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We discuss methods for ab initio calculations of the parameters in the Anderson model. First, we
present a very simple method for calculating the appropriate combination of hopping matrix ele-
ments needed in the impurity Anderson model. For a substitutional impurity, we show that to a
good approximation it is sufficient to know the potential of the impurity atom and the local density
of states of the unperturbed host. Calculations are performed for Mn substituting Cd in CdTe. As
expected, the Mn 3d orbitals have a strong coupling to the Te 5p —derived valence band, but there is
also a strong coupling to the conduction band. The dependence of the hopping matrix elements on
the Mn configuration is studied. While there is a strong dependence on the Mn net charge, we find
that the creation of, e.g., a core hole has a fairly small effect on the matrix elements, provided that
the 3d occupancy is allowed to relax. Second, the Coulomb integrals between two Mn 3d orbitals
and between a 3d orbital and a core orbital are calculated. The renormalization of these quantities
due to the radial relaxation of the Mn 3d, 4s, and 4p orbitals, and due to charge-transfer effects, are
analyzed in detail. Because of the nonmetallic character of CdTe, a change in the number of Mn 3d
electrons is only partly screened by a charge transfer to the Mn 4s and 4p orbitals. Because of the
moderate size of the band gap, this screening is, nevertheless, important. . The radial relaxation of
the Mn 3d, 4s, and 4p wave functions is also important. The relaxation of the neighboring atoms
plays a rather small role. Results for the photoemission spectra are calculated including multiplet
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effects. The results are found to be in rather good agreement with experiment.

I. INTRODUCTION

The Anderson impurity model' has been found to pro-
vide a satisfactory description of different properties of
many systems, which have a localized state interacting
with a continuum of extended states. Examples of such
systems are rare-earth compounds [e.g., Ce (Refs. 2—4)
and Yb (Ref. 5) compounds], actinide compounds (e.g.,
some light oxides®), 3d compounds,7~9 and chemisorp-
tion systems.!° The Anderson model is defined by the
Hamiltonian

H:'zsknko+2€mnm(r+ 2 (Vkm¢1);z0¢k0+H'c')
k,o m,o k,m,o
FIU S ol - §))

m,m,’o,0’

In this model we have divided the complete orthonormal
set of one-electron functions into two subsets. One set is
given by the localized orbitals, labeled by the azimuthal
quantum number m and spin index o, and with the ener-
gies £,,. The other set consists of states with energies g,
and labeled by some quantum number k and spin . The
localized states have a strong Coulomb interaction U,
which must be taken into account explicitly using some
many-body technique to solve model (1). The set of states
|ko ), on the other hand, is assumed to be extended and
the Coulomb interaction between these states is not in-
cluded explicitly. The one-particle part of the Hamiltoni-
an is assumed to have been diagonalized in the space of
states |ko ), and we are only left with the hopping matrix
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elements V,,, between the two sets of states. To obtain
the proper multiplet structure, we, in addition, have to
add m-dependent Coulomb integrals, which will, howev-
er, not be discussed further here. For the description of
core spectroscopies, a further term is added to the Hamil-
tonian in (1) to describe the Coulomb interaction U, be-
tween the core and the localized states.’

All other interactions are usually neglected in the An-
derson model, although they are in general not small.
Basic assumptions in the model are that such interactions
can, nevertheless, be included implicitly as a renormaliza-
tion of the parameters, and that this renormalization is
the same for different experiments. The normal approach
has been to determine the parameters of the model empir-
ically, requiring that the parameters are chosen so that
some experiment, for instance, core-level x-ray photo-
emission spectroscopy (XPS) is well described. These pa-
rameters are then used to describe other properties. In
particular for Ce compounds there have been extensive
tests, showing that this approach can be quite success-
ful.>~* While such an empirical approach includes renor-
malization effects, it gives little information about the ori-
gin or size of the renormalization.

It would be desirable to be able to calculate the param-
eters of the Anderson model. For many Ce compounds,
there is a relatively simple relation, within the model, be-
tween the most important parameters and experimental
data, but this is not generally true. Theoretical informa-
tion about the parameters is therefore often very helpful.
Calculations also reduce the risk that the choice of an
oversimplified model, or the use of an inaccurate approxi-
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mation in solving the model, is compensated by a choice
of unrealistic parameters. The calculation of parameters
requires an understanding of the renormalization effects,
and comparison with experiment tells us about the quali-
ty of our understanding. Finally, the calculation of the
parameters represents an important step in the direction
of an ab initio description of the system.

For the Coulomb integrals U and U, of the 4f and 5f
metallic systems, Herbst et al.!! have made important
progress. They used the assumption, introduced by Her-
ring for 3d systems,!? that each atom in a solid stays lo-
cally neutral, i.e., a change in, e.g., the number of 4f elec-
trons is compensated for by a change in the number of
conduction electrons so that the net charge of the atomic
Wigner-Seitz sphere remains zero. Because of this as-
sumption Herbst et al.!! could use essentially (renormal-
ized) atomic calculations to obtain renormalized values of
U and U,, which implicitly include effects of, for in-
stance, the Coulomb interaction between the f and the
conduction electrons. Calculations of this type assume
that the conduction electrons adjust instantaneously to
the change and the number of localized electrons, and
dynamical effects due to the screening by the conduction
electrons are neglected. The calculations of Herbst
et al.!! intended for metallic systems, agree well with ex-
perimental values for intermetallic Ce compounds.!*?~*
The renormalization of U and U, for metallic f-electron
systems therefore appears to be well understood. For the
insulator CeQO, larger values of U and U, are, however,
needed.'* Similarly, it was found that U is larger for the
insulator NiO than for metallic Ni.>® It is therefore in-
teresting to study how a change in the number of local-
ized electrons is screened in nonmetallic systems, to ob-
tain a better understanding of the renormalization of U in
such systems. Calculations beyond the renormalized
atom approach have been performed by Dederichs
et al.,'> McMahan and Martin,'® and Wills and Coop-
er,!” who performed calculations for solids, but the mech-
anisms for the screening of a localized electron were not
studied explicitly. Here we perform calculations of U
and U, for a Mn impurity in the semiconductor CdTe, to
study the screening in detail for a nonmetallic system.

The hopping matrix elements ¥ have also recently been
calculated by Sakai et al.,'® Monnier et al.,’> McMahan
and Martin,'® Wills and Cooper,!” and Ehrenreich and
co-workers,'® who used the local-spin-density (LSD) ap-
proximation?® or empirical tight-binding schemes. In this
approach it is assumed that the LSD approximation gives
a satisfactory description of the many-body effects on the
states |ko ) and the hopping matrix elements, but that a
more careful treatment is required for the many-body
effects involving the localized states. In particular, this
approach assumes that there are no renormalization
effects on V;,, beyond what is included in the LSD ap-
proximation. This approach seems to work well for the
cases (spectroscopic!®!® and magnetic!” properties of Ce
compounds, spectroscopic properties of Yb compounds,’
and exchange interactions in diluted magnetic semicon-
ductors!®) where it has been tested, and this suggests that
the renormalization of ¥ may be rather small. Some of
these calculations'®>!° were based on band-structure cal-
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culations followed by tight-binding fits to the calculated
energy bands. While such a fit can give an excellent
description of the energy bands, it is less clear to what ex-
tent the individual hopping matrix elements in the fit
have a physical meaning. A more satisfactory procedure
is to calculate the band structure with the linear muffin-
tin orbital (LMTO) method,?! which is known to give an
accurate description of the energy bands in terms of a
minimal set of orbitals, and then to use an exact transfor-
mation?? to a set of almost orthogonal, short-ranged
LMTO’s. Since the states |ko ) and |mo ) in the Ander-
son model are normally assumed to be orthogonal, the
orthogonality of the LMTO’s is convenient. It is further-
more important that a minimal set can be used, because
if, as in LCAO-like schemes (where LCAO denotes linear
combination of atomic orbitals), more than one orbital
for each Im quantum number was used, the identification
of a particular orbital with the localized orbital in the
Anderson model might be ambiguous. The LMTO
method, in the almost orthogonal representation, pro-
vides a direct mapping onto the Anderson Hamiltonian.
McMahan and Martin'® used the almost orthogonal
LMTO’s to calculate the hopping matrix elements ¥, as
a sum over matrix elements of the LMTO Hamiltonian
times the eigenvector of the state |ko ). Wills and Coop-
er!” used the original nonorthogonal LMTO orbitals and
expressed V,,, in terms of eigenvector for the state ko),
structure constants, and a potential parameter. Here we
shall follow a different route.

In the Anderson impurity model the individual hop-
ping matrix elements are not needed, but just a particular
combination. To see this?> we write the coupling term in
(1) as

2 [¢Lafd8 V,. (e, TH.c. 2)
m,o
using the linear combination

1
V()

lemo )= S Vimdle—g ) ko) , (3)
k
of extended states, where V,, (¢) is defined below. These
states are orthogonal if?

SVE, Vk,,,'S(e—ak)=|Vm(£)|28mm.E$Am(s)8mm, ,
k

4)

which is fulfilled if m and m’ label different irreducible
representations or different partners of the same repre-
sentation of the point group of the impurity site.”> The
remaining extended states are chosen to be orthogonal to
(3) and it is easy to show that they do not couple to the
localized states. The Hamiltonian (1) then takes the form

H= 2 l f 8¢ZV¢EVd et €V¢I¢‘V
+ [V ()], +H.c. lde

+U 3 n,n,+H,, (5)
v,u
‘V<,u,
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where v=(m,o0) and H, contains the extended states
which do not couple to the localized states. It is now
clear that the coupling between the localized states and
the extended states is entirely described by the quantity
A, (e), which has the dimension energy. Due to the
definition (3), the density of new states |ev) is unity in-
side the band. It should be observed that A, (g) in (4)
does not contain enough information about the hopping
matrix elements to obtain the solution of the periodic An-
derson model.

We can now ask for the diagonal matrix element of the
one-particle Green’s function for a localized state [v). In
the limit of U =0, standard calculations (Lowdin parti-
tioning) give!

1 1
GW(Z):<V S H |v>_z—av—f‘v(z) , (6)
where
Vl:kam ’Vv(e)lz
F = =
=3 Jae—— (7)
It then follows that
7|V, (e)]*=A(g)
— |1
I ey Py
-1
pAE")
_ — e i 8
Im | | [de'——"— ] : (8)

where p,, is the density of states for H (in the limit U =0)
projected onto the localized orbital. The steps (6)—(8) can
be performed formally also within the local-density (LD)
approximation giving the same final result (8). We can
therefore calculate p5P(e), using the methods described
below, and then deduce the LD result for A (¢) from Eq.
(8). Equation (8) is therefore a key result. The result (8)
has not been obtained by perturbation theory, but is valid
for any strength of the hopping matrix elements. In Sec.
IIT we calculate p,(€) using the atomic-sphere approxi-
mation (ASA) for the one-electron potential, but from the
derivation of (8) it is clear that this result is also valid if
p.(€) is calculated for the full potential. Below, (8) is ap-
plied to semiconductors, but exactly the same technique
can be used for metals.

By expressing A, (¢) in terms of the local density of
states, we have obtained a rather ‘representation-
independent” expression. Assuming that the calculation
of the Green’s function is accurate, the result depends
only on how the localized orbital |v) is defined, not on
how the other orbitals are defined. In particular, the is-
sue of the orthogonality of the localized states |mo ) to
the other states used in the calculations of pLP(g) is not
raised in this formulation.

The Anderson impurity model has been used both for a
chemical impurity in some host and for a periodic sys-
tem. In the latter case one ought to use the periodic An-
derson model, with the Coulomb interaction on all the
sites of the lattice. Because of the difficulty of finding an
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accurate solution for the periodic Anderson model, the
Anderson impurity model is, however, often used for the
periodic case, too. In terms of the type of system dis-
cussed here, Cd,_,Mn, Te, we can thus either treat one
Mn atom replacing a Cd atom in CdTe (i.e., the x =0
limit), or we can consider the periodic arrangement
MnTe (the x =1 limit). In the calculations to be reported
in the following we have studied the first case.

When the Anderson impurity model is used to describe
a chemical (x —0) impurity, the Green’s function in (8)
refers to the Green’s function of the impurity system,
which can be obtained by solving the Dyson’s equation.
If the perturbation due to the impurity is limited to the
impurity atom, i.e., the potential of the atoms surround-
ing the impurity is unchanged, Dyson’s equation blocks
into small submatrices. A, (g) is then obtained from the
unperturbed Green’s function and the potential on the
impurity site via the inversion of a matrix, which with a
basis of LMTO’s and in the ASA is only 1 X1 or 2X2.
For the case considered here, Mn in CdTe, it is then
sufficient to know the potential of the Mn atom and the
on-site Green’s function of CdTe, which can be obtained
from a Hilbert transform of the Cd 3d (E) or 3d (T,)
projected densities of states for the unperturbed CdTe
crystal.

When the Anderson impurity model is used to describe
a periodic system, the Green’s function in (8) refers to the
periodic system. The matrix element needed in (8) is then
simply obtained from the projected density of states of a
band calculation for a periodic system, and there is no
Dyson equation to be solved. In this approach some as-
pects of the periodicity of the system are included in the
Anderson impurity model. In particular, for U =0 the
impurity model reproduces exactly the density of states
projected onto the localized orbital for the periodic sys-
tem. For large values of U, further study is needed to
determine whether or not the description of the system is
improved when the localized orbital on the other sites are
included in the LSD calculation of the hopping matrix
elements used in the impurity model. It is important to
note that in the definition of “extended” states |ko ) in
(1), we have excluded the localized orbitals on the impuri-
ty site because these are treated explicitly. The spectrum
g for, e.g., MnTe is therefore obtained with the 3d orbit-
als on one Mn atom removed. The removal of the local-
ized orbital from the crystal can in some cases lead to
“dangling bonds” and associated bound states. The rela-
tion between the density of states of MnTe and the €, in
(1) is therefore not necessarily trivial.

Normally the same hopping matrix elements are used
in the Anderson model both in the presence and the ab-
sence of a core hole, although it is clear that the core hole
will have an influence on the hopping matrix ele-
ments.>»?>% In particular, Zaanen and Sawatzky® ob-
served that for NiO the spectra would be better described
if it were assumed that the presence of a core hole in-
creases the hopping matrix elements. This raises the
question of how strongly A (€) is influenced by a core
hole, and in which direction the change goes. Since the
hopping matrix element

VkV5<k|H"V> 9)
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is a matrix element of the Hamiltonian, which includes
the potential, one may argue that the attractive core-hole
potential should increase the strength |¥] of the hybridi-
zation. On the other hand, the attractive potential makes
the localized state |v) even more localized and reduces
the overlap to the extended states |k ). One may there-
fore also argue that |V]| is reduced. We have performed

calculations for Mn in CdTe to determine which effect

dominates.

In Sec. II we present the formalism for calculating the
hybridization A (e) within the LMTO formalism and in
Sec. III we present the results. The calculations of U and
U, are described in Secs. IV and V, respectively. In Sec.
VI we present a preliminary calculation of the photoemis-
sion spectrum, and we make some concluding remarks in
Sec. VII. A preliminary account of this work has been
presented in a conference proceedings.®

II. CALCULATION OF HOPPING MATRIX
ELEMENTS IN THE LMTO FORMALISM

Below we describe how the LMTO-ASA formalism?!2?
can be used to calculate the quantity A (e), which con-
tains the information about the hopping matrix elements
needed in the Anderson model. In the ASA the one-
electron potential is spherical inside the Wigner-Seitz
spheres centered at the atoms, and in open structures, at
interstitial sites. The ASA usually gives hopping in-
tegrals accurate to a few percent.?’” The LMTO’s defined
below form a complete basis for the ASA potential, and a
highly accurate basis for the full potential, as recently
demonstrated.?®

We thus assume that space is divided into slightly over-
lapping Wigner-Seitz spheres, which together have the
same volume as the crystal. The interstitial volume be-
tween the spheres is neglected, and for simplicity we as-
sume that all spheres have the same Wigner-Seitz radius
s. The traditional LMTO’s (Ref. 21) are expressed in
terms of an envelope function, K° which is the irregular
solution to the Laplace equation corresponding to the an-
gular momentum L =(/,m) centered on the sphere at R.
It decays as r ~!I=1 1n all the other spheres, this function
may be expanded in terms of the regular solutions J%~r'
of the Laplace equation. The one-center expansions of
the envelope function may thus be expressed as

|KO)y>=|K®)—1]J0)s?, (10)

where the superscript o indicates a function extending
over all space and the absence of this superscript implies
a function truncated outside the sphere on which it is
centered. In Eq. (10), S° is the conventional structure
matrix Sg.;- gy and a summation over R’ and L’ is im-
plied. This envelope function is augmented analogously
to the way described below to obtain muffin-tin orbitals.
These orbitals are long ranged and nonorthogonal, which
makes them less suitable for our purposes. We use in-
stead a recent version of the LMTO formalism?*?> which
allows the construction of short-ranged almost orthogo-
nal orbitals. These are obtained by forming linear com-
binations of the envelope functions (10) in such a way
that the orbitals obtain the desired properties. For this

purpose we introduce the function
7y =1 —|KDa, (11)

where ag; are so-called screening parameters which
specify the LMTO representation and which will be
chosen later. The new envelope has the one-center ex-
pansion

[K*)*=|K°)—1J%)S*. - (12)
By requiring that this function is a linear combination of
the functions (10), one finds that the new structure matrix

is related to the conventional one through
($) 1=(8%9"'—a. (13)

Here a is to be regarded as a diagonal matrix, and the
structure matrix is Hermitian. Whereas the one-site
terms of S° vanish, this is generally not the case for S.

To augment the envelope function, we introduce a nor-
malized solution ¢g; (g,r) of the Schrodinger equation in-
side the sphere at R. The function K° in (12) is now re-
placed by?*?

K%r)—¢(e,r)N*e)+T*r)P%e) , (14)

where J% is a function which matches continuously and
differentiably onto J at the sphere surface. The func-
tions N* and P“ are chosen so that the right-hand side of
(14) matches continuously and differentiably onto K° at
the sphere surface. This gives??

172
Nee)= | JPe) | (15)
where P%(¢) is the energy derivative of P%(¢) and
- _ 1 D(e)—1
P 1+ — PO 1—
[P = P = o ) Do)+ 1
(16)

is expressed in terms of the logarithmic derivative D (g)
of the radial Schrodinger equation solution. An energy-
dependent muffin-tin orbital |Y*(e))*® is now defined by
replacing J* by J% in the envelope function (12) as well.
Using (14) one obtains??

[x%(e))*=|¢(e))N%e)+[T*)[Pe)—S°] . (17)

This function is a linear combination of |¢(g)) and |J*)
in the sphere at which it is centered, and in all other
spheres it is defined in terms of |J%).

An energy-independent (linear) muffin-tin orbital
(LMTO) is introduced by fixing ¢ =%, where £ is an arbi-
trary energy chosen in the energy range of interest. It is
further required that |J®) is chosen so that the energy
derivative of |y(g)) ® is zero at e =%.%? Then

Fay __ | jia —s—

|7y =—1¢ >2N"‘ , (18)
where

l6°)=1")+|¢)o% . (19)

Here |$7) is the energy derivative of the solution |¢(g))



1712 GUNNARSSON, ANDERSEN, JEPSEN, AND ZAANEN 39

normalized to unity in the sphere, and
0*=N*/N*. (20)

Here and in the following an omitted energy argument
indicates that e=%. The LMTO is finally defined as

)= =) = o =18) 16 he @1
where
ar 1 a_gay__L__
=~y PS5 i (22)

In the ASA it is now possible to express the overlap O
and Hamiltonian H matrix elements between the
LMTO’s in terms of the 2% and 0® as??

=(1+h%*N0"h*+1)+h°ph® (23)
and
H=h*(14+0°h%)+(1+h%*)E(0®h*+1)+h“Eph® ,
(24)
where
p=<($"?) (25)

is the integral of (¢7)? in its sphere. In the above matrix
equations all matrices except S and 4 are diagonal.

The inverse of the potential function, 1/P%(¢), is essen-
tially minus tangent of the phase shift, and it may be
parametrized by the usual resonance form??

1 A
Pae)  e—C +y—a. (26)
Thus the system is characterized by the structure con-
stants S and the potential parameters C, A, v, and p,
where C determines the center of a resonance and A its
width.

The nearly orthogonal representation is finally ob-
tained by setting the free parameters ag; equal to the pa-
rameters ypg;, determined by the potential according to

(26). Then the potential functions are linear and o9,

defined in (20), vanishes. In this representation the over-
lap matrix

O"=1+h"ph? (27

is then the unit matrix, apart from the term AYph?,
which is normally small. Thus the choice of a=7y leads
to approximately orthogonal orbitals.?? Neglecting the
term proportional to 2¥ph? also in H”, we obtain using
(22), (24), and (26) with a=7,

H"=t+h"=C+AV2S7K1? . (28)

Note that the hopping integral from orbital RL to R'L’
is proportional to the square root of Ag; Ag.;.. Below
(Table I) we show for Cd,_,Mn, Te that the nearly or-
thogonal orbitals are relatively short ranged.

We now introduce the Green’s function®

G(z)=(z—HY)™!. (29)

The matrix element G, is identified with the correspond-
ing matrix element of the U=0 Green’s function of the
Anderson model, and the value of A (e) is determined as
discussed in the Introduction. For substitutional Mn in
CdTe we have to calculate G of an impurity system. The
solution of the corresponding Dyson equation is greatly
simplified if we consider the related Green’s function?®

g4z)=[P*z)—S°]!. (30)
This Green’s function satisfies a Dyson equation

(g9 '=(g§) '+ —=P§), (&30
whose perturbation P*—P{§ is localized to the spheres
where the potential is changed, while the corresponding
Dyson equation for G has a nonzero perturbation for all
orbitals with tails extending into the perturbed region. In
Eq. (31), g% and g§ are the Green’s functions with and
without the impurity, respectively. The relation between
Gandg? is®

g?(z)=A"?G(z)A!"? (32)

as seen from (28)—(30) and (26). The relation between g
and g7 is shown in Ref. 22 to be

PY(z) PY(z)
PXz) P%z)

To obtain A (e) we first calculate Gy(z) for the host
crystal (e.g., CdTe) using (28) and (29) with potential pa-
rameters C, Ay, and y,, corresponding to the host poten-
tial. Then the y values for the perturbed potential are
calculated, and g§°(z) is transformed to the y representa-
tion using Eq. (33) with a—y and y—7y, Then the
Dyson equation (31) is solved, and we transform back to
G using (32). Finally, A (¢) is obtained from (8). As a re-
sult,

o P¥(z)
— J— — 3
g% z) a(z)g (z) (y—a) (33)

A(e)=—K Im |— L1
gl (e—i0)

Y

. (34)

For the cases we have tried, it is sufficient to solve the
Dyson equation assuming that the perturbation is limited
to the impurity atom, since the hopping matrix elements
are not very sensitive to the moderate changes in the po-
tential which result from assuming a larger perturbed re-
gion. In the case of a Mn impurity substituting a Cd
atom in CdTe, this means that we only need to deal with
matrices of, at most, the size 2X2: for the T, symmetry
the perturbation on Mn mixes states of 4p and 3d charac-
ter. If however, we assume that the potential function is
the same for the Cd and Mn p electrons, the Dyson equa-
tion is reduced to a 1X 1 matrix. Since P is real, it fol-
lows from (31) that for the 1X1 case, Img,,' is un-
changed by the perturbation, and we have

1

ASfe)=—AIm | ————
g8, (e—i0)

. (35)

The ‘““on-site” Green’s function gj,, can be obtained from



a Hilbert transform of the appropriate projected density

of states p,, of the unperturbed host. This leads to

-1
(e')

fd B va

e—¢e' —i0

where A refers to the unperturbed host. In the next sec-
tion we demonstrate that this formula is sufficiently accu-
rate for Mn in CdTe.

In order to discuss the dependence of A (€) in (35) on
the potential parameters, we use Lowdin partitioning as
in (6), but for [(P —S)™'],, rather than for [(z —H) ™ '],,.
The resulting expression is

1
g8, (e—i0)
=Im(S?, {[PY(e—i0)—ST"],,

A (e)————-—Im R (36)

—Im

}7IsYy, (37

where n =(RL) labels all sites and angular momenta oth-
er than those of the impurity orbital. Hence, S, is a rec-
tangular matrix of size 1 X(N —1) and §,, is a square
matrix of size (N —1)X(N —1), with N being the total
number of orbitals in the solid. An alternative way of ob-
taining (35) and (37) is to use the definition (4) of A (¢) to-
gether with (9), (28), and (26) with a=y. It is now obvi-
ous, first of all that A (€) is independent of the potential
parameters Cy,, A,,, and y,, for the host orbital which is
substituted by the impurity orbital. More importantly,
A (€) is independent of the position, C,,, and proportional
to the width, A, of the impurity resonance. Note that A,
gives the squared amplitude of the impurity orbital tail
[see (21) and (28)]. The only remaining dependence of the
hybridization function on the impurity-potential parame-
ters is the vy, dependence via the structure matrix in (37).
The shape of the impurity orbital is weakly influenced by
v,. The dependence of A (g) is implicit because, in prin-
ciple, all the elements of the structure matrix depend on
v, For a first-order change in ¥, we find from (13) that

OSkLrL
7,
and using this in (37) yields the result

1 0A(g)
2A (g) 9y,

=S7, +Re(ST, {[PY(e)—S"],,

=Sk Shrr > (38)

17ISY) . (39)

Typical values for the on-site elements, SJ;, are between
1 and 7, and y, values for 3d transition elements lie be-
tween —0.01 and 0.01. If we therefore take dy,=0.01,
the first energy-independent term of (39) yields merely a
2-14 % change of A (e). Full calculations for Mn in
CdTe show that within the valence band and within the
conduction band up to 5 eV above the bottom of the
band, A, (e) changes by less than about 10% for
¥ mn ¢ =0.01. This weak dependence of A (g) on y, is
connected with the fact that the impurity orbital, [x? ) in
(21), depends weakly on y,. The reason is that all the

functions |4.") augmenting the tail are independent of

~ spheres.
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7. and the function |¢,)+|4." A7, augmenting the
head has a logarithmic derivative at the impurity sphere
which is independent of v, to first order, as may easily be
proved using (12) and (38) with RL =R’'L’=v. Since the
LMTO is everywhere continuous and differentiable, it
can only depend weakly on the ¥ value in its own sphere.
This explains why we find that A (e) primarily depends
only on A, and the host properties.

III. RESULTS FOR THE HOPPING MATRIX
ELEMENTS OF Mn IN CdTe

We have performed LSD calculations for Mn impuri-
ties in CdTe using the LMTO-ASA formalism developed
earlier.?’ As usual, empty spheres are introduced in the
large interstitial spaces of this system. The unit cell of
CdTe therefore contains a Cd, a Te, and two empty
In this way the radius (s=3.015 a.u.) of the
spheres can be chosen so that the spheres are space
filling, without having a large overlap. The potential in-
side each sphere was assumed to be spherically sym-
metric (ASA), and a frozen-core approximation was used.
The basis set consisted of the nine s, p, and d LMTO’s
centered at the atomic and at the empty sites. As dis-
cussed in Sec. II, the free parameter a can be used to
define orbitals with different properties. Here we use
a=vy, where y is a parameter determined by the poten-
tial, to obtain approximately orthogonal orbitals.”> To
compensate for the well-known problem that the LSD ap-
proximation gives a too small gap for semiconductors,*
the so-called scissor operator was used.’! We have as-
sumed that the atoms surrounding the Mn atom do not
relax their positions, relative to the unperturbed CdTe
lattice. Since we expect the hopping matrix elements to
depend rather sensitively on the atomic distances, the re-
laxation should be studied further. As indicated below
(31), it is convenient to solve the problem by using the
Green’s function g defined in (30). The solution of the
Dyson equation then involves a matrix problem, where
the matrix size is determined by the number of orbitals
centered on sites where the potential is perturbed by the
impurity. This is in contrast to LCAO schemes, where
we have to include all orbitals with tails extending into
the perturbed region. For this reason it is sufficient to in-
clude only the orbitals centered on the Mn atom and the
nearest-neighbor Te and empty sites. Even the inclusion
of just the Mn orbitals is a fairly good approximation.
The calculations show that there are about 5.4 3d elec-
trons in the Mn sphere, with a large magnetic moment of
about 4.4up.

We first consider the results for the LMTO’s defined in
the preceding section, to determine to what extent the
nearly orthogonal 3d orbitals are appropriate to use in
the definition (6) of the Green’s function G,,, which
determines the hybridization Av(e). In particular, we
would like the Mn 3d orbital to be short ranged and
mainly localized inside the Mn sphere. Table I shows
how the contributions to the overlap integral of a 3d or-
bital with itself are distributed between spheres at
different distances from the site where the orbital is cen-
tered. The orbitals are seen to be reasonably short
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TABLE I. The contributions to the overlap integral of a Mn
3d orbital with itself from the spheres at a given distance from

the central sphere. Results are shown for orbitals of E and T, -

symmetry. The distances are given in units of the Wigner-Seitz
radius.

Distance E T,
0.0 1.000041 1.0033
1.7589 0.000 35 0.0040
2.0310 0.00027 0.000 030
2.8722 0.000018 0.000 190
3.3673 0.000 022 0.000 009
3.5178 0.000 004 0.000 100
4.0620 0.000 004 0.000 000
4.4260 0.000 000 0.000 000

ranged and almost all the weight is concentrated inside
the Mn sphere. We therefore believe that these orbitals
are well suited to represent the localized orbitals in the
Anderson model.

The hybridization A (g) [see (4) and (5)] is now calcu-
lated using (34) and the almost orthogonal orbitals. Be-
cause of the spin polarization, the results are different for
spin up and spin down. Figure 1 shows the average of
the spin-up and spin-down results for the E and T, sym-
metries. The curves in the top part of the figure were ob-
tained by calculating the perturbed Green’s function g,
assuming that the region perturbed by the Mn atom con-
sists of the nearest-neighbor Te and empty spheres. The
middle part of the figure shows results obtained by as-
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FIG. 1. The coupling A (e) for the E and T, symmetries.
The top part shows the result of solving Dyson’s equation for
the perturbed region (one Mn atom, four Te atoms, and four
empty sites) and the middle part the result of only considering
the 1X1 matrix corresponding to a 3d state. Both the top and
middle part show averages of spin-up and spin-down results.
The lower part shows results from a nonpolarized calculation,
using the same perturbed region as in the top part of the figure.
These calculations were performed for the ground-state 3d oc-
cupancy. The energy unit is Ry.
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suming that only the d orbital is perturbed when Cd is re-
placed by Mn. In the latter case the solution of the
Dyson equation only involves 1X 1 matrices, as discussed
at the end of Sec. II. The results are quite similar. At
€= —1.05 Ry there is a peak in the T, function, which is
due to the Te 5s band. For symmetry reasons there is no
contribution of the Te Ss states to states of E symmetry.
At about e= —0.85 Ry there is another peak correspond-
ing to the Cd 4d band. This peak has relatively little
weight, since the Mn atom has no Cd nearest neighbor.
The weight in the range —0.6 to —0.2 Ry corresponds to
the coupling to the valence band. This band has in par-
ticular Te S5p character, but many other types of states
also have a substantial weight. The contribution above
—0.1 Ry is due to the coupling to the conduction band.
The integrated value of A (e) over the valence band is
about 3.2 (spin up) and 3.3 (spin down) times larger for
the T, symmetry than for the E symmetry. As a check of
these results we have used Harrison’s semiempirical
tight-binding scheme®? to calculate the ratio of the T, to
E coupling. The valence band was for simplicity assumed
to have only Te 5p character, and Harrison’s ratio 2.17
between the V,,, and V,;, was used, where V,;, and
V,ar refer to the pd hopping matrix elements of o and 7
character, respectively. This leads to a ratio of 2.7 for
the T, to E coupling, which is fairly close to our calculat-
ed value. In Harrison’s scheme the integrated strength is
0.0023 Ry? for the E symmetry, which is about 0.4 of our
calculated values of 0.0051 (spin up) and 0.0067 (spin
down) Ry2.

Figure 1 shows that the coupling to the conduction
band is fairly strong. In a very simple picture one may
associate the valence band with the Te 5p and the con-
duction band with Cd 5s states. If this were correct, the
coupling to the conduction states would be very weak,
since the Mn 3d could then only couple to the conduction
band via hopping to the second-nearest neighbors. The
figure illustrates that such a picture is oversimplified.

The Anderson model is invariant under rotations in
spin space, and the hopping matrix elements are indepen-
dent of the spin index. Because of the large magnetic
momentum (4.4up ) in the LSD calculation, there is, how-
ever, a substantial spin dependence of the calculated ma-
trix elements. This suggests the use of the average of the
spin-up and spin-down results, or the use of results ob-
tained from a nonpolarized calculation. These results are
compared in the top and bottom parts of Fig. 1. To ob-
tain a neutral solution in the nonpolarized calculation,
bound levels must be occupied. We have considered the
state where the T, level is fivefold occupied. The 3d
charge inside the Mn sphere is 5.5, which is rather close
to the result (5.4) for the spin-polarized solution. The
figure shows that the averaged spin-polarized result and
the nonpolarized result are rather similar. For the non-
polarized curves there is a certain shift of weight towards
the top of the valence band, while the overall weight is
similar for the two cases. This is also illustrated by the
fact that A is 0.0098 Ry in the nonpolarized calculation
and the average of the spin-up and spin-down A is 0.0100
Ry in the spin-polarized calculation.

The calculations above were performed for the
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ground-state charge density of Mn in CdTe. It is in-
teresting to ask how A (e) changes when the Mn
configuration changes, since the configurations of impor-
tance depend on the experiment or property studied.
From (35) it follows that we only need the host Green’s
function g§,, and the potential parameter A, for the cal-
culation of A (e). Since this Green’s function depends on
the impurity potential only via the potential parameter 7y,
and since this dependence is very weak, we focus on the
dependence of A, on the configuration. We can therefore
break the coupling of the Mn 3d orbital to the rest of the
orbitals and force it to have the occupancy of interest.
We then calculate the corresponding Mn potential and 3d
wave function, allowing the system to relax, for instance
via a charge transfer to the Mn 4s and 4p orbitals. The
results for A,, are shown in Table II, which illustrates
that there is a substantial variation with the net charge
on the Mn atom.

We discussed in the Introduction how in a LCAO pic-
ture one may argue about whether the introduction of a
core hole would increase or decrease the hopping matrix
elements, since in this picture one can think of the core
hole as having two opposing effects on the matrix ele-
ments. The present calculations show that the net effect
is a reduction of the matrix elements. In the LMTO for-
malism this is rather straightforward to see, since in this

case A (€) scales with A,. This quantity is given by?!"*
Zz—;—[zﬁ(C,s)]z, (40)

where ¢(C,s) is the value at the Wigner-Seitz radius s of
the normalized solution of the radial Schrodinger equa-
tion calculated at the energy C, the position of the reso-
nance, which corresponds to the boundary condition that
the logarithmic derivative at s is —/ —1. When the po-
tential is made more attractive, the orbital contracts and
its value at the Wigner-Seitz sphere is reduced leading to
a reduction in the value of A.

The large variation of A,; with the Mn configuration
shows that the Anderson model should be used with
some caution, and it suggests that the apparent value of
A (¢) may be different for different experiments. This
effect is, however, counteracted by the tendency of the
system to stay neutral. In core-level spectroscopy, for in-
stance, the core hole is for many systems screened by a
localized electron. It is therefore interesting to compare
A, calculated for n, =2 and n,; =S5 with the value calcu-
lated for n, =1 and n; =6. From Table II we find that in
this case the change of A, is only about 20%.

TABLE II. The potential parameter A, for different Mn
configurations in a non-spin-polarized calculation. The energy
unit is Ry.

ng Ny Ay
4 2 0.0051
5 2 0.0085
6 2 0.0129
5 1 0.0040
6 1 0.0067

TABLE III. The induced charge on the central Mn site, par-
titioned in / components, and on the four Te and empty sites,
when a Mn 1s hole is created.

Mn 4s Mn 4p
—0.002 —0.009

Mn 3d Te
1.126

Empty
—0.029

—0.087

To illustrate this point further we have performed self-
consistent calculations, including the coupling to the Mn
3d orbital again, for a 1s core hole in Mn. We have con-
sidered a neutral state, where one of the spin-down bound
states in the energy gap of E symmetry has been occu-
pied. A state with a positive charge, i.e., with all bound
spin-down levels unoccupied, does not exist. Table III
shows the change in the charge density when the core
hole is created. The hole is somewhat overscreened, since
the charge in the Mn sphere increases by about 1.1 elec-
trons. This is due to a large increase in the number of 3d
electrons. This is compensated by a reduction in the
number of electrons on the nearest Te (4) sites and empty
(4) sites, and the net charge in the perturbed region con-
sidered here is very close to zero. An overscreening by
the Mn 3d electrons is not surprising, since we expect
U.> U. If the core hole were screened by exactly one 3d
electron, the effective 3d level would be lowered by
U.—U. Considering the weak hybridization it is not
surprising that this relatively large lowering of the 3d lev-
el is not consistent with an increase of the 3d occupancy
by only one electron. A similar situation is found for Ce
(Refs. 2—4) and covalent Ni compounds.® For Ce com-
pounds, e.g., the lowest state in the presence of a core
hole has of the order two 4f electrons or more, while the
ground state without a core hole may have less than one
4f electron. We find that the introduction of a core hole
reduces A,,; by about 17% in this calculation, including
hybridization. This is slightly less than the 22% found
by comparing the configurations 1s!3d> with 1s%3d* or
1s13d % with 1523d° in Table II, as one would expect from
the slight overscreening of the core hole in the hybridized
calculation.

Iv. CALCULATI(;N OF THE COULOMB
INTERACTION U

To calculate the Coulomb interaction U, we first set
the hopping integrals to the 3d orbital to zero. The
total energy E(ny;q,n3,;) and the 3d eigenvalue
e5D (n3q1,n34,) for spin o are then calculated as func-
tions of the occupations, n3z; and ni,,, of the Mn spin-
up and spin-down orbitals, respectively. Below, we show
that U can be related to the second derivative of E with
respect to the 3d occupancy. Such a calculation of U in-
cludes all the electrostatic and exchange-correlation in-
teractions of the 3d electrons with the valence electrons.
The system can therefore readjust the valence charge on
both the Mn and the neighboring atoms due to the
changes in the 3d charge. The value of U is consequently
renormalized by Coulomb interactions and screening
effects not included explicitly in (1). Since the 3d hybridi-
zation with the valence electrons has been set to zero, U
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is not renormalized by the 3d hopping, which is included
explicitly in the Hamiltonian (1).

Before we deduce parameters from LSD calculations,
we refer to the experience of the LSD approximation for
multiplet calculations. It has been found that the LSD
approximation, without any modifications, usually gives a
good description of the energy of the multiplets, which
can be represented as single determinants.>> Based on
this observation, a modification of the LSD approxima-
tion has been proposed which can also treat other multi-
plets.33 Here we are interested in the 3d*, 3d°, and 3d°
configurations. For these configurations the multiplets
5D (d*), %S (d°), and °D (d®) can be represented as single
determinants. From the energies of these multiplets, we
obtain the energy expression

E(ns3qy,n3q))=¢€3gn35+3Unz(n3—1)
—0.7143(0.4n4,, —1)
X[F*3d,3d)+F*3d,3d)] (41)

for the energy of the 3d electron system (4 <n;,;; =5 and
0=n34, =1), where ny;=nsz; +ny;,. We have intro-
duced the Slater integrals®*

k(i iy=p2 [ %,2 ) 2
FYi,j)=e fo redr(¢;(r)]

k

® r
xfo (r)Pdr'lg,(r Py s (42)

>

where ¢;(r) is a wave function and r . (. ) is the smaller
(larger) of r and r’. We now calculate the energy
E(nsgp,n;3,,) of the system in the LSD approximation
and identify it with the expression (41). It then follows

that
2
=4E 43)
oniy

In practice we find that slightly different results for U are
obtained, depending on whether the derivative in (43) is
taken with respect to ny;; or ny,; . We therefore use the
average of these two results. From (41) we further obtain

O0E(nsgq,n3q))  0E(nzgp,n34))

Onsgy dnsg,

=—0.2857[F%3d,3d)+F*3d,3d)] . (44)

From the calculations for Mn in CdTe we deduce the
value F%(3d,3d)+F*3d,3d)=1.04 Ry, which is close to
the value 1.06 Ry deduced from atomic spectra.

To be able to analyze the screening of U in more detail,
we have also studied the effect of constraining the charge
variation of the valence electrons. For instance, we have
required that the number of 4s- and 4p-like electrons in
the Mn Wigner-Seitz sphere is constant. This leads to the
minimization of

E[n]—?»fwsnsp(r)dr , (45)

where the integral involves the integration of the charge
density of sp character over the Mn Wigner-Seitz sphere.
The Lagrange parameter A is adjusted so that the desired

number of sp electrons is obtained.
The numerical calculations and the analysis are
simplified by using the result®

OE _ ekl | (46)
on;

13

where n; is the occupation number of a solution of the
Kohn-Sham equation and P is the corresponding eigen-
value. One can show that this relation is true even when
a constraint of the type discussed above is introduced.
Since we are using a normalized 3d orbital, the derivative
in (46) is simply the derivative with respect to the number
of 3d electrons. We then obtain

LD
_ 9e34,

N34

(47)

It is therefore sufficient to calculate how €57 changes
when the number of 3do electrons is varied. When the
number of 3d electrons is increased, the eigenvalue is
shifted upwards by the electrostatic potential from the
added 3d electrons. This shift is, however, partially com-
pensated for by a reduction in the electrostatic potential
from the other electrons, which tend to move away from
(screen) the Mn sphere when the 3d charge is increased.
This reduces the value of the renormalized U. The calcu-
lations including the hybridization showed that the
configuration with 4.9 spin-up and 0.5 spin-down 3d elec-
trons gives the lowest total energy. In the absence of hy-
bridization it is not energetically favorable to introduce
holes in the 3d spin-up shell, which now has its full occu-
pancy 5. For the same reason the number of spin-down
3d electrons is reduced from about 0.5 to 0.1. In Fig. 2
we-show the change Ael? of the 3d eigenvalue when the
number of 3d electrons is changed. A negative change
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FIG. 2. The change Ael? of the 3d eigenvalue, as a function
of the change An;; in the number of 3d electrons. The per-
turbed region included the Mn atom (dashed curve) and the Mn
atom as well as the nearest-neighbor Te and empty spheres
(solid curve).
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means a reduction in the number of spin-up electrons and
a positive change means an increase in the number of
spin-down electrons relative to the configuration
3d 57 3d ?‘1. The solid line shows the result when the per-
turbed region contains the Mn atom and the nearest-
neighbor atoms and the dashed line is the result when
only the Mn atom is included. The slope of the curves
gives the value of U. The slope is slightly larger for a
negative An,;, which corresponds to a slightly larger
value of U for the spin-up wave function. The value of U
also depends weakly on the assumed size of the perturbed
region. From the curves we deduce that the average
value of the spin-up and spin-down U is 0.57 and 0.54 Ry
for the calculations with the smaller and larger perturbed
regions, respectively. It is also interesting to study how
the change in the number of 3d electrons is screened by
the system. In Table IV we show the change of the
charge divided by the change in the number of 3d elec-
trons. About half of the 3d charge is screened within the
Mn Wigner-Seitz sphere and more than 90% is screened
within the Mn and eight nearest-neighbor spheres, and
about % of the charge is screened inside the Mn sphere if
only the Mn sphere is assumed to be perturbed.

We now analyze the different screening mechanisms
which contribute to the renormalization of the Coulomb
interaction U. We have first performed an atomic calcu-
lation for the configuration 3d > '45%%44p® 70, which is ap-
propriate for Mn in CdTe in the absence of 3d hybridiza-
tion. Since the curve in Fig. 2 is almost a straight line,
the choice of the Mn configuration is not crucial. The re-
sults are shown in Table V. Using the atomic wave func-
tions corresponding  to the above-mentioned
configuration, we obtain the electrostatic integral
F°3d,3d)=~1.57 Ry. This is the unrenormalized value of
U. The 3d occupancy was then changed slightly and the
corresponding change in the 3d eigenvalue was calculated
self-consistently. This gives the value U'=0.94 Ry.
The reduction of U is due to the relaxation of, in particu-
lar, the 3d, 4s, and 4p orbitals, and to exchange-
correlation effects. The increase of the 3d occupation
leads to an expansion of the 3d, 4s, and 4p orbitals, and
the increase in the electrostatic potential is smaller than
one would deduce from the value of F%3d,3d). Thus the
increase in the 3d eigenvalue is also smaller, resulting in a
reduced U. To quantify these arguments we proceed as
follows. Let V' (r,n3,) be the total potential for the 3d oc-
cupation number n;;. From perturbation theory it fol-
lows that
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TABLE IV. The change in the charge on the central Mn site,
partitioned in / components, and on the neighboring four Te
and four empty sites, per unit change of the number of Mn 3d
spin-down electrons. The upper row shows a calculation when
the change on the neighboring atoms was assumed to be zero.

Mn 4s Mn 4p Mn 3d Te Empty
—0.33 —0.34 1.00 0 0
—0.24 —0.25 1.00 —0.25 —0.19

LD
€34 (”3d+A”3d)'“8%¢P(”3d)

zfdl‘[<?53d(l')]2[V(l')nsar'*‘A”sd)"V(l"”sd)] ,
(48)

where ¢4, is the 3d wave function calculated for the 3d
occupation n,,. By analyzing two self-consistent calcula-
tions, we can ascribe the difference between the two Vs
in (48) to the change in 3d occupancy and to the related
relaxation of the different orbitals as follows:

513“‘?(”3:1 +A”3d)“€§z?(’13d)

=An;,F°(3d,3d)+ 3 n;,[F%3d,i)—F°3d,i)] ,

(49)

where nonspherical and exchange-correlation com-
ponents of the potential have been neglected. Here i and
i refer to the orbitals of the atom calculated for the occu-
pation numbers n;; and n;; +An;,, respectively. Com-
bining this analysis with the definition of U [Eq. (47)] we
can determine how much each orbital contributes to the
screening of U. The results are shown in Table VI. We
find that the relaxation of the 3d orbitals themselves
reduces U by about 0.38 Ry and that the relaxation of the
4s and 4p orbitals gives a further reduction of about 0.16
Ry. The remaining 0.09 Ry is due to exchange-
correlation effects and to the relaxation of the core orbit-
als. Next, we use the local neutrality assumption, in the
spirit of Herring'?> and Herbst et al.!! Thus we con-
sidered the configuration 3d > ! *45%647*4p%70 and calcu-
lated U3 =0de;,/0x. This gives U3 =0.3 Ry. This
small value of U would probably be further reduced if the
atomic calculation had been replaced by a so-called re-

TABLE V. Atomic- and solid-state calculations of the 3d Coulomb integral U. The second and third
rows indicate the relaxation mechanism (orbital @, or charge transfer p) taken into account. All ener-

gies are in Ry.

Mn atom . Mn in CdTe
No relaxation Mn Mn +Mn +Te,Em Mn,Te,Em
(F° ¢ ¢ +p +p.p é:p:p
1.57 0.94 1.13 0.57 0.54 0.78
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TABLE VI. The contributions to the atomic-orbital relaxation [Eq. (49)] of U in Ry.

No relaxation (F°) .3d

4s,4p Core and XC Sum

1.57 —0.38

—0.16 —0.09 0.94

normalized atom in which the orbitals are renormalized
to the Wigner-Seitz sphere, since the diffuse atomic 4s
and 4p orbitals would then become more compact and
the screening more efficient. Such a U, however, is ex-
pected to be appropriate for a metallic system but not for
a semiconductor or an insulator.

The calculation described above for Mn in CdTe, yield-
ing U=0.54 Ry, was analyzed as follows. First, the per-
turbation was assumed to be limited to the Mn sphere
and we imposed the subsidiary condition that the number
of 4s and 4p electrons is not changed when the number of
3d electrons is varied. From this calculation we deduce
Url.;=1.13 Ry (see Table V). This calculation corre-
sponds closely to the calculation of U, and the numeri-
cal value is also rather similar. We can now relax the
constraint that the number of 4s and 4p electrons is fixed.
This corresponds to the dashed curve in Fig. 2 and gives
Utl=0.57 Ry. This number is substantially larger than
U'=0.3 Ry, which was deduced assuming local neutral-
ity. Actually we find that in this calculation, with only
the Mn sphere perturbed, only about 2 of the change in
the 3d charge is screened (see Table IV). This incomplete
screening is presumably a reflection of the additional en-
ergy cost in increasing the occupancy of the 4s and 4p
levels caused by the presence of an energy gap, which is
1.6 eV. It would be interesting to study the screening in a
system with a larger band gap or in a more ionic system,
where one might expect the screening to be less efficient.
Finally, we have considered the perturbed region to in-
clude also the nearest-neighbor Te and empty spheres.
This corresponds to the solid curve in Fig. 2 and it gives
Usi2=0.54 Ry. Although the 3d charge is now screened
to more than 90% within the perturbed region, the
il

scr 1

reduction of U compared with U, is marginal. The
main reason is that the screening charge inside the Mn
sphere is reduced from about Z to 1 and that the screen-
ing on the nearest neighbors is less efficient than the
screening inside the Mn sphere. To further illustrate this,
we have calculated U requiring that the number of 4s and
4p electrons in the Mn sphere is kept fixed but allowing
the charge on the neighboring sites to adjust to the
change in the number of Mn 3d electrons. We find that
the screening charge on the neighboring atoms is much
larger than in the previous calculation, where a substan-
tial part of the screening took place in the Mn sphere.
Actually, the 3d charge is screened to almost 90%, which
is close to the number found in the calculation where the
Mn 4s and 4p electrons were not constrained. The reduc-
tion of U from 1.13 to 0.78 Ry is, however, substantially
smaller. To understand this number we note that the dis-
tance between the Mn atom and its nearest neighbors is
d=35.3 a.u. We then assume that the Coulomb integrals
between the Mn 3d orbital and the nearest-neighbor or-
bitals are about 2/d Ry~0.38 Ry. Since the screening
charge is about 0.9, we expect the reduction of U to be
about 0.34 Ry, in close agreement with the calculations.

V. CALCULATION OF THE CORE-3d
COULOMB INTERACTION U,

Below we calculate the Coulomb interaction U, be-
tween a core electron and a 3d electron. The 1s, 2s, and
3s core electrons will be treated. As in the calculation of
the Coulomb interaction U, we suppress the 3d hopping
by setting the width A of the 3d resonance to zero. The
calculations are mapped onto the energy expression

E(Retyng s iagrshagy) =€sghsg ++Unsyg(nyy —1)—0.7143(0.4n 4,4 — D[ F*(3d,3d)+ F*(3d,3d)]

+en.+Ucn.nyy—1GXe,3d) 3 neonsy, -
o

Here n., and n,,, are the occupation numbers for spin o
of the core level and the 3d level, respectively, and n, and
ny, are the corresponding total occupation numbers.
The first four terms give the energy of the 3d electron sys-
tem, as defined in (41), the fifth term describes the core-
level energy, and the last two terms the interaction be-
tween the core electrons and the 3d electrons. U, de-
scribes the direct Coulomb interaction, and the Slater ex-
change integral

kf: oy — ®© ® ' % ’
G (1,})—e2f0 r2drf0 (r'Vdr' ¢ (rgX(r)
rk

rk>+1

X,(r);(r") (51)

(50)
-
describes the exchange interaction.
We now consider the energy difference
AE;=E(c}c}3d}3d|)—E(c}c}|3d}3d})
—E(c%c}3d33d} )+ E(c%c}3d3i3d]) . (52)

Comparison with the energy expression (50) shows that
this energy difference equals U,. Using (46), we can ap-
proximate the energy difference in (52) as

AE; ~efP(cicl3d33d 1) —elP (cfc|3d33d9)

~ a;? efP(c9%c3d334%°) .
ct
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Thus we obtain

0
U.~——¢ei(c)%c}3d33d9°) . (54)
anc?
Instead of removing a spin-up core electron as above, we
can remove a spin-down core electron. This leads to the
result

UC—gG<2’<c,3d)zE?—lsgg(c}c%%d%3d‘1~5) D)
From (54) and (55) we can deduce values for both U, and
G¥(c,d).

In Table VII we show results for U,.. The derivative in
(54) was taken by making a small change in the core-level
occupation number (0.45-—0.55). The column “1 shell
constr.” shows results of a calculation where the shapes
of the orbitals in the Mn sphere are allowed to adjust to
the change in the number of core electrons but no flow of
charge into the Mn sphere is allowed. This calculation
corresponds relatively closely to an atomic calculation.
The column “1 shell” shows results of a calculation
where the number of 4s and 4p electrons in the Mn
sphere are allowed to adjust. We find that the change of
the core charge is screened by the 4s and 4p electrons to
about 70%. Since the Coulomb interaction between these
states and the 3d state is about 0.8 Ry, we expect this
screening to reduce U, by about 0.7 X0.8~=0.6, which is
rather close to what is found. The column “3 shells”
shows results where also the nearest-neighbor Te and
empty spheres are allowed to screen the change in the
core charge. As in the calculation of U, we find that this
has a small effect on U,. In this calculation the change in
the core charge is screened to about 60% inside the Mn
sphere and to about 90% within the Mn and nearest-
neighbor Te and empty spheres.

Table VII shows that U, is larger than U ;. This may
seem surprising for the following reasons. The unrenor-
malized value of U, is given by the Slater integral
F%c,3d) defined in (42). Table VIII shows that F° is
larger for the 1s than for the 2s orbital, as expected from
simple electrostatics: The potential at a given radius r
from the core orbital increases as the orbital contracts,
until the orbital is located entirely inside the radius » and
the potential is 2/r. The more extended 2s orbital has a
small fraction of its tail located outside the main part of
the 3d orbital, while this fraction is negligible for the 1s
orbital. The 3d orbital, therefore, sees a slightly stronger
potential from the 1s orbital than from the 2s orbital, as
reflected by the values of F° in Table VIII. To under-

TABLE VII. The Coulomb interaction U, (in Ry) between a
core electron and a 3d electron, according to a calculation
where the Mn sphere and the nearest-neighbor Te and empty
sphere are allowed to adjust their charge to the perturbation (“3
shell””), where only the Mn sphere adjusts its charge (“1 shell”)
and where in addition the number of 4s and 4p electrons in the
Mn sphere is kept constant (“1 shell constr.”).

c 3 shells 1 shell 1 shell constr.
1s 0.62 0.64 1.25
2s 0.70 0.72 1.31
3s 0.65 0.67 1.26

stand why U,, nevertheless is larger than U,;,, we must
take the relaxation of the other core orbitals into ac-
count. We have studied this in an atomic calculation.
The configuration ¢ '*3d >34s* was studied, where ¢ refers
to the core orbital studied and the other (solid) core orbit-
als are not shown explicitly. A non-spin-polarized, non-
relativistic atomic program was used. We use (49) to
deduce the contribution to the screening from the
different orbitals. In Table VIII we show the different
contributions to the shift of €5, due to the creation of a
core hole. When the 1s core hole is created, the 3s and 3p
orbitals are strongly contracted. This leads to a some-
what more repulsive potential for the 3d level. When a 2s
hole is created, the contraction of the 3s and 3p orbitals is
smaller and the effect on the 3d orbital correspondingly
weaker. This weaker relaxation of the 3s and 3p orbitals
overcompensates for the weaker attraction of the 2s hole
via the F° integral. This analysis neglects effects of ex-
change and correlation, which are, however, included in
the full calculation (“Calc”). These effects are more im-
portant for the 3s hole, which has a larger overlap with
the 3d state, and there is therefore a larger deviation be-
tween S and “Calc” for the 3s hole than the 2s and s
holes. Table IX shows results for the exchange integral
G(c,3d) determined from (54), and (55) and the LSD ap-
proximation. These results are compared with a direct
calculation of G2 from (51) using the LSD wave functions
calculated for the configuration ¢'*3d°. The con-
strained one-shell calculation, where the number of 4s
and 4p electrons is not allowed to vary, leads to values for
G ?(2s5,3d) and G'*(3s,3d) which are about 0.75-0.85 of
the values obtained from the direct evaluation of the
Slater integral. The values of G ?(1s,3d) are very small
according to both methods. In contrast to the Coulomb
integral U,,, the exchange integral is screened only weak-
ly when the number of 4s and 4p electrons is allowed to

TABLE VIIL. The Slater integrals F%c,3d) and the screening contributions from different orbitals.
S gives the net result of this analysis and “Calc” the calculated result, which includes exchange-
correlation effects. All energies are in Ry and the calculations were performed for an atom with the

configuration 3d>4s°.

c F%c,3d) 1s +2sp 3sp 3d 4s > Calc
1s 2.39 —0.04 —0.36 —0.80 —0.25 0.95 0.96
2s 2.36 —0.02 —0.24 —0.85 —0.24 1.02 1.02
3s 1.81 —0.00 —0.08 —0.54 —0.23 0.96 0.93
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TABLE IX. The exchange integral G'*(c,d) between a core
electron and a 3d electron. The notations are the same as in
Table VII. The column labeled HF (Hartree-Fock) gives the ex-
change integral calculated from the LSD wave functions.

c 3 shells 1 shell 1 shell constr. HF
s 0.01 0.01 0.01 0.004
2s 0.23 0.23 0.26 0.30
3s 0.53 0.53 0.57 0.76

change or when the nearest-neighbor atoms can relax.
The reason is that U, couples to the screening charge via
direct Coulomb integrals, while G'® couples to the
change in the spin polarization of the screening charge
due to a reversal of the spin of the core hole [see (54) and
(55)]. For the 3s core level, the predicted splitting
%G2(3s,3d) (8.7 eV) between the 'S and S states is larger
than the experimental value for MnF, and MnO (~6
eV).3® The reason is a very strong interaction with an al-
most degenerate configuration, which leads to an anoma-
lously large correlation effect and a reduced splitting.’’
Such an effect is clearly outside the LSD approximation.
For the 2s level our calculated value of G2, using (54) and
(55) leads to an estimate (3.8 eV) of the splitting, which is
smaller than the experimental splitting (5.9 eV) for
MnF,.%

V1. PHOTOEMISSION SPECTRUM

We have performed preliminary calculations for the 3d
photoemission spectrum, to illustrate the size of the
many-body effects and to compare with experiment. The
photoemission spectrum has earlier been studied theoreti-
cally by Ley et al.,® who used a cluster model where the
3d orbitals of Mn and the 5p orbitals of the nearest-
neighbor Te atoms are included, but the other orbitals
were neglected.

The calculational method for solving the Anderson
model is a generalization of our earlier work®? to include
multiplet effects.”® A many-electron basis set is con-
structed. For the ground-state calculation this includes a
state with the Mn configuration 3d°> and states with six
3d electrons and a hole in the valence band (3d% 7).
For the photoemission calculation we use states with
four, five, and six 3d electrons (3d* 3d° ™!, and
3d® ~?). These states are classified according to their
symmetry. The multiplets of the 3d® configuration can
be coupled with the multiplets of the v ~2 configuration to
form 3d % 2 states of a given symmetry in many different
ways (~10%). We have therefore developed a computer
routine for handling the symmetrization. In this calcula-
tion the coupling to the conduction band has been
neglected. In view of the fairly large coupling we have
found for Mn in CdTe (see Fig. 1), the effects of this ap-
proximation should be studied further.

We have used the value of U=0.54 Ry calculated
above. For A (e) we used the results in Fig. 1, calculated
for the ground-state occupancy (5.4) of the Mn 3d state.
In the present calculations the hopping matrix elements
fromad"toad" ! configuration, with n=4,5, are the
important ones. In a future publication®® we show that
the hopping matrix elements between configurations d”

and d""! should be calculated for the configuration
d" !, The configuration used here (d>*) is therefore not
very far from the two appropriate ones. To describe the
multiplet effects we also need the Slater integrals F2 and
F* These were estimated by fitting atomic data, since
the screening effects are expected to be small for these
quantities. We used the values F?=0.60 Ry and
F*=0.46 Ry.

To determine the 3d level position €;, we calculate the
energy cost for going from a d* to a d°> configuration in
the absence of hybridization. We can then determine €;,
from (41). From (46) it follows that the energy difference
between the d° and d* configurations is approximately
given by £iP(n;,=4.5), where we have used the so-called
transition state idea [see (46)].3° In this way we can deter-
mine the position of the 3d level relative to, e.g., the top
of the valence band. Since the “extended states”, g, in
(1), are treated as noninteracting in the Anderson Hamil-
tonian, there is a need to correct their energies for the
fact that the energy cost for removing one of these elec-
trons is not equal to the energy eigenvalue in the LSD ap-
proximation. For simplicity we have, in the spirit of the
transition-state concept, studied how much the Te 5p ei-
genvalue is shifted when 0.5 Te 5p electrons are removed,
and corrected the position of €, relative to the top of the
valence band, with a large Te 5p character, correspond-
ingly. The basis for this method should be further stud-
ied. In this approach we find that there is an energy gain
of 0.36 Ry in going from a d*CE) to a d°(°S)
configuration if the extra electron is taken from the top of
the valence band. This energy difference is relevant for
the photoemission calculation. We further find that the
“crystal-field” splitting d*(°T,)—d *(°E)=0.04 Ry.

The results are compared with the experimental results
of Ley et al.*® in Fig. 3, who have subtracted off the
non-3d part of the spectrum. The calculated peak at
about —3 eV is somewhat too narrow and has somewhat
too much weight, but there is otherwise a rather good
agreement with experiment. In particular, the combina-
tion of many-body and multiplet effects leads to the large

T T T T T
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o
C
=
< Theory
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-8 -6 -4 -2 0

€ (eV)

FIG. 3. The Mn 3d photoemission spectrum of Mn in CdTe
according to experiment [Ley er al. (Ref. 38)] and theory.
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observed spread of the spectrum. This is in contrast to
the narrow 3d spectrum one would predict from a band-
structure calculation. By analyzing the calculation we
can deduce the character of the different parts of the
spectrum. We find that the leading edge of the spectrum
corresponds to states [d>(°S)v ~'] with five 3d electrons
in a °S state and a hole in the valence band. These states
are similar to the ground state, except for the valence-
band hole. Such a state is sometimes referred to as a
delocalized hole, and it is similar to the peak at the Fermi
energy in the intermetallic Ce compounds.>® It corre-
sponds to the process when a 3d electron is removed in
the photoemission process and the 3d hole is filled by a
valence electron close to the top of the valence band. The
spectrum in the range —3 to —8 eV is a complicated
mixture of final states with primarily 3d 4E), 3d 4(5T2 )
3d3(*T,)v !, and 3d>(*T,)v ~! characters.

VII. CONCLUDING REMARKS

We have presented a simple method for calculating the
quantity A (€) [see (4)], which contains all the informa-
tion about the hopping integrals needed in the Anderson
impurity model. The method essentially relates A (g) to
the density of states of the host and to one potential pa-
rameter (A,) for the impurity. In this approach it is not
necessary to make a tight-binding fit to the band struc-
ture. Neither is it necessary to perform a tedious sum
over hopping integrals to obtain the matrix element V,,,
nor to perform the k sum in (4). The technique does not
rely on perturbation theory in the strength of the hop-
ping matrix elements and it can be applied to both metals
and insulators.

For Mn in CdTe we find an appreciable coupling to the
conduction band, although the Te nearest neighbor have
most of their weight in the valence band. The coupling in
the T, symmetry is about a factor 3 larger than in the E
symmetry. The value of A (g) has a strong dependence
on the Mn configuration, and in particular, on the net
charge. Increasing the number of 3d electrons by unity,

for instance, increases A, (ge) by 50-60%, and the
creation of a 1s core hole reduces A (g) by a factor of 2 if
the number of 3d electrons is kept fixed. On the other
hand, the creation of a core hole only reduces A, (€) by
about 20% if the 3d electrons are allowed to screen the
core hole. In a future publication®® we show what
configuration to use in the calculation of a particular ma-
trix element.

We have also studied the screening of a localized per-
turbation. If all the electrons are allowed to participate
in the screening, we find that for the neutral system a
core hole is slightly overscreened, in spite of the semicon-
ducting nature of the system. This is due to the efficient
screening by the Mn 3d electrons. A change in the num-
ber of Mn 3d electrons is found to be screened to about
50% by the Mn 4s and 4p electrons, which screen less
efficiently than the 3d electrons. Although this screening
is less complete than what is expected for metals, it nev-
ertheless reduces the Coulomb interaction U by a factor
of 2 for Mn in CdTe. It is therefore important to include
this screening mechanism in the calculation of U. The
additional inclusion of the nearest-neighbor screening has
a rather small effect on U. The core 3d Coulomb integral
U, is also strongly reduced by screening effects due to a
charge transfer to the Mn sphere. In addition we find
that the relaxation of the other core orbitals can lead to a
substantial reduction of U,. In particular, U, is slightly
smaller than U, for this reason. Finally, we have found
that the screening effects on the exchange integrals are
small, as expected. A preliminary calculation of the pho-
toemission spectrum using the derived parameters is in
rather good agreement with experiment.
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