(R,") is determined by symme-
try arguments. Evaluation of Eq. (2.13) yields the x and y
components of D(R; ) for a given NN lattice vector R,".
For R=(a/2)(1, 1,0) either component is sufficient to
determine D((a/2)(1, 1,0)) completely. The remaining
component D, ((a/2)(1, 1,0))=0 can be obtained by ex-
ploiting the threefold rotation axis [along (111)]and com-
puting D ((a /2)(1, 0, 1))=D,((a/2)(1, 1,0))=0. Thus,
D((a/2)(1, 1,0))=2 '~ D&(x —y). For a range of com-
positions 0. 1~x ~0.7 both J, and D, increase with x by
—7%%uo. The insensitivity to compositional changes
reAects the local character of the exchange process.

C. Chemical trends in DM exchange

The same approach was used to calculate J& and D&
for AI „Mn B (3 =Cd, Zn; B =Te,Se,S). The sp-
band structure was assumed unchanged, but the values of
sz, U,s., and N13 were adjusted in accord with the three-
level model (Table I). The anion spin-orbit coupling A,,
is taken from tight-binding parametrizations of CdSe and
CdS. The hybridization parameters (pdo ) and (@de)
are determined from the sp-d exchange constants Np
through Eq. (2.6) as for Cd, Mn, Te.

The results for J&, D&, ~D& /J& ~, and J&"~' are shown in
the remaining columns of Table I. The trends in J, have
already been discussed in Ref. 8. The sign and direction
of D(R, ) in all cases is the same as for Cd, ,Mn, Te.

FIG. 1. Schematic representation of terms contributing to (a)
J(R;, ) and {b) D„(R;,)+iD (R;, ) [Eq. (2.13}].Circles represent
d orbitals m at i and m at j. The initial and final states are indi-
cated Qy solid and dashed arrows, respectively. Each of the ar-
rows labeled A, B,C, D represents a spin-conserving transfer into
or out of valence band states, shown with separate spin com-
ponents.

TABLE I. Electronic input parameters (E~ ez, U,s, N—p, k., ), calculated and experimental nearest-neighbor exchange constants
(J„D„J;""'),and dipolar coupling constants d~;, for A067Mno, 3B ' (3"=Cd Zn; B '=Te Se S).

x =0.33
Cd& „Mn„Te Cd& „Mn Se Cd& Mn S Zn, Mn Te Zni Mn„Se Zn& Mn S

Theory

Inputs (eV)
&v —

&~

Uea.

Np

3 4'
7.0'

—0.88
0 34"

34
7.6

—1.110'

0.15'

3.4'
7.9

—1.80b

0.023'

3.4
7.0

—1.05'
0.34

34
7.6

—1.31"
0.15

3.4
7.9

0.023

Outputs (K) J& [spherical; Ref. 8]
J& [sp. points; Eq. (2.14)]
D, [sp. points; Eq. (2.13)]

—7.6
—5.6

0.30
0.054

—9.0
—7.3

0:16
0.022

—21.0
—17.4

0.055
0.0032

—11.0
—8.0

0.43
0.054

—13.0
—10.1

0.22
0.022

—27.0
—22.4

0.07
0.0031

Expt.

JexPt
1

—6.3

—6.1"

—7.9

—8.1'

—8.6P

—10.6'

—8.8q
—9.3'
—9.5'

—9.9P

—12.3'
—16.1'

Dipolar coupling (K)
ti1P 0.013 0.016 0.018 0.015 0.019 0.021

' Reference 85.
Reference 86.

' References 87 and 88.
Reference 89.

' Reference 90.
References 45 and 91.
References 92—95.

"Reference 96.
' References 92, 93, 97, and 98.
"References 92, 93, and 99.
" Reference 16.
' Reference 22.

Reference 9.

"Reference 10.' Reference 74.
Reference 100.

q Reference 101.
"Reference 102.
' Reference 103.
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However, the magnitudes D, decrease with decreasing
anion spin-orbit strength A,, to D i =0.055 K for
Cd i Mn„S. The calculated cation trends in D i c(- k,Ji

can be explained by observing that ~D, /J, ~
remains near-

ly constant for the corresponding Cd- and Zn-based
DMS. The independence of ~D, /J, ~

on the nonmagnetic
cation is consistent with the conclusion, based on the
three-level model, that the main effect of substituting Zn
for Cd is an increase in the hybridization strength. The
hybridization parameters appear as prefactors [Eqs.
(2.13) and (2.14)], which efFectively cancel in the ratio
/D, /J, /.

The DM interaction is much larger than the two other
(dipolar and single-ion) anisotropic terms in the spin
Hamiltonian of potential importance. For all the Mn-
based DMS considered here, the magnitude of the dipolar
coupling, dd;~:——,'rNN(gpii ), is less than 20 mK for NN
distances. (Here rNN is the separation of nearest mag-
netic neighbors. ) For the uniaxially symmetric z-oriented
wurtzite DMS (Cd& Mn Se, Cd& Mn„S, Zn& „Mn S)
the appropriate single-ion term H„„;„;,i has the form
D„„&,g,' S,, In wurtzite DMS D„„&,is found to be pos-
itive (an easy plane situation) and ~ 40 mK. For cu-
bic symmetry (Cd, Mn, Te, Zn, Mn„Te) the lowest-

shall regard D„„],and a,„b as phenomenological param-
eters since they are relatively unimportant.

most important of these for Cd& Mn Te is the DM ex-
change.

EPR experiments on concentrated DMS have focused
on temperatures just above Ts~, the spin-glass transi-
tion. ' ' ' ' We consider only the higher-
temperature linewidths measured as a by-product. All
DMS studied so far exhibit these following qualitative
features. (1) The line broadens dramatically with de-
creasing temperature T and with increasing concentra-
tion x. (2) The line shape is Lorentzian. (3) At fixed
T »20 K for x ~0. 1 the linewidth for a given nonmag-
netic cation (Cd or Zn) decreases as the anion is changed
in the order Te,Se,S. ' The experimental temperature
dependence of the linewidth is fit acceptably by various
phenomenological formulas. '

Experimental high-temperature EPR data is usually fit
to an expression for the line shape derived from the Bloch
equation

At XH(t) —~ '[At —ypH(t)], (3.3)

modified for the case where the longitudinal (energy) and
transverse (angular momentum) relaxation times are
equal: T, =T2=~. Equation (3.3) is valid within the re-
laxation time approximation: mr((1. ' ' 7 This limit
is appropriate to the broad resonances observed in
DMS, ' where typically ~- 10 ' sec, whereas
co —10 —10' Hz.

III. EPR I.INEWIDTHS

A. EPR experiments on DMS

In the absence of measurements on isolated spin pairs,
EPR offers the best opportunity to determine D i. Aniso-
tropic exchange breaks the conservation of total magneti-
zation implied by isotropic exchange and broadens the
line significantly by suppressing exchange narrowing.

To see how this occurs, consider the spin Hamiltonian

(3.1)

B. Microscopic response-function moments

y"(tp)= f e' '([At (t), At (0)])dt, (3.4)

tl

g(z) = J — (Imz&0) .
CO Z

The memory function ' ' is

(3.5)

We calculate the EPR linewidth using the linear-
response-function formalism. ' For a cubic crystal or
isotropic powder sample the absorptive and complex
responses to the magnetic field H~(cp)= I e'"'H&(t)dt
are given by

where H(t)=Hpz+H, (t), Hi(t)=H, (t)x is the oscillat-
ing field, and Hi ((Ho. The Heisenberg equation of
motion for the x component of the magnetization At„(t)
1s

)
zg(z)

X(z) Xo

The EPR line-shape function is

(3.6)

ilia„=[At„, H] with At =gps g'S,, (3.2) y"(a~) b, "(co)
aigp [cp —b, '(cp)] + [6"(~p)]

(3.7)

Dots denote time derivatives and primed sums indicate
that only Mn-occupied sites are included. When the
Hamiltonian of Eq. (3.1) is substituted into Eq. (3.2), the
commutator arising from the exchange term vanishes,
rejecting spin conservation. The remaining term,

A1.(t) = [At(t) X H(t)]. ,

describes Larrnor precession at frequency coo—=g p~Ho /A
for H] =0. Anisotropic terms in the spin Hamiltonian
are required to obtain a nonvanishing linewidth. The

where go is the static susceptibility. In the relaxation-
time approximation b "(to)=~ ' and b, '(cp)=cop. This
equation defining the line shape I (co) is central to our dis-
cussion. Clearly the line will be approximately Lorentzi-
an when 6'(cp) and b, "(cp), the real and imaginary parts
of the memory function, are nearly constant over the
width of the Lorentzian. The Larmor frequency coo is
su%ciently small compared to Ji that to good approxi-
mation the linewidth is unchanged from its zero-field
value (cop=0), which we calculate.

We shall determine b,"(tp) from a set of its frequency
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L„= co 5 co (3.8)

f d~ n —iX (~) f d~ nl( )
oo 77 +0 oo

(3.9)

moments L„,and related response-function moments M„,
defined, respectively, by

(NN) magnetic-lattice sites, and D, (r,. )=D(R, ) for NN
R;.

The equality between Eqs. (3.11) and (1.1) defines the
g„(r;.) introduced in Sec. I. We introduce the site occu-
pation variables g, corresponding magnetic lattice site
R, : g, = 1 and 0 for Mn-occupied sites having spin S,. and
unoccupied sites, respectively. Thus

M„and L„vanish if n is odd. The two sets of moments
are related by

2L0 —M2, L2 —M4 —M2, . . . .

H,~;„=—g S,„cf„(r,j.. )S~„(,g~ .
1+J

(NN)

(3.12}

The spin Hamiltonian

~spin ~H +~DM +~dip +~single (3.10)

for computing the moments is the sum of the terms dis-
cussed in Sec. II.

We ignore the small 0„„l, for the present, but will

reconsider its eA'ects in Sec. III D. The explicit form of
H, ,„restricted to nearest neighbors is then

H, ;„=—g'
I J,S; S~+D,(r, ) S; XS.

I+J
(NN)

—dd; [S; S —3(S, r, . )(S r, . )]I . (3.11)

Here r; are the unit vectors to the 12 nearest-neighbor

At experimental temperatures (Tso((T~300 K) the
values of the g; are effectively frozen and hence not in-
cluded in the thermal averaging represented below by an-
gle brackets. The g; are averaged over in a subsequent
step, assuming (1) that occupations of different sites are
completely independent, and (2) that g; = 1 with probabil-
ity x, while g,. =0 with probability 1 —x. The absence of
nonstatistical clustering is experimentally verified for
x (0.05 DMS.

We now derive explicit expressions for M2 and M4
from Eqs. (3.9) and (3.4) to 0 ( T '

) in a high-
temperature expansion. By converting the powers of co to
time derivatives acting on the Fourier transform, in-
tegrating by parts, and using Eq. (3.2) for At (r), we find

M, (T)= —(iri'y, ) '([[H„,„,At„(0)],At, (0)]),
M~(T)= —(iii'"yo) '([[H, ;„,[H, ;„, [H, ;„,At„(0)]]],At, (0)]) .

(3.13}

(3.14)

Evaluation of higher M„ involves an unacceptable level
of complexity given the experimental data presently
available.

The static susceptibility has the well-known expansion

Q
y (T)= —,'X(k T) 'S(S+1) 1 — +O(T )

Q~ + Qi

M„(T)=M„" 1+ " +O(T ) (n =2,4),

(3.17)

a result which is central to the subsequent discussion.
The terms in Eq. (3.17) have the definitions

(3.15)

Here X is the number of spins, S =
—,', and Oz is the

paramagnetic Curie temperature,

Tr(H, p,
.„At„ )

O~—: = ——', S(S+1) g 8„„(R;)g, .
Tr(At ) i{NN)

(3.16)

Denoting averages over the g; by a bar with g,. =x, and
recalling that Jl ))D& or dd;p, we find

O~ = —
—,'S(S+1)J,zix +O(D, ) .

Here the coordination number z& =12 is the number of
nearest neighbors on the fcc magnetic lattice. Expansion
of the thermal averages in Eqs. (3.13) and (3.14), use of
the cyclic invariance of the trace, and substitution of the
expansion (3.15) for yo( T) yields

—Tr([iii 'H, „;„,At„] )

Tr&,

Tref „
TrAL

Tr([fi 'H, ;„, [A' 'H, ;„,At ]] )

Tr&,„

1 Tr(H», „[fi 'H, ,„,At ] )
p~

Tr([i' 'H, ;„,At„]2)

1 Tr(H, ;„At „)
2 Tr~

(3.18)

(3.19)

(3.20)
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1
0~B 4

1

2
(3.21)

Tr(H, ~;„[fi 'H, ;„, [iri 'H, ;„,Al ]] )

Tr([A' 'H, ,„, [A' 'H, ,„,Al ]] )

Tr( H, „;„A1, )

Tref „

A variational calculation incorporating the two known
moments as constraints through appropriate Lagrange
multipliers yields

CO

P(co) =(rrLO ' )b,"(co)=e 'e

The final equality in each of Eqs. (3.18)—(3.21) follows
from the Heisenberg equation of motion for At. (t) (for
Mz, O2) or Al„(t) (for M4, 0&). Although the thermo-
dynamic averaging is implied by the traces, these expres-
sions still implicitly depend on the site occupations g;
(i = 1,2, . . . , N), which remain to be averaged.

Equations (3.18) and (3.19) have been derived and eval-
uated for H,„;„=H~+0&;„byVan Vleck. The expres-
sions for 02 and 04 are new, as is the calculation of M4
for the more-general spin Hamiltonian of Eq. (3.10).

Simple estimates providing physical insight concerning
moments, linewidths, and exchange narrowing can be ob-
tained by ignoring Hz, „. Equation (3.2) then yields

i fiA1 = [Al, , HH ) + [Al, , H DM ]=D, A,, (3.22)

because [Al, HH]=0. Substituting Eq. (3.22) into Eq.
(3.18) shows

Track
M2

Tr&,

Tr(D, At„ /i A) —(D, /iii) (3.23)
TOM

to be independent of the strength of the isotropic exchange
25

To estimate M4 we need the Heisenberg equation for
At„( t):

i fi.tlt, , = [Al, HH ]+[Al,„,HDM ]=J,A1, —J,D, Al /A',

(3.24)

since [At,„,HH] does not vanish. Substitution into Eq.
(3.19) yields

Tr&,
M4 =-

TrJM

Tr[J,D, A1, /(iA) ] J,D,
TrA,

(3.25)

C. Maximum-entropy method and exchange narrowing

The maximum-entropy method ' will be used
to obtain 6,"(co) and thereby I (co). Let P (co)
=(irLO) b, "(co) be a probability density, normalized by
the definition of Lo [Eq. (3.8)]. The second moment of
P(co) is just L2/Lo. The function P(co) is obtained by
demanding that it correspond to the maximum of an in-
formation theoretic entropy S [P] defined by

S [P]= —f [P (co) lnP (co) P(co)]dco . —

The coefficients O2 and O4 are seen to be 0 (J, ) when
J, ))Di. This follows from Eqs. (3.20), (3.21), and the
fact that J] is the dominant energy parameter in II,„;„.
D] is the dominant energy in the opposite limit, J, «D, .
Then M„—(Di /A')" for n =2,4, consistent with a Gauss-
ian line. By contrast, a (cutoff) Lorentzian line shape can
be obtained when J, ))D, , the case of interest, because
M," »(M," )'.

The Lag range multiplier s kp and A, 2 are determined
analytically from the normalization and second moment
of P (co). The resulting memory-function imaginary part

1/2
7T p —Lo~ /2Lz

(3.26)6"(co)=irLOP(co) =
2L2

is seen to be Gaussian. b, '(co) is obtained as a
Kramers-Kronig transform:

"[0/ z
'

2
b, '(co)=A"(co) —J e' dt .

ir
(3.27)

The interpretation of P(co) as a probability follows from
the fact that b, "(co) is a spectral density associated with
an elementary excitation. Here the excitations corre-
spond to modes of the system through which B,JM„re-
laxes.

Exchange narrowing may be understood on a qualita-
tive physical basis with the help of Eqs. (3.26), (3.27), and
the moment estimates (3.23). For Ji ))Di, the memory-
function moments Lp and L2 are approximately equal to
M2 and M4, respectively. Let

2L2
CO~

=
Lp

2
J]

(3.28)

define an exchange frequency. Then

b, "(co)= ~Lp —(co/co, ) D ] —(~~/~, )
e ' = e

COq AJ,
(3.29)

D. Calculation of the linewidths for DMS

The moments M2 and M4 and the temperatures 02
and 0, given by Eqs. (3.18), (3.19), (3.20), and (3.16) are
calculated as follows. (1) M4 is simplified by the approxi-
mation [H, ;„, [H, ,„,Al „]]= [HH, [H, ;„,A,„]]

is nearly constant for co «co, . Since b, '(0)=0, Eq. (3.27)
ensures b,

' «co for co «co, . Thus I(co), given by Eq. (3.7)
is Lorentzian for co ((cu„with linewidth -D

&
/J&. '

The Gaussian decay of 6"(co) becomes important only
for co-co„where I(co) « I (0).

The exchange-narrowing process may be understood
by comparing this result with that for the opposite limit
J] &&D&, where the linewidth is of order D]. If the value
of J, were increased from J, «D, to J, ))D], the
linewidth, having initial width -D, , would decrease to

The theory of Anderson and Weiss and the similar ap-
proach of Kubo and Tomita are also based on evaluating
M2 and M4, but treat exchange narrowing in terms of a
random modulation with time of the local fields. The
numerical linewidths obtained in Sec. III D were dupli-
cated to —3%%uo using the same moments and the
Anderson-Weiss theory.
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+O(D, JN, , ). (2) The traces are carried out in a basis of
spin eigenstates. (3) All realizations of the site occupa-
tion variables are averaged.

M 2 is given by the sum

M ~" = —,'S(8+1)x
(NN)

X g g g [e„&I„(R;)+s„ l„&(R, )]
R,. a, P p, v

X[e „pl (R;)+e „ I„i)(R,)],.

(3.30)

where

I„(R;) =I„(R,)+I „(—R,. ) .

Explicit expressions for M 4 and 02 have been given else-
where. M 4 contains terms proportional to x and to x,
while 82 ~ x. The remaining sums over lattice sites [as in
Eq. (3.30)] were performed numerically. The 8„(R,, ) for
tellurides and selenides were determined from the J& and
D, values calculated in Sec. II. For Cd, „Mn„S, we
used the experimental value Ji""'=—10.6 K (Ref. 74)
(Table I) to obtain a value of Di using the calculated
~D, /J, ~

ratio, yielding D, = ~D, /J, ~

J;"i"=0.034 K.
The dipolar coupling constants Jd; listed in Table I were
computed from the lattice constants as a function of x
measured for each DMS.

1. Infinite temperature -linewidth calculations

The EPR linewidth hH defined as the full width at
half maximum of I(co), is calculated from Eq. (3.7), with
b, "(co) and b, '(co) determined by the calculated M ~ and
M & through Eqs. (3.26) and (3.27). Table II shows
the resulting theoretical AH contributions for

hH —Ji '(Di+dd;„+D~ )

-Ji 'D]+2Ji 'DiD~ (3.31)

Here terms smaller by factors of Dz /Di and dd; /Dz
have been neglected. The first term in Eq. (3.31) is the es-

Cd& „Mn Te, Cd& Mn„Se, and Cd& Mn S (all for
x =0.33) compared with the infinite temperature extra-
polation (discussed below), b,H„'", of the EPR linewidth
data of Samarth and Furdyna. The trends for x =0.33
are characteristic of those obtained for other concentra-
tions.

The first three lines show the computed AH for dipo-
lar, DM, and combined dipolar and DM anisotropic ex-
change interactions, respectively. The DM contribution
is seen to be consistent with the extrapolated experimen-
tal trend. By contrast, the dipolar linewidths are far too
small compared to experiment and do not exhibit the
correct trend. For the sulfide, the contributions of dipo-
lar and DM to AH are about equal due to weak spin or-
bit coupling.

The linewidths incorporating both types of anisotropic
couplings in line 3 using Eq. (3.7) are nearly the same as
the sum of the contributions computed separately. The
predicted ratio of Cd& „Mn Te to Cd& Mn, S
linewidths is -25, a factor of 2 larger than experiment.
The magnitude of AH in Cd& Mn Te, 603 G, is in

good agreement with the extrapolated experimental value
(550 G). However, in the selenide and sulfide the predict-
ed linewidths are too small by a factor of 2.

To account for this. diA'erence, we have estimated
linewidth corrections 6AH due to single-ion anisotro-
pies (line four), and DM exchange arising from Mn spin-
orbit interactions (line 5), as follows.

We take Hp =HH+HDM+Hd +H gl as in Eq.
(3.10), with Ji ))Di ))D„)dd; . Let Dz represent

D„„],or a,„b for wurtzite and zinc-blende DMS, respec-
tively. To estimate AH we repeat the arguments of
Eqs. (3.28), (3.29), and the text following (3.29) for this
Hamiltonian, to find

TABLE II. Calculated theoretical and extrapolated experimental infinite-temperature linewidths
AH for Cdo 67Mno 338 ' (8 ' =Te,Se,S) (in G).

Theory

AH„(G)
Eq. (3.7)

(dipolar only)
(DM only)
(dipolar and DM)

Cd] „Mn„Te

11
591
603

x =0.33
Cd& Mn Se

13
127
139

Cd, Mn S

12
12
25

56H (G)

Total AH'„" (G)

single ion
[Eq. (3.34)]

Mn-associated DM
[Eq. (3.35)]

—16

—34

653

—50

-20 —30

63

Expt.
EHP„" (G)
[see Eq. (3.37)]

' Reference 27.

550'+200 350'+ 120 40'+27
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timated linewidth for D~ =dd; =0. Hence,

66H -2D)Dq Ji ' . (3.32)

To make numerical estimates of 6AH we assume that
the calculated AH in line 2 of Table II is proportional
to the estimated linewidth,

AH =AD)J) ', (3.33)

where K is a constant. We find K =6 for all DMS. Ap-
plying the same proportionality constant to 6AH in Eq.
(3.32) yields

66H =2KD)D~ J) ', (3.34)

given in line 4 of Table II. The corrections are seen to be
-20—30%%uc for the selenide and the sulfide, but negligible
for the (zinc-blende) tellurides due to the small size of
aqUb.

The Mn spin-orbit interaction produces an additional
DM coupling D&, which must be added to the anion-
associated D, . The Mn-associated DM exchange vector
D'(R;i) is directed along the same symmetry-determined
axis as D(R, ). Assuming that D(R; ) and D'(R, ) have
the same sign, the linewidth has the approximate value
b,H =KJ, '(Di+Di ) . The correction to the linewidth
66H due to D

&
is identified by comparing this equation

with Eq. (3.33),

EPR for DMS selenides and sulfides are
(1.5—3) X 10 . ' In Cd& Mn„Te and Zn, Mn Te,
Ag —5 X 10 '. ' ' We adopt the approximate value
Ag =3X10 for all DMS.

The M,H calculated from Eq. (3.35) are given in line
5 of Table II. In view of the small anion spin-orbit in-
teractions in the sulfide, the effects of Mn spin-orbit in-
teractions are very significant, accounting for —50%%uo of
the total linewidth. By contrast, in the selenide and tellu-
rides, these corrections are only —10% of the total
linewidth.

The total calculated infinite-temperature linewidth
b,H„(the sum of entries in lines 3—5) is given in line 6.
The agreement with the extrapolated experimental
linewidths is noticeably improved by the two correc-
tions. Clearly DM exchange, including both anion- and
Mn-based sources, accounts quantitatively for the majori-
ty of the broadening in these DMS.

We expect that the error in the calculated linewidth for
Cd, Mn, Te is roughly 30% (Ref. 2) based on the es-
timated theoretical error in the input exchange constants
and results of previous linewidth calculations.
[The error for selenides and sulfides is larger (-40%) be-
cause of the importance of the corrections ob H „.] The
smallness of the corrections 66H„ for Cd, Mn„Te
( -8% of b,H „)leads to a value of D, that is accurate to
-20%.

66H =KD)J) ' D)1+
D)

(3.35)
2. Determination ofD, from ftnite temperature -linetoidth

Finally, the Mn-associated D
&

is estimated using
Moriya's expression D ',J, ' —g 'Ag, where Ag:—g —2.0023. The values of Ag measured in x (0.01

Using Eqs. (3.17) for Mz(T) and M4(T), and Eq. (3.26)
for 6"(co) we define the theoretical high-temperature
linewidth AH ( T)

(b)
20—

(c)1II—
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QH~ = 3506
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8" = 100KP

800-

600

200
'-

~ ~

~H. = 3506

ed = 86K
e" = 85KP

400
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QH~ = AGOG

200-

I I

0.5 l.0 1.5
0
0

I I

0.5 1.0

ep /T

I

1.5
0i

0
I I I

0.5 1.0 1.5

FKx. 2. Experimental data, parametrized fit [solid line, Eq. (3.37)], and theoretical [dashed line, Fq. (3.36)] linewidths for
Cdp 8pMnp 2pTe as a function of O~"/T. The points are experimental data of (a) Osero6' (Ref. 35), (b) Sayad and Bhagat (Ref. 36), and
(c) Samarth and Furdyna (Ref. 27; di6'erent scale).
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Q~ +Q~ + ' (Q~ —Q~ )
b,H(T)=AH 1+ (3.36)

to order T '. Theoretical analysis suggests that the
numerator of the temperature-dependent term in Eq.
(3.36) is not well-represented numerically by the limited
number of moments, 02 and 04, under consideration.
This implies that a parametrized form of that equation,

Oem+OP
AH ( T)= b H~„" 1+— (3.37)

having the same analytic form will yield a more reliable
value of D&. Here 0" is to be taken as the experimental
paramagnetic Curie temperature, and —,'Oz —

—,'04 and
AH are to be replaced by O~d" and bH ", respectively.
The parameters AH " and Od" are determined by a
least-squares fit of a straight line to b,H(T) versus
(~)ex y T 8 1

P
The solid lines in Fig. 2 show the results of the fitting

procedure for x =0.20 data of three experimental
groups. ' ' For all concentrations studied, the data is
well fit by a straight line. There is no evidence for
0 ( T ) terms, even down to temperatures —O'". To
determine DP' we fix J, at its experimental value ( —6.3
K), thereby making D

&
the only undetermined parameter

in the expression for b,H following from Eq. (3.7), and
require the latter to agree with AH ". The resulting D","

values exhibit significantly increased scatter for x )0.25.
The average for all D," values with x ~ 0.25 is
0.28+0.01 K, while the average is 0.29+0.07 K for
x )0.25 (Ref. 82). The scatter may well be associated
with the quality of the samples at large x. The majority
of the experimental results pertain to small concentra-
tions. The average value is (DP')„=0.28+0.03 K.
This is the first value of D, reported for any DMS. The
agreement with the calculated theoretical value D

&
=0.30

K (Table I) is remarkable, and emphasizes the accuracy
and consistency of our theoretical framework.

It is of interest to compare the results of the theoretical
expression Eq. (3.36), particularly since Od. is expected to
be small relative to 0 . The result, shown by the dashed
lines in Fig. 2 is obtained using the approximation
04-02 as given by Eq. (3.20). The slopes agree quite
well with those obtained from the parametrized fit to ex-
periment because both are dominated by 0™'".This novel
analysis therefore establishes the credibility of Eq. (3.37)
and its use in determining reliable values of D &.
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