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A microscopic theory of nonlinear dynamics in superfluid *He is formulated using a model in
which a system of bosons with hard cores plus attractive nearest-neighbor interactions is described
by a pseudospin Hamiltonian on a lattice. In this framework, the superfluid order parameter is the
expectation value of the spin-flip operator. Using the spin-coherent-state representation, a nonlinear
evolution equation is derived for the order parameter in the lattice model, and calculations are car-
ried out with its continuum version, as is appropriate for the description of a liquid phase. The
well-known Gross-Pitaevskii equation for the order parameter (valid for T~ T,) is recovered in the
leading small-amplitude approximation of our equation. Further, a microscopic basis is provided
for the nonlinear effects discussed in phenomenological treatments of superfluid *He films. In bulk
*He, considering a cylindrically symmetric vortex solution, a vortex core of finite thickness and a
nonsingular vorticity is obtained. The finiteness of the vortex energy is shown to arise as a natural
consequence of the formalism. Unidirectional traveling-wave solutions for the superfluid density
with velocity-dependent amplitudes are shown to exist. Finally, for a specific choice of parameters,
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a static-domain-wall solution is also possible.

I. INTRODUCTION

Theories of liquid *He have been studied at different
levels. The two-fluid theory of London and Tisza,' the
hydrodynamic theory of Landau,? the second quantized
formalism of Bogoliubov,* and the wave-function descrip-
tion of Feynman* have been used to explain several
unusual properties of this liquid.

It is well known that in superfluid *He the manifesta-
tion of quantum phenomena occurs on a macroscopic
scale. Below the A point the liquid is characterized by a
condensate which is described by a macroscopic wave
function. Using the theory of a weakly interacting Bose
gas, the hydrodynamics of the superfluid condensate was
developed by Gross,® leading to a nonlinear evolution
equation for the order parameter (the condensate wave
function). Vortex solutions and the well-known quantiza-
tion of circulation® were also derived. These results had
been obtained earlier in the phenomenological theory of
Ginzburg and Pitaevskii.” A more formal derivation of
the above-mentioned evolution equation, the Gross-
Pitaevskii (GP) equation, is also possible. One starts with
a second-quantized many-body Hamiltonian for a system
of bosons, and postulates that the order parameter is the
expectation value of the field operator under the follow-
ing approximations: (a) The (two-body) interaction is
through a purely repulsive contact potential, and (b) the
Hartree approximation is used in the dynamical equation
for the order parameter. The theory then leads to a
singular vortex structure, i.e., there is a 8-function singu-
larity in the vorticity. However, a physically realistic
vortex core is expected to have a finite thickness and
finite vorticity. Determining the detailed structure of a
vortex is a problem of considerable interest. Pioneering
work on vortices was carried out by Fetter® for a weakly
interacting Bose gas. Unfortunately, this theory requires
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an inequality in terms of the superfluid density and the
healing length of the vortex to be satisfied; this inequality
is known® to be violated for liquid “He. The phenomeno-
logical theory of Ginzburg and Pitaevskii’ predicts that
the vortex-healing length must diverge at the A point.
However, no direct experimental evidence has been found
for an increased core size near T,. In view of these
points, it would be desirable to formulate a hydrodynam-
ic theory of superfluid “He which (a) incorporates a real-
istic interatomic potential, i.e., a hard-core repulsion to-
gether with an attractive interaction, and (b) circumvents
the use of the Hartree approximation, if possible, in the
evolution equation. Such a theory is presented in this pa-
per.

Superfluidity has also been observed in *He films.’ At
finite temperatures, a long-wavelength surface density
wave (accompanied by a temperature wave), called the
third sound, has been reported. Also at low temperatures
there are indications of an undistorted pulse propagation
in thin films.!® To explain these observations a phenome-
nological nonlinear evolution equation for the condensate
(based on a generalization of Landau’s theory of quantum
hydrodynamics) was derived by Rutledge et al.!! It is of
interest to identify the microscopic origin of the terms
appearing in this equation. This is also done in the
present work.

The pseudospin (quantum-lattice gas) model of Matsu-
bara and Matsuda'? is found to be most suitable for our
purpose. This model is derived by starting with a realis-
tic interaction potential between *He atoms. The hard
core in the potential is incorporated by demanding
Fermi-like anticommutation relations for the field opera-
tors at the same site and Bose-like commutation relations
for operators belonging to different sites. The field opera-
tors can be shown to behave like S =1 spin-flip operators,
and the many-body Hamiltonian for interacting *He
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atoms can be represented by an anisotropic Heisenberg
exchange Hamiltonian. In this framework, the superfluid
order parameter becomes the expectation value of the
spin-flip operator.

The ground-state thermodynamic properties and the
nature of elementary excitations in the pseudospin model
were studied by Whitlock and Zilsel.'* They showed that
in the random-phase approximation the well-known low-
density-limit results'* are reproduced. More recently,
Parmenter and Poling'® have shown that the value of T
and the quasiparticle spectrum at T =0, are in reasonable
agreement with experiments. In view of these results, it
would be interesting to investigate the hydrodynamic
properties of the pseudospin model, without resorting to
the linearization procedure customarily used. As we
shall demonstrate, retaining nonlinear terms leads to in-
teresting results.

As the condensate has a very large number of particles
occupying the same quantum state, it is most natural to
study the order-parameter evolution equation in the
spin-coherent-state representation'® (SCR). The spin
Hamiltonian is bilinear in spin operators. This property,
combined with some special properties of the SCR, en-
ables us to derive an evolution equation for all T<T),
without using a Hartree approximation. The GP equa-
tion (valid for T~ T, ) is recovered in the leading small-
amplitude approximation. Complete linearization leads
to harmonic waves obeying a Bogoliubov-like dispersion
relation. A microscopic basis is also provided for the
nonlinearities present in the phenomenological treatment
of Rutledge et al.!! for thin-*He films. For a vortex solu-
tion in a cylindrical geometry we obtain a nonuniform
and nonsingular vorticity. We also find a unidirectional
traveling-wave solution with a velocity-dependent ampli-
tude, characteristic of a nonlinear excitation, when we
consider the flow of the liquid in one direction. Finally,
for a specific choice of parameters a static kink solution is
found for the condensate density. A preliminary version
of this work has been published recently.!”

II. LATTICE MODEL— A PSEUDOSPIN
FORMULATION

Liquid *He, in its superfluid phase, has a correlation
length of the order of a classical fluid (=1 A). It is well
known that lattice models of classical fluids lead to physi-
cally relevant results.!® Siegert'” has shown that a hard
core should be treated more realistically than just consid-
ering it as the infinite limit of a repulsive potential.
Therefore, a quantum-lattice model of hard-core bosons
with attractive interactions would be appropriate for the
description of liquid *He.'?

The volume Q of the system is divided into M cubic
cells each of volume a3 so that in the limit M, 0 — w0, a
remains constant. The centers of the cubical cells are la-
beled by three integers (/,m,n)=1. The corresponding
boson field operators are represented by ¥; with the fol-
lowing commutation relation:

[0, ¢0]1=0, [¥,.5,1=¢8, ,

where p, :zl/;rtlz, is the number density operator for the Ith

(2.1

cell. To incorporate the constraint of the hard core we
have

Ui=0, pi=p;, [¥ner]1=(1-25)8 .

In other words, the field operators behave like fermion
operators within the same cell and like boson operators
for different cells.

The microscopic many-body Hamiltonian is

(2.2)

#V?
2m

+1 [dr [dr v’ (owic)
X V(r—r' )Y(r')yY(r) ,

H=— [dry'(r) +u ()

(2.3)

where p is the chemical potential, m is the mass of the
*He atom, and V(r—r') is the interaction potential. We
discretize the Hamiltonian (2.3) by using the finite
difference approximation. Introducing a nearest-
neighbor (NN) attractive interaction —v, (vy>0) we
have

# ~ ~
H= 7 3 |(Brestpi)— (Wit +H.c.)
2ma“ s
2ma? . . A~
T VoPibies DN IE (2.4)
1

where 8 runs over the NN vectors of the site /.
The commutation relation (2.1) and (2.2) satisfied by 1,
show that one may equivalently write
¥, =S;F+iSy=S] and p,=1—S}, 2.5)

where S, is a spin-1 operator. Thus Hamiltonian (2.4)
may be rewritten as

2
H==3 |b—wsi+3 |2, 3 sisp,
1 & ma a=x,y
+voSiSEis | | (2.6)
where
b=D[(#/ma®*)—v,], 2.7

D being the dimensionality of the lattice. Since (#2/ma?)
and v, are positive, Eq. (2.6) represents an anisotropic,
ferromagnetic, Heisenberg NN exchange Hamiltonian in
an “‘external field” given by (b —pu).

Several thermodynamic properties of this model have
been extensively studied in the literature.'>'>!>2° Within
a linearized theory, a qualitatively good fit has been ob-
tained for the excitation spectrum and the ground-state
energy. Further, the values obtained for T, and the ve-
locity of sound agree reasonably well with the experimen-
tal values. It would therefore be interesting to study yet
another aspect—the hydrodynamic properties of this
model, retaining all its nonlinearities. To this end, we

start with the equation of motion for S;*,%!
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i#3,S; =[S, H]

=(b—)S;" =3 (#/ma*)S{S," s
8

+3 v0S; Sivs - (2.8)
8

The conversion of this nonlinear operator equation into a

c-number equation and its analysis will be carried out in

the following sections.

II1. SPIN-COHERENT STATES

The existence of an off-diagonal long-range order®? and
the concept of a generalized Bose condensation has been
widely used in the context of interacting Bose systems. It
is possible to represent the ground-state wave function of
a superfluid as a direct product of harmonic oscillator
(boson) coherent states’>?* in momentum space. Using
the second-quantized Hamiltonian given in Eq. (2.3), with
a purely repulsive contact potential V(r—r')=V&(r—r’)
to describe a soft-core Bose gas, we write down the equa-
tion of motion for the boson annihilation operator ¢ as

%3, 0= —(#/2m \V+ Vi b — i .

Denoting the expectation value of ¢ in the boson-
coherent-state representation by a(r,t), it is readily seen
that this equation yields the usual Gross-Pitaevskii (GP)
equation:

i#9,a=—(#/2m)Va+V|a|’*a—pa , (3.1

on using a Hartree approximation. This equation has
been frequently used® to study superfluid hydrodynam-
ics. In (1+1) dimensions, this equation is just the non-
linear Schrodinger equation,?® which supports envelope-
soliton solutions.

An extension of the boson-coherent-state approach to
the case of a hard-core interaction (i.e., V' — o) leads to
difficulties. As we have discussed, the model of Matsu-
bara and Matsuda incorporates the hard core by using
appropriate anticommutation relations between field
operators, leading to a pseudospin Hamiltonian [Eq.
(2.6)]; {S,") represents the condensate order parameter
in this model.

In analogy with the boson-coherent states, we shall set
up a formalism using spin-coherent states |7, ) at a lattice
site 1, defined by'®

) =(1+|7,11) Sexp(7,;5;)10),, (3.2a)

where S, is the spin-lowering operator and 7, is a com-
plex quantity. Also, Sf|0);=S|0),. For a system of N
spins, we work with the direct product

N
H)zg EI I (3.2b)
The normalized states |7, ) are nonorthogonal, i.e.,
(Mlr)) = +a5r )70+ 0 D5+ 7,125, (3.3)
and overcomplete
7S+ 1) [din (47 ) n =1, (3.4)

In the calculations that follow, the following con-
venient parametrization of 7, in terms of polar and az-
imuthal angles will be used:

7;=tan(6,/2) exp(i®,) (3.5)
with0=6,<mand 0=P, <27.
Thus Egs. (3.2a) and (3.4) become, respectively,
I7;)—16,,®,) =(cos16,)* exp
X [tan(16,) exp(i®;)S; ]0), (3.6)
and
(4m) 7 '2S+1) [d6, [ d®,sing,10,®,)(0,,D/1=1 .
(3.7)

The advantage of using spin-coherent states is that in
this representation, diagonal matrix elements of single-
site operators are identical to the corresponding classical
expressions. Thus for S=1, the order parameter 7, is
given by

=S )=(6,, 9,15, 16,,®,)

=1 sin6; exp(i®P,) (3.8)
and
(S7)=1Lcosb, . (3.9)
When combined, these two equations yield
(Sfy=+1(1—4[n, 1)) . (3.10)
Using Eq. (2.5), we have
(p1)=p;=1—(Sf)=sin*(6,/2)
=1[1+£(1—4|n, )] (3.1D
giving
i 2=p(1=p)) . (3.12)

From Eq. (3.8), |7, |2 < +. Further, since p; must be an in-
creasing function of |7, |* for physical relevance, the neg-
ative sign in Eq. (3.11) must be chosen, yielding the physi-
cal branch 0=<p, < 1.

Spin-coherent states have been used to study nonlinear
excitations in a quantum isotropic ferromagnetic chain,?’
a problem in (1+1) dimensions. In the present context
of the superfluid, we are dealing with interacting *He
atoms described by anisotropically interacting spins on a
three-dimensional lattice. Our main concern here is to
understand the hydrodynamics of a quantum fluid. To
study this, we first write down the diagonal matrix ele-
ments of the spin-evolution equation [Eq. (2.8)] in the
direct product representation |7) defined in Eq. (3.2), ob-
taining the following c-number equation:

i#3,m,=(b—p)n, —(# /ma*)(1—4|q )23 ;.8
5
Fogmy 3 (14l (3.13)
]

In deriving Eq. (3.13) we have used the properties of
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spin-coherent states, especially those given in Egs. (3.10)
and (3.11). We have not used a Hartree approximation in
the derivation, and the exact matrix elements have been
used. This nonlinear differential-difference equation is
now analyzed in its continuum version, as is appropriate
for the description of a liquid phase.

IV. ORDER-PARAMETER EVOLUTION EQUATION

In the discrete equation (3.13), we expand 7;,5 in a
Taylor series in |8/ =a. Retaining terms up to the lead-
ing order we have

S n15=2Dn+a’Viny . 4.1
5
Also
2 (1_4|n1+5t2)1/2___ (1_4’77|2)1/2
5

X[D—a’(1—4|9*) 'v?y|?
—2a%(1—4|y|?)"?
X (VInl?)?].

Substituting Eqs. (4.1) and (4.2) in Eq. (3.13) we obtain
the continuum evolution equation for the superfluid or-
der parameter.

(4.2)

J

—fiwy (i cosgy + X, singy ) =[4n3b /(1—4n3)' ? ]y sing,

+[(#/2m)(1—4nd)' (v singy +ix, cos&y ) +2v0a n3(1—4n3) ™2y, sin, k2,

where we have used
(1*,4'7”2)]/2:(1_47’(2))]/2
X {1—=[87y sin&, /(1—and)]} .

Equating the real and imaginary parts of Eq. (4.6) yields
the following Bogoliubov-like* spectrum:

4.7)

wr =(k*/2m)[4nib + (#k>/2m)

X (1—4ni+dvya’nim)] . (4.8)
In the long-wavelength limit, this reduces to
W, =ck (4.9a)
with a phonon velocity
c=(2b/m)"?y, . (4.9b)

This is consistent with the expressions obtained by
Matsubara and Matsuda'? and by Whitlock and Zilsel.'?

B. Gross-Pitaevskii equation

Since |n| <<1 for T ~T),, one is justified in expanding
(1—4[n1>)*'"2 in a power series in |9|? in Eq. (4.3). On
neglecting terms involving |77|2"17 (n>1), !n’z"Vzn
(n>0), nV2|y|%, and 7(V|yl|?)? we obtain the Gross-
Pitaevskii equation>’ [see Eq. (3.1)]

i%3,m=—(#/2m)V>n+2b|n|*n—pun , (4.10)

i#d,m={b[1—(1—4[n|")'"*]—u}n
—(#2/2m)(1—4|9|2)' ?vy
_voazn(l_4|n|2)—l/2
X[V g2 +2(1—4|n2)"Y(VIn|»?] . 4.3)

This equation is valid for all temperatures below the A
point. Further, all the nonlinearities consistent with Egs.
(4.1) and (4.2) have been retained.

A. Linearization and the Bogoliubov spectrum

Considering a uniform condensate p=m, (a constant),
Eq. (4.3) yields the following expression for the chemical
potential:

pw=b[1—(1—4[n>)""?]. (4.4)
We look for small-amplitude solutions of the form
n(r,t)=ny+y(r,t)+ix(r,t) (4.5)

with single-mode expressions y(r,t)=v,sin{, and
x(r,t)=yx,cos§,, where §{,=(k-r—w;t). Substituting
Egs. (4.4) and (4.5) into (4.3) and linearizing the resulting
equation, we get to order 13,

(4.6)

where 2b is to be identified with V, the strength of the
repulsive contact potential used by Gross. The hydro-
dynamic treatment of this equation is usually carried out
by looking for a general solution of the form

T(:pl/z(r,t)exp[i®(r,t)]’ yielding the equation of con-
tinuity

9,p+V-(pvggp)=0, (4.11)
where

Vsgp=—(fi/m)Vd (4.12)

is the superfluid velocity. We obtain also the Bernoulli
equation

—#3, P =Ilgp(p)+imvggp , (4.13)
where

Heplp)=— 2 | Lv2v5 | +2pp— (4.14)

GP\P 2m | Vo P p—H - .

Considering a cylindrically symmetric vortex solution of
Eq. (4.10) of the form

n(r,t)=fgp(r)expling) exp( —iE,t /#) , (4.15)

where n =0,1,2, . .. is the winding number, we obtain

Vsy(_*,P:(f'lﬁ/n’lr')é’\dJ . (4.16)

Hence the circulation is quantized (in units of
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h/m=9.97X10"*cm?s™ ')

GPIQSVS-dIZnh/m , (4.17)

and the vorticity can be formally defined as
Eop=lcurl vg gpl (4.18)
=(n#i/mr)d(r) . (4.19)

Thus the vorticity has a singularity at the origin and van-
ishes everywhere else. Further, the circulation in Eq.
(4.17) is independent of the circuit. These unphysical
features displayed by the GP equation are presumably
due to the contact potential (soft core) assumed in the
model.
The function fp(r) satisfies the following equation:’

2 dszP dfGP

p————(r?—

2 203
dr? dr n ) fgp—rfop=0.

The solution to this equation (found numerically) van-
ishes at the origin and tends to a constant as r — co.

(4.20)

r

C. Two-dimensional superfluid

“He films display certain interesting properties: At
finite temperatures a third sound, i.e., a long-wavelength
surface density wave accompanied by a temperature
wave, is observed. At very low temperatures in mono-
layer films, an undistorted pulse propagation has been re-
ported.!" To explain these observations a phenomenolog-
ical model was proposed by Rutledge et al.,'' leading to
the following condensate evolution equation:

AY
(ag +1y]*)°

i#d w— —ByYVYlP—pug v,

(4.21)
where A4, B, and ap are phenomenological parameters.
Wy is the “chemical potential” corresponding to the mod-
el. Neglecting nonlinear terms in the above equation
Rutledge et al. derived an expression for the velocity of
the third sound mode. Going beyond the linearized
theory and incorporating finite amplitude effects, Huber-
man'® showed that the superfluid density satisfies a KdV
equation. More recently Biswas and Warke®® have de-
rived this result in a more systematic fashion.

Equation (4.21) may be brought into correspondence
with the basic Eq. (4.3) as follows. First, let us set
b=2(#*/ma®*)—v, (as is appropriate for a two-
dimensional film) in Eq. (4.3). Neglecting terms like
(V|11?)*>n and expanding the relevant terms in powers of
I712 in both (4.3) and (4.21) appropriately, a close resem-
blance between these two equations emerges. A compar-
ison shows that

3A4 A
=b, B=uvya? +—=u.
za;: 0 MR al_‘; H

Vw—

These relations express the phenomenological parameters
J

Enf:{b[1“(1*4f2)1/2]—’u1f—(ﬁ2/2m)(1i4f2)1/2

ifdf—sz 2f+2

_anZf(1_4f2)—l/2 0 “iif
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A, B, ag, and uy in terms of v, b, and u, thus providing
a microscopic basis for the surface effects described by
Eq. (4.21).

V. NONLINEAR DYNAMICS OF THE CONDENSATE

In this section we analyze Eq. (4.3) retaining all the
nonlinearities and study the hydrodynamics of the
superfluid system. In view of Eq. (3.12) which arises due
to the use of spin-J coherent states, we may write, in gen-
eral,

l/._

121 —p) 2 expli®)

n=p (5.1
where p and @ are functions of r and ¢. Inserting Eq.
(5.1) into (4.3) and equating real and imaginary parts, we

obtain the continuity equation for p,

9,p+V-(pvg)=0, (5.2)
and the Bernoulli equation

—#0,®=11(p)+1m(1—2p)(1—p) vi. (5.3)
II(p) is defined in Eq. (5.7) below. vg is given by

ve=(A/m)(1—p)VD . (5.4)

Comparing this with Eq. (4.12), we see that in our formal-

ism m is replaced by an effective mass
m*=m(1—p)"" (5.5)

Here m* = m, corresponding to T<T,.
given by

E=(A/m)|VpXVP| ,

The vorticity is

(5.6)
which, in general, is nonvanishing. In Eq. (5.3),
M(p)=(#2/8m){(1—2p)p (1—p) %(Vp)?
—2[(1=2p)p YH1—p) "Hvya?]V?p}
+2bp—pu . (5.7)

It is easy to verify that for p <<1 (i.e., T~T;) and v, =0,
Eq. (5.3) reduces to Eq. (4.13) derived from the GP equa-
tion.

Specializing to vortex solutions of the form given in
Eq. (4.15), the expression for v in Eq. (5.4) becomes

ve=(n#i/2mr){1+[1—4f%r]"?}e, (5.8)
(where n is the winding number of the vortex). Hence

V-vg=0 (5.9)
and

E=|2nti/mr)(1—4f2) 12f f ‘ (5.10)

Further, Eq. (4.3) yields the following equation for f (r)

vd | df | 2,2
iyl Liem /3 f
+8(1—4f2 g2 df ] (5.11)
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For T~T,, Eq. (5.11) becomes

E, f=Qbf2—p)f —(#/2m (1 —2f7) %di r%f— 2/r2>fl
—2vgaf(1+2f2) fdf 1ok f ‘;—f; F4(1+4r2))0 df ] . (5.12)
dr
[
u may be estimated by considering a homogeneous solu- F=nh/m§ (Ry>§&), (5.19)
tion f = f; we find b
where

=(2bf:—E,)

Linearizing Eq. (5.12) and using Eq. (5.13), we find f(r)
satisfies Bessel’s equation:

(5.13)

1ld

af
rdrr

(#/2m) i —(n2/r3)f | +2bfif =0 .

(5.14)

The healing length & is the distance beyond which f is
essentially constant:

E=n#/(4mbfi)"? . (5.15)

Equation (5.12) can be solved numerically. For our pur-

poses, it suffices to determine the limiting behavior of

f(r)asr—0and as r — oo. This is found to be
lin:)f(r)—»a(r/@" lim f(r)—f,

7> oo

(5.16)

where a,3 are constants. Since f2=|n|?, Eq. (5.1) gives
B_p’/z(l ps)!/?, where pg is the equilibrium density of
the superﬂu1d Substituting Eq. (5.16) in Eq. (5.10), we
obtain for n =1.

§(r)z(2ﬁa2/m§2)(1_4a rZ/é- —1/2 r—0

~0, r—o .

Thus £(0) is finite and there is no singularity in the vorti-
city, in contrast to the behavior predicted by Eq. (4.19).
The circulation I' calculated from Eq. (5.8) is

r=¢ vg-dl=(nh/2m){1+[1—4f*R,)]"?]

for a circuit ¢ of radius R, showing that I depends on
R, so that there is no quantization (in the usual sense)
within the vortex. However, for r >>§&, f(r)—f. T then
becomes independent of R, and is quantized according to

(5.17)

(5.18)

3,0=(—#/2m)[2cos6(VO-Vd)+sindV3P] ,
#3, b=
—cosO(VO)(a’b /2D)— (#*/2m ) cosO(VP)?

m&=2m /[1+(1—4B")" 1=m /(1—pg) .

It is interesting to note that in the quantization of the cir-
culation, the effective mass m * ( > m ) occurs, rather than
the bare mass m, essentially due to the inclusion of the
hard core. The energy per unit length of a vortex of ra-
dius R is given by

RO
E(R0)=7Tf0 pvirdr
=(m#?/2m?)
Ry dr 2
X —_—
fo rf

In a typical calculation, R, can be taken to be slightly

(M{1+[1—4f2N]V%) . (5.20)

larger than §. In view of the behavior of f(r) given in
Eqg. (5.16) we get
E(Ry))=G (§)+G,(B)In(R,/E), (5.21)

where G,(£) and G,(f3) are finite. In a customary calcu-
lation to obtain a finite vortex energy, it was found neces-
sary to introduce a nonzero lower limit* in the integral
given in Eq. (5.20) or a specific model® due to the pres-
ence of a singularity at the origin. In contrast to this, in
the present formalism the finite energy arises in a natural
fashion.

VI. UNIDIRECTIONAL FLOWS

In this section we obtain solutions for the superfluid
density, corresponding to unidirectional flows in the
superfluid. Further, kink solutions are determined in the
static case.

Substituting the SCR expression n=(1)sindexp(iP)
in the continuum equation (4.3) and equating the real and
the imaginary parts we obtain

(u—b)+b cosO+ (sind) " '[(#2/2m ) cos?0+ (vya?/2) sin’0]V%0

Setting cos@=p and ® =g and specializing to flows along the x direction of the bulk liquid, we get

3,p=(#/2m)[(1—p2)d,,9—2p(8,p)3.q)] ,
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(L—b)+bp—1a’[p(1—p») Xd.p)+(1—p?) '8, plbp?+uy)
—(ba?*/2)p(1—p?) N3, p)*—(#/2m)p(d,q)* . (6.4)

In order to solve the above two coupled nonlinear equations we consider traveling wave solutions of the form

qg=qlz), p=plz), z=(x—vt)/a . (6.5)
Substituting Eq. (6.5) in Egs. (6.3) and (6.4) we get
dp d? q dq d . dg
U-t=—(1—p% +2 =——|(1 )=+ 6.6
R dz dz dz | Pz 0.6)
and
dq s oo ldp | 51 5 dp dq
UL =2(k—~R)—2kp+p(1—p2) 2 | P | 4(1-p2 2+ (1—x + : 6.7
o (K )—2kp +p(l—p = p) [kp K) . )4 dz (6.7)
where
U=2vma /#, k=ma’b/#, R=ma’u/# . (6.8)
Integrating Eq. (6.6) yields
49y —pr1—ph T, (6.9)
dz
P, being the constant of integration. Substituting Eq. (6.9) into Eq. (6.7) gives
d?p dp |’ d’
UX1—p?) [(po—p)—(1—p>) 'plpe—p)*]+2(R —k)+2kp +x L =p(1—p2) 2 |22 | +(1—p2) ' %2 (6.10)
dz? dz dz?
Substituting the identity
2 , -1 2
22| 4p 1y1dp 1 {dp d 21| dp
1— == +(1 ) = | — (1—=p°) — 6.11
P d dz? 2 | dz dz P dz ( )
on the right-hand side of Eq. (6.10) leads to
%‘i ={=2kp*+4k—R)p*+(c +2k)p>+[2p U’ —dk—R)p —[c+UX1+p2) ]} (1—k+rp>) ", (6.12)
z
[
where ¢ is a constant of integration. Using p =cosf and Eqgs. (3.9) and (3.11) we have
A. Periodic solutions p(2)=1[(R /Kk)—AsinV2(z —z,)] . (6.19)
Writing the numerator of Eq. (6.12) as (1—x  Hence
+kpi)N A, p>+ A,p+ A4,), we find
A=—=2, A,=4dk—R)/k, A;=(c+2)/k . (6.13) R /K)—=A]<p(z) =I[(R/k)+X], A>0. (6.20)
Also Since A2> 0, Eq. (6.17) leads to
c=2k—1)—kUX1+p}), (6.14) R R
2<U-<2[1—(R/K)]), (R/k)<O,
Po=2(k—R ) /kU? (6.15)
2[1—(R/K)VP<U?<2, 2>(R/k)>0. (6.21)

Consequently Eq. (6.12) is reduced to

k)

fdp/% M—[p—(1—R /)12 =Vv 2z —z,) , (6.16) Note that the amplitude A of the traveling wave depends
on the velocity, a feature typical of certain nonlinear sys-
where tems. In this context, it may be noted that a KdV equa-
Ly 5 tion for the superfluid density fluctuation was obtained by
Ar=[(c+2)/2x]+[(k—R)/K]" (6.17) Huberman'? as an approximate reduction of Eq. (4.21) of
and z is a constant of integration. Thus Rutledge et al'' Its hump-shaped soliton solution also
displays this feature.?® Finally, Eq. (6.21) shows that the

pz)=[1—(R /Kk)]+A sinV2(z —zy) . (6.18) velocity of the wave cannot be arbitrary.
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B. Static solutions

The behavior of superfluid “He near the A point in the
static case has been discussed by Ginzburg and Pi-
taevskii,’ starting from the phenomenological theory of
Landau. Restricting their discussion to real solutions v,
of the order parameter, they obtain

d*y,
dz?

(6.22)
J

== Dy ,

dz

+[2poU*—4(k—R)+2p Uk ]p +(c + U+ pIU)(1+k) .

For a static solution, U=0. [Equation (6.9) shows that
qg=®=const.] Then Eq. (6.24) can be written in the

form
2

dp =—2k(k+1)(p2—1)?, (6.25)
dz
which can be satisfied for k <0 only. The solution is
p(z)=tanh[2|x(xk+1)[]'?z . (6.26)
Since p =cos8, combining Eqgs. (3.9) and (3.11) yields
plz)=1[1—p(2)]
=1{1—tanh[2|x(k+1)|]'"?z} (6.27)
with the order parameter 7 given by the real solution
n=p'2(1—p)'/*=1Lsech[2|x(k+1)]]'*z . (6.28)
For T ~T,, p << 1, the order parameter 7~p'/%
7]:%—2?l—tanh[2|K(K+1)|]l/22}1/2. (6.29)

This kink solution arises for the case « <0 only.

VII. DISCUSSION

The pseudospin model which was introduced by
Matsubara and Matsuda'? as a microscopic model for
liquid *He incorporates both an infinite hard-core and an
attractive nearest-neighbor interaction between atoms in
a satisfactory manner. In this paper, the model has pro-
vided us with a convenient starting point to discuss hy-
drodynamics in the superfluid. The effective Hamiltonian
is an anisotropic ferromagnetic exchange Hamiltonian
with a magnetic field along the z direction. In contrast to
the magnetism problem, however, this field is not a given
external field, but depends on the interaction parameters
and u, which is adjusted to keep the total z component of
magnetization (or effectively, the superfluid density p)
fixed.

In a formalism involving boson operators i, one usual-
ly defines the order parameter as (1) =p'’?exp(i ®) lead-
ing to (¢")(¥) =p={(y'y). Thus a Hartree approxima-
tion is implicit in this definition, except when boson-

where z is a suitably defined dimensionless quantity. Ap-
propriate boundary conditions lead to the following kink
solution for the order parameter:

2
‘i’?i ] =—klc +2)p*+[4(k—R)—2p, U ]p’ +[(2k +c) +k(2c + U2 +pIU?)]p?

Yo=tanh(z/V2) . (6.23)

In Eq. (6.12), for «<<1, expanding the factor
[1+xk(p?—1)] ! up to terms linear in «, we obtain

(6.24)

f

coherent states are used to calculate expectation values.
In contrast to this, we have seen that in the pseudospin
formalism, working with the spin-coherent representa-
tion, the corresponding density-order parameter relation-
ship is p=p!"2(1—p)!"?exp(i®) [see Eq. (5.1)], and in the
limit p << 1 (T ~ T, ), the usual definition holds.?’

The order-parameter evolution equation valid for tem-
peratures T =T, [Eq. (4.3)] is highly nonlinear. The phe-
nomenological GP equation for bulk helium, and the
equation of Rutledge et al. used to explain surface effects
in superfluid films, emerge as special cases of Eq. (4.3),
when certain nonlinear terms are neglected. An exact
analysis of this equation yields a continuity equation for
the superfluid density pg. The expression obtained for
the superfluid velocity vg contains an effective mass
m *=m(1—p)_'I instead of the bare mass [see Eq. (5.5)],
leading to the physically relevant result®® curl vg=£0.
This is essentially due to the inclusion of a realistic hard-
core interaction between the bosons in the model.

A cylindrically symmetric vortex solution of Eq. (4.3)
is analyzed. A comparison of the conventional expres-
sion for the vorticity [Eq. (4.19)] with that obtained by us
[Eq. (5.17)] shows the resolution of the longstanding
problem of obtaining a nonsingular vorticity. Further,
the customary need to introduce specific models to avoid
obtaining an infinite vortex energy is also eliminated.
The quantization of circulation arises only for streamlines
far away from the vortex core, as expected physically [see
Eq. (5.19)]. The result '=nh/mg=nh(1—pg)/m im-
plies that I" depends on temperature, due to the presence
of ps. The range 0=<p =<1 [see text following Eq. (3.12)]
is a general bound which arises due to spin-operator iden-
tities, with no reference either to the symmetry of the
effective spin Hamiltonian for the problem or the temper-
ature. The ground state will depend on the relative mag-
nitudes of the parameters #*/ma? and v,. Only a de-
tailed statistical mechanical calculation can yield the
temperature dependence pg(7T) for 0< T <T,. However,
it is possible to obtain rough quantitative estimates for
bulk *He using phenomenological results: ps has been es-
timated®' to attain an extrapolated value of 0.12, within
2% accuracy, at T =0. Thus at very low temperatures,
I' has a predicted value [see Eq. (5.19)] which is
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(1242) % less than the usual value A /m valid at T~T,.
While this may appear to be a large decrease, it must be
noted that in recent direct measurements of circulation
such as those carried out by Yarmchuk et al.® (at ~0.1K
when pg is expected’! to have reached almost its max-
imum value) I' has been found to be A /m to within 5%
accuracy only. Furthermore, as is well known, early clas-
sic experiments typically showed a wide spread in I with
a pronounced maximum near s /m. Hence more sensi-
tive experiments are required to gauge the role of m¢, the
effective mass that occurs in the expression for I'. For
T ~T,, an expression for the core radius is given in Eq.
(5.15).

The parameter b [Eq. (2.7)] which represents the

difference between the zero-point kinetic energy and the
magnitude of the attractive part of the interaction be-
tween *He atoms plays an important role. This is to be
expected in any model that is formulated by starting with
interacting hard-core bosons. For both signs of b, the
superfluid density supports a periodic wave solution with
an amplitude-dependent velocity, which feature is essen-
tially due to the inclusion of nonlinear effects. For b <0,
a static domain wall solution is found, although the phys-
ical relevance of this solution is not very clear at present.
It would be of interest to explore the possibility of a
gauge theoretic description®® of superfluid *He in the
present formalism to gain a better understanding of the
topological features of the problem.
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