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Densities of vibrational states in isotopically substituted polyacetylene
by the renormalization-group technique
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A matrix formulation of the renormalization-decimation method is given to evaluate analytically
the average density of vibrational states for randomly disordered polymeric chains. The method is
preliminarily applied to the distribution of isotopic defects in trans-polyacetylene. Good qualitative
agreement with the available experimental data is obtained.

INTRODUCTION

The purpose of the present paper is to extend the for-
malism of the renormalization-group (RG) method' al-
ready applied to the calculation of the density of the vi-
brational states for linear alloys to the lattice dynamics of
a polymeric chain containing isotopic defects. Of partic-
ular interest is the application of this method to the case
of polyacetylene, for which extensive experimental stud-
ies on the eftect of deuteration on the in-plane vibrations
are available and for which a reliable force field has been
recently proposed. It is shown that, despite the approxi-
mations involved in the RG method, the calculated spec-
tra are consistent with the experimental observations.

THEORETICAL MODEL

Lattice dynamics of a regular periodic one-dimensional
array consisting of an infinite number of translational
units may be described by the eigenvalue equation '

(Mco —N) U =0
and by the associated inhomogeneous equation '
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The dimension of each square matrix N, is given by
N X n, where N is the number of atoms contained in each
unit cell and n is the degree of freedom of each atom. In
Eq. (4) 4 0 represents the interactions between the atoms
belonging to the unit cell, and N; represents the interac-
tions between the atoms of the nth unit cell and those of
the (n +i)th unit cell. In Appendix A the elements of

p C
~

4 ] 4 2 4 2 obtained by developing Eq. (3) are
reported. It is shown that 4

For the evaluation of the spectral properties of a sys-
tem it is useful to define the normalized Green's-function
matrix

(Mco —N)G(co )=1 . (2) g =MG,

In Eqs. (1) and (2), M is an infinite diagonal matrix whose
diagonal submatrices m of dimensions N Xn contain the
masses of the atoms in the unit cell, and ~ are the eigen-
values of the dynamical matrix M NM . U
represents the eigenvector matrix and G(co ) is the
Green's-function matrix. '

Here N is the infinite interaction matrix in Cartesian
coordinates defined as

which allows a direct calculation of the density of the
squared vibrational frequencies

p(co2) = + —Im Trg(co +i@), e~O
7T

The density of the vibrational states is given by'

N=BF~B, (3)

where B is the transformation matrix between internal
and Cartesian coordinates, and F z is the matrix of the
force constants defined in the internal coordinates basis.
For an infinite chain, matrices B, F z, and N exhibit a
periodic block-structured form. For the sake of simplici-
ty we will report here only the structure of the N matrix,

p(~) =2~p(~') .

Let us develop Eq. (2) by neglecting all the interaction
matrices beyond the nearest-neighbors interaction matrix

We consider a reference unit cell labeled 0 and we
label 1,2, . . . (1,2, . . . ) the cells to the right (left) of the
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reference one. The result is

(m co —40)G02 =@,G03+4&, G0-, ,

(mco —@0)G 0-, =@,G 02+@,6 00,

(mco —40)G00 =1+4,6 „-,+4,G 0, ,

@0)6 01 @ 16 00++ 16 02

(mco —@0)G02=4&, G 0, +4&,6 03,

The dots indicate the remaining equations of this infinite
set.

This system can be solved to get G QQ by using the
decimation-renormalization procedure proposed by
Gonqalves da Silva and Koiller' for the calculation of the
local density of states in a linear chain. One obtains

G 00=(mco —411—P —Q „) (9)
where

and

P = limP, ,
n~oo

Q„= lim Q„,
n~oO

(10)

P „=P„,+R„,(mco —@0—P „,—Q „1) 'R „

PO=Q0=0

R Q=41.
(12)

The recursion relations (11) are solved numerically for
each value of co +i0+. When convergence is reached,
g QQ provides the density of the vibrational states accord-
ing to Eqs. (5)—(7).

The procedure just discussed, which consists essential-
ly in the elimination, at each step, of the odd-numbered

I

n n —1

+R „,(mco —40—P „,—Q „,) 'R „
(11)

R n R n —i(mco @0 P——1 Q —1) R

unit cells followed by a renormalization of the parameters
which define the dynamics of the system, cannot be
directly applied when second-neighbor interaction ma-
trices need to be considered. This is the case of polyace-
tylene, where long-range force constants arising from
delocalized ~ electrons are to be taken into account. To
overcome this difficulty, we have increased the dimension
of the translational cells in such a way that the second-
neighbor interactions appear. in the %1 matrix. A more
general but much more complicated way to tackle this
problem has been proposed in the literature. "'

The density of the vibrational states in an ordered one-
dimensional array of translational cells, here evaluated by
the use of the decimation-renormalization technique, can
also be calculated by alternative conventional meth-
ods. ' ' However, for randomly disordered chains con-
ventional methods allow only numerical simulation of the
density of vibrational states for chains with a finite num-
ber of atoms. The renormalization technique has been
successfully applied to evaluate the local density of the
phonon states for the isotopically disordered linear
chain. ' In the following we will discuss the phonon spec-
trum of an infinite zigzag chain with isotopic disorder
only.

We take the cell at the origin to be of type 2 and con-
sider an isotopically disordered chain (. . . 3 ABA. . . ).
According to Gonqalves da Silva and Koiller and with
reference to Eq. (8), in the first step (which consists in the
elimination of the odd terms), we substitute into the even
6 matrices (which are considered 3-type cells) the odd
G Q matrices properly averaged:

GO, J=XA(m 2~2 —c 0) 1(eiGO, J 1+jlGO,J+1)

+x~(m 21co 40) (41GO 1+4&1G0 +1) .

(13)
In Eq. (13), x „(x21) are the probability weights
(x„+xi' =1) and m z (m ii) are the matrices of the
masses for an A (8) -type cell.

The decimation-renormalization procedure is then re-
peated by keeping fixed the cell at the origin and by rela-
beling the cells. Thus, in the second stage, the even G
matrices become odd numbered and are averaged accord-
ing to

Go,, =x~(m ~~' —@0—P1 —
Q 1) '« i60,,—1+R160,+1)

+xiii(m chico 40 P', —Q, ) —'(R;—6 11~,+R,G 0~+, ), i,j odd

where

P, = x@,( m ~ co —4' 0)

+xiii&, (m 21co
—@0)2 —1

Q, —x„4,(m „co —4&0) 4&1

+x~0,(m, ~ —e 0) C, ,2 —1

R, =x„@,(m ~co —&0)

+x21%,(m iico —4&0)

(15)

After ( n —1 ) renormalizations one obtains

P n=P „1+X~R, 15 ~ n 1R,

8—n —1—B,n —1—n —1

Q „, =Q „,+x~R „1Sw „1R„
+x~8 „1S~ „1R„

R n=x~R n —,5 ~n 1R n 1+x~R n 15~n 1R,



39 DENSITIES OF VIBRATIONAL STATES IN ISOTOPICALLY. . . 1691

S~„,=(m ~~ 4o P„,—Q„,)

, =(m ~co @—
o

P—„)—Q „,)
Po=Qo=0,

(17)
The average local density of states is given by'

p(~) =x&p "(co)+x~p (co) . (22)

R0=@( .

Finally,

Goo:(m „co 4o P Q ) (19)

As an application of this method a simple example is ex-
plicitly worked out in Appendix B.

RESULTS AND DISCUSSION

where the index A indicates the type of cell taken as the
origin and where

P = lim P„,
n —+ oo

Q„= lim Q„.
(20)

p (~)=— ImTr[m G oo(co +i@)],
E~O, a=&,B . (21)

An equation similar to Eq. (19) holds for a 8-type cell
chosen as the origin. The local densities of states are
defined by'

The theory presented in the previous section has been
applied to the calculation of the density of the vibrational
states in trans (CH)„-, trans-(CD)„, and in the copo-
ly(acetylene + acetylene-d z ).

The long-range interactions which arise in polyace-
tylene from the electron-phonon coupling generate non-
negligible 4 2 and N 3 matrices. In such a case, formulas
(16) and (17) of the present paper cannot be applied. It is,
however, possible to overcome this difficulty by consider-
ing a repeating unit containing two monomeric units.
This enables us to extend the interactions in the dynami-
cal matrix up to the second neighbors (C& +z). The matrix

then takes the following structure:

—0 —2 0

—0 —1

—0

—2

—1 —2 0

0

—0 —1

—0

—2

—1

—0

0—2

—1 —2

—0
I

—0 (23)

The somewhat approximate formulation developed in
this paper [Eqs. (13)—(22)] can now be applied to the
dynamical matrix in Eq. (23). However, it has to be
stressed that in this way only random distributions of
(C4H4), (C4D4), (CzH2C2Dz), and (C2D2C2H2) units are
obtained. The density of the vibrational states for a ran-
dom distribution of the monomers (C2H2) and (C2Dz)
cannot be, at present, evaluated.

Figures 1 and 2 show the calculated average densities
of vibrational states for different concentrations of (C4D4)
and C2D2C2H2 defects, respectively. The 1100-cm
peak of trans-(CH) shows a progressive shift towards

higher wave numbers, accompanied by a lowering in in-

tensity. As the defect concentration is increased the in-

tensity of the —1500-cm ' peak decreases, while a corre-
sponding increase of the intensity of the —1400-cm
peak takes place. It can also be noticed from Fig. 1 that
a feature at 820 cm ' appears upon increasing the defect
concentration which can be tentatively attributed to a vi-
bration of long C, D„sequences. This observation is
confirmed by the lack of such a peak in the spectra of
Fig. 2.

Of particular interest is the spectral region 800—1000
cm ', where no peak appears in polyacetylene and where
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intense peaks are predicted in poly-(C4D&) and poly-
(CzDzCzHz). An unambiguous assignment of the features
appearing in Figs. 1 and 2 with increasing defect concen-
tration can therefore be made. The three-peak structure
of Fig. 1 can be attributed to C4D4 defects embedded in
the (CH) lattice, while the two-peak structure of Fig. 2
refers to C2DzC2H2 defects.

A further check on the validity of the present approach
can be obtained from Fig. 3, where the average density of
states for different concentrations of

H D
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FIG. 2. Evolution of the average density of vibrational states

with the concentration of C202C2H2 defects in trans-
polyacetylene. (a)—(e) Same as in Fig. 1.
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FIG. 1. Evolution of the average density of vibrational states

with the concentration of C4D4 defects in trans-polyacetylene.
(a) 0%, (b) 20%, (c) 50%%uo, (d) 80%, and (e) 100% concentration.

FIG. 3. Average density of vibrational states in trans-
(C2H2C~D2)„ for different concentrations of C2D2C2H&. (a)
10%, (b) 50% (see text).
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FIG. 5. Geometry of trans-polyacetylene (the translational
unit cell is indicated with dashed lines).
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FIG. 4. Local density of vibrational states in trans-

polyacetylene for the single-impurity limit. (a) C&D4 and (b)

C2D2.

and

random C2H2C2D2 finite copolymer (consisting of 50 CH
units) have already been performed using a 39-parameter
force field. '

Further work is in progress to clarify the potential ap-
plication of the present approach. In particular, it is our
intention to investigate the possibility of applying this
method to the study of the configurational defects (soli-
tons, polarons, bipolarons) which are presently believed
to be responsible for the unusual electrical properties ex-
hibited by semiconducting polymers.

D H

are reported. It is seen that by increasing the concentra-
tion of M2 up to 50% the two-peak structure in the re-
gion 800—1000 goes into the three-peak structure, which
can be attributed to the formation of C4D4 islands.

A final confirmation comes from consideration of the
local densities of states of isolated C2D2 and C4D4 de-
fects. It is clear from the formulation discussed above
that the calculation is exact in this case. Three defect-
induced peaks are detected in the local density of vibra-
tional states at 860, 920, and 965 cm ' for a single C4D4
sequence embedded in the (CH) lattice [Fig. 4(a)], while

only two defect-induced peaks are observed at 890 and
960 cm ' for a single C2D2 defect [Fig. 4(b)].

A comparison with the experimental data reported in
Ref. 6 shows that the present calculations account, at
least qualitatively, for the main experimental features ob-
served in the Raman spectra upon progressive deutera-
tion of the sample. This is true even for high defect con-
centrations, where one could in principle expect the
method to be less accurate. Previous calculations on a

APPENDIX A

A formalism to obtain a general relation between the
tensor force field N and the valence force field F R has
been presented in Ref. 17 and there applied to the case of
diamond. Following this formalism the N; matrices dis-
cussed in the text can be related to the F& matrices of the
potential interactions, coupling the internal coordinates
of the origin cell and the internal coordinates of the lth
cell, as fol1ows:

~, = X 8.(F.)iB.
k, l, m

In Eq. (Al) 8 „represents the transformation matrix be-
tween the internal coordinates of the origin cell and the
Cartesian coordinates of the rth cell and the sum runs
only over those k, l, m cells for which i = —k+l+m.
For the polyacetylene ease, whose translational unit cell
is indicated with dashed lines in Fig. 5, the only non-
negligible submatrices for the in-plane vibrations are
8 „80, and 8, . According to Eq. (A 1) the
(i = —2, —1,0, 1,2) submatrices defined in the text are
given by

q=B OF ~8 o+8 iF 38 +SO,F iB o+B,F q8 i+8 oF 3B i+8 iF q8 i+B,F 08 i+8 OF iB i+8 iF 28

i=8 OF iBO+B iF ~BO+8 iFOB 0+8 iF iB i+8 OF 28 i+8 iF 38 i+8 iF iB i+8 OFOB i+8 iF iB

B0OF OB 0+8,F,B o+B iF iB o+B,F OB i+8 (g iB i+8 iF qB i+8 iF 28 i+8 OF iB i+8 iF o8

N i =8 OF,B +80,F 08 0+8,F 28 0+B,F,B,+8 OF OB,+B,F,B,+B,F38,+8 OF ~B,+B,F .

%2=8 OF 2B o+8 iF,B o+B,F i8 o+B,F 28 i+8 OF iB i+8 iF OB i+B,F 48 i+8 OF 38 i+8 iF 28

(A2)
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—0 q—1 —2

—0 —1

0
(A3)—2

In these relations the symmetry requirement F,=F,
has been used.

The following considerations can be drawn from Eqs.
(A2).

(1) 4& o
= 4& o, N, =4, .

(2) In order to apply the present approach to the calcu-
lation of the local densities of states in polyacetylene, ma-
trices N 3 and N 3 must be neglected. It is clear from in-
spection of Eqs. (A2) that this approximation implies that
all the elements of the F matrices must be set equal to
zero for m & 2. Moreover, the elements of the B 1FzB 0
and 8 oF 28, matrices must be zero. This requirement
implies that some elements of the F 2 matrix must also be
set to zero. Fortunately, in polyacetylene this latter ap™
proximation results to be physically reasonable.

(3) It can be shown that the tensor force field
defined on the coordinates basis of a repeating cell con-
taining two monomeric units is related to the N; ma-
trices according to the following relations:

1„'2 t

3

FIG. 6. Linear monatomic chain with mass defects.

(B2)

Indeed by defining

By using the equations for N, developed in Appendix A,
one gets +0=2K and 4,= —K. By substituting these

values into Eqs. (16) and (17) of the present paper the
same analytical expressions developed in Ref. 1 for the
case of randomly disordered alloys A„B are obtained.

A B

APPENDIX 8

Let us take the case of an infinite linear monatomic
chain as in Fig. 6. The translational unit cell indicated
with dashed lines contains one particle labeled 0 with
mass mA. The transformation matrix between internal
and Cartesian displacement coordinates (B ) is

it can be shown that

R „=—mAv,A

KVp-
mB

P„=Q„=P„,+R „=—m~ g v,

Xp
X

p1 n 1

I

A
A+n —1 -+
n —1

8
XB+n —1

2~v —1

—B

R
Rp
Ri

(B1)

n

n 0 ~ +i n —1 n

i =1

By inserting these formulas into the normalized g pp ma-

trix, one gets

hence B 1=0 8 0=1, and 8,=1.
If only diagonal interactions are considered F is written

n

g,",=I,G ~,= v —2v,"+2 y v,
"

i =1

An analogous expression can be written for g 00.

(B5)
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