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Effective electron-electron interaction in metals and superconductors
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The effective electron-electron interaction {EEEI)arising in metals and superconductors due to
exchange of virtual quasiparticles is investigated. The quasiparticles such as phonons, scalar and
vector photons, and magnons in ferromagnetic metals are taken into consideration. The energy re-
laxation time and the conductivity induced by EEEI are calculated.

I. INTRODUCTION

Investigating the electron-phonon interaction in met-
als, ' Migdal noticed that if the phonon lifetime was taken
into account, the electron damping at low-frequency c
was ImX(s) —c, /EF, where X is the electron self-energy,
cF is the Fermi energy. The electron damping arising
from the screened electron-electron Coulomb interaction
has the same form. The result obtained was interpreted
as the effective electron-electron interaction (EEEI) asso-
ciated with the exchange of virtual phonons.

This effect has been investigated in many papers.
The general description of EEEI including both the
direct electron-electron interaction and the interaction
due to virtual phonons was developed in Refs. 4 and 5,
where additional exchange diagrams were also con-
sidered. However, in Refs. 4 and 5 only ImX was calcu-
lated.

Now the electron-electron interaction is studied inten-
sively in both pure and impure ' metals, so it seems
timely to analyze the inAuence of EEEI on kinetic prop-
erties of metals. The main purpose of the present paper
is to derive the collision integral for EEEI and with its
help to calculate such measurable values as the electron
energy relaxation time and the conductivity. The
electron-phonon interaction is not the only one which
contributes to EEEI. As an example we will consider the
electron-magnon interaction in ferromagnetic metals.

The paper is organized as follows. In Sec. II we intro-
duce the electron-electron interaction in a gauge invari-
ant form which allows us to consider a new electron re-
laxation mechanism, the interaction of electrons with
vector photons. The screening effects for both the
electron-electron interaction and the electron-phonon in-
teraction are treated in the random-phase approximation
(RPA). In Sec. III the EEEI via exchange of virtual mag-
nons in ferromagnetic metals is considered. The EEEI in
superconductors is investigated in Sec. IV.

II. NORMAL METAL

We use the Keldysh diagram technique for inequilibri-
um processes in which the electron and phonon Careen's
functions, along with the electron and phonon self-
energies, are represented by matrices

GR Gc 7

yC yR

yA p

p DA

DR Dc

0

When solving the problem of energy relaxation in a spa-
tially homogeneous system, S(p, E)=So(e)= —tanh(e/
2T ) =2n, —1, where n, can be interpreted as the electron
energy distribution function. According to Refs. 10 and
11 the electron energy relaxation time ~, is defined by the
following kinetic equation:

dn~

6n, dt

de q 1
dp Im[G "(p,E)]I(p,E),dt harv (2~}3

where v =mpF /~ is the electron two-spin density of
states.

We treat the electron-electron interaction associated
with the electromagnetic field as an effective interaction
corresponding to the exchange of virtual photons. A

At low temperatures the electron-impurity interaction
is the main electron momentum relaxation process and
the electron Green's functions averaged over impurity
positions equals

G (p, E)= [G (p, E)I*=(E g~+—i/2r)

gp
= (p —p~ ) /2m,

where ~ is the electron momentum relaxation time due to
electron-impurity scattering, p~ is the Fermi momentum,
m is the electron mass, and I I* means complex conju-
gate.

To the lowest-order accuracy in a spatially inhomo-
geneous system, G is connected with G and G by the
equation

G (p, E)=S(p, E)[G "(p,E)—G (p, e)] .

The collision integral equals

I(p, s) = i I X (p—, 8) —S(p, e)[X"(p,8) —X (p, E)]] .

(4)
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similar treatment was used in Refs. 12 and 13.
The interaction between the electrons and the elec-

tromagnetic field is described by the Hamiltonian

e-y g P 'Pq p+q, sCp, s

p q~O

+ g g Aq Cp+q, Cp,
p q&0

1+
2 g g Aq Aq'Cp+q+q sCp

2mc p q q &0

where y and A are the Fourier representations of the
scalar and vector potentials, C, is the creation operator
for an electron with momentum p and spin s, c is the ve-
locity of light, and the absolute value of the electron
charge is absorbed in the definition of electromagnetic
potentials.

The electron-photon vertices corresponding to the
Hamiltonian (6) are

e-Y

FIG. 1. Equation for the Green's function of electromagnetic
field V„„. P„„ is the photon polarization operator. X, ~ is the
electron self-energy corresponding to the electron-photon in-
teraction.

P„„(q,~)= 2i f—f dp dE (ag)
1

a = 1, a
1 1p+ ~, a"=

mc 2 2mc

XK;,'[G(p+q, a+co)],l

XK(„[G(p,E)]k;+ 5„, ,mc'"' (13)

qm qn
Tmn ~mn

P „ is the polarization operator (Fig. 1) with the vertices
a„",where a = —1 and a„' =(2p„+q )/2mc.

In the Keldysh diagram technique, functions V„„have
the same matrix structure as the phonon Green's func-
tion D, and

V„„(q,co) =[2NT(co)+1][V„„(q,co) —V„"„(q,co)],
(1 1)

NT(co ) = [exp(co/T ) —1]

Vertices corresponding to the electron-boson interaction
have tensor structure Q,", where upper index is for bo-
sons, the lower for electrons;

( p)k p~k (12)

From here on, the index 0 will refer to vertices describing
interactions with scalar potentials, while 1 will denote in-
teractions with vector potentials.

The electromagnetic field Green's function V„ in the
Coulomb gauge (div A=O) is diagonal. If the screening
is taken into consideration, V„„equals'

4~e
Voo(q, co) =

q 4~e Poo(q, co)—

( V„(q,co)} „=V„(q,co)T „,
4~e cV„(q, )=

co —c q 4vre c P»(q—, co)

where e is the electron charge arid m and n stand for the
Cartesian coordinates x,y, z. If the vector q is directed
along z axis

where n, is the electron density. Summation is implied
by the pairs of repeated indices.

If ql ))1, where the electron mean free path 1=UF~,
then

Poo(q, co) = —v 1+i
2qUF

7TVCOV FP „(q,co) = —i
4qc

(14)

In RPA the collision integral I, corresponding to the
electron-photon interaction is defined by the electron
self-energy shown in Fig. 1,

I, (p, c.)= —2 f f dqdco Im[G "(p+q, 8+co)]
(2~)

X(ag )Im[( V„„) „]
Xa)RTp, q, c., co),

where

RT(p, q, E, co) = [2NT(co)+1][S(p+q, 8+co) —S(p, c)]
—S(p+q, E+co)S(p, E)+ 1 .

(15)

+e-sy

T'
K —4&e v,64 PF EF

'

2

K&2pF

Calculating the energy relaxation times due to the in-
teraction between electron and scalar photons ~, , and
between electron and vector photons w, , we should take
into account the inequalities ql ))1 and qUF))co to be
true for the characteristic values q and co, which are
determined by the Eqs. (5) and (1S). As a result for E=O
we have

where a is the Pauli matrix. So for P„„we have +e-vy

7T K

6 mc
T ln

T]
Ti &T&T2
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'jj K

6 mc
(19)

where co & is the phonon frequency and A, stands for the
polarization of the phonon branch.
For equilibrium phonons we have

where D(q, co)=[2No(co)+1][DO (q, co) —Do (q, co)], (25)

1 cT ——
1

UF K'7

2

T2
KUF

2

(20)

2
I. covUF v

3c
(21)

As a result,

1 2i2 —1 I ( —', )g( —,')(Ic/mc) (e~r)(Tr)' T . (22)v'3

For pure metals T2 —10 —10 K, UFK~-10, and
T& —1 K. It is clear from Eqs. (17) and (18) that for 1

K & T &10 K the contribution to the energy relaxation
time from the electron-vector photon interaction is dom-
inant, ~, ,z «, ,z. At the helium temperatures and
above, the scattering of electrons on the thermal phonons
is more important and the corresponding energy relaxa-
tion time is r, h

—T (yFuI ), where uI is the velocity of
longitudinal sound.

For ql «1 and co~&(1 in Poo, the renormalization of
the scalar vertices a due to the electron-impurity in-
teraction should be taken into account, which leads to
well known results. ' The vector vertices a' in P» are
not renormalized and hence

where 0 is the temperature of the heat bath.
The equation for the electron-phonon vertex g, which

takes into account screening effects is shown in Fig. 2(a).
For longitudinal phonons we have'

=(—'ep)+ ic
' 2MNu

(27)

where P is the dimensionless constant.
It is convenient to consider the electron-electron in-

teraction via exchange of scalar photons, virtual longitu-
dinal phonons, and their interference on the basis of a
single approach. In RPA for K«2pF the essential dia-
grams for the electron self-energy are shown in Fig. 2,
where the first diagram represents the direct electron-
electron interaction due to the screened Coulomb poten-
tial Vo =47re /(q +Ic ). The second diagram corre-
sponding to exchange of virtual phonons is considered by
introducing the renormalized phonon Green's function

2 EFq K

3 (2MNco )' q +Icql

where M is the ion mass and X is number of unit cells.
We represent g in the form

2

Here I (x ) and g(x ) are I and g functions. We note that
the condition ql « 1 leads to inequality D =(D )IT II =g P (28)

1
F—

U ar(Tr) «1,

=(co co i+iO) ' —(co+co &+iO—) (24)

and hence the contribution to the energy relaxation from
the region ql &(1 for vector photons is less then from the
region ql ))1.

In the two-dimensional case the co integral for ~, ,
diverges logarithmically for ql &(1. This situation was
completely solved for the phase relaxation time in Ref.
12.

Now consider the electron-phonon interaction. The
bare phonon Green's function is

Do (q, co)= {Do (q, co) I*

which means that the phonon lifetime is taken into con-
sideration.

Virtual phonons have the following characteristic
values: co-T, q-qD, where qD is the zone boundary
wave vector. Hence we may assume (D o ) = (D o" )

=4/co g.
We note the phonon polarization operator is defined by

an equation, similar to (11),

Il (q, co)=[2Nr(co)+1][II (q, co) —II "(q,co)], (29)

which contains the dependence on the electron tempera-
ture.

The collision integral for EEEI containing all contribu-
tions mentioned above is

I,s(p, e)= — I f dq dco Im[G "(p+q, E+co)]lm[P (q, co)]RT(p, q, E, co)
V (2' ) q +K

X 1+4P
2

2 2

+4p
q +K q +K

(30)

The fact that the collision integral I,ff depends only on
the electron temperature means that EEEI cannot
transfer energy from electrons to the lattice and thus can-
not bring the electrons and the phonons into thermal

equilibrium.
The upper limit of q integration is different for each

term in the bracket in (30). For the first term it is 2pF
and for the last two terms it is min IqD, 2pF ]. For simpli-
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g ~ = ~ +
gg

eff

The electric current is defined by the equation

j=aE=2e f fdpdE vS(p, e)lm[G (p, c, )) . (34)
1

(2')
Substituting (33) in (34) we obtain

FIG. 2. Equation for the screened electron-phonon vertex g,
g~ is the vertex without screening. X,ff is the electron self-
energy corresponding to the electron-scalar photon, electron-
longitudinal phonon interactions and their interference.

city we consider only the case qD «K«2pF. The elec-
tron energy relaxation time for v=0 is

1 m. T
64 .
16pF 2A=1+ — (P +P),

7TK Z (31)

Z PF
2 qD

5SO(E )
ev E =I, ; „(S)+I,s(S)+I, ,~(S), (32)

where E is the electric field, I, ; is the electron-impurity
collision integral I, ; =(So—S)lw, and I,z and I,
are determined by Eqs. (30) and (15).

We solve Eq. (32) by iterations: S=SO+go+@&.
Without electron-photon and electron-phonon interac-
tions we have

5SO(E)
yo(p, e)= —e~ E (33)

where Z is the valence of an atom of the lattice, ZX=n, .
The whole approach is easily adapted for the case of

virtual optical longitudinal phonons. For transverse pho-
nons one must take into account transverse electromag-
netic fields in the same way as we described the
electron —vector-photon interaction. It was shown in
Ref. 13 that for large q and co the contribution of trans-
verse phonons is negligible.

For EEEI virtual phonons with large q -qD are essen-
tial, hence ~,~ is not sensitive to impurities. On the con-
trary, the energy relaxation time due to the
electron —thermal-phonon interaction in impure metals
under the condition Tl «u becomes' '

w, 'h- T pal I
(pF uI ) . In impure metals and especially in low-
dimensional systems at low temperatures the electron-
electron Coulomb interaction gives the main contribution
to the electron energy relaxation time. '

In considering the conductivity due to EEEI we use
the method developed in Refs. 10 and 13. Assuming the
electron-impurity scattering to be the main electron
momentum relaxation process we calculate the
temperature-dependent correction to the dc conductivity
op due to EEEI.

The kinetic equation for the electron distribution func-
tion S(p, E) has the form

Nonequilibrium correction qq1 is defined by the equation

q'1=~V fr(q'0)+I y(V'0-)) . (36)

After substituting y, into (34) we get the following
corrections to O.p..

o

AO, ,y

0'p

2 ~3 7T2P+P 3~
Z 16 pF

10/3 ' 1/3
VF ~~em

18 EF

E,F
T Op

(37)

(38)

It is clear from (38) that for reasonable temperatures
Ao, , may be neglected.

III. FERROMAGNETIC METAL

where b is the magnon creation operator, arrows in the
electron operators stand for the electron spin, J is the ex-
change integral, and X is the number of magnetic atoms
with spin S.

The magnon Green's function and the magnon spec-
trum are

Do (q, co) =(co 0 +iO), Aq =Bq (40)

where B=OcpF and the Curie temperature
Oc=dJ /c. F, d —1. The electron spectrum for each of
the spin-split subbands is c& &

=p /2m +JS. Due to the
splitting in the electron spectrum, one-magnon scattering
processes take place only if q & qo, where qp is the thresh-
old value of the magnon wave vector, which is defined
from the equation qpvF=2JS. For low temperatures
T & Tp where To =Bq o, one-magnon processes for
thermal magnons are forbidden. For the usual value
J-0.1cF we have Tp —10 K. For T & Tp the
electron —two-magnon processes were taken into account
in Ref. 18, where the energy relaxation time and the con-
ductivity were calculated and as a result the following
temperature dependences were obtained: ~, 21 -T7/2

—9/2o e-2m —T
We now show that EEEI due to exchange of virtual

magnons is more important for T & To than the

The method described in Sec. II may be easily used to
treat the exchange of other virtual bosons. Let us consid-
er magnons in ferromagnetic metals. The electron-
magnon interaction is defined by the s-d exchange Hamil-
tonian. ' Taking into account only one-magnon process-
es we have I

1/2

X (".'.+q, ).",t+bqevt"+q, ~ »
q v

(39)



1606 M. YU. REIZER 39

dence of the resistivity was often observed in many exper-
iments' even for low temperatures T & Tp. The quadra-
tic temperature dependence of resistivity due to the
electron-thermal magnon scattering for T) Tp is well
known. In impure ferromagnetic metals the corrections
to o.

p due to the electron —magnon-impurity interference
are also important. ' An antiferromagnetic metal may be
considered in the same manner.

FIG. 3. Vertices of electron-magnon interactions and the
electron-magnon self-energy. IV. SUPERCONDUCTOR

electron —two-magnon interaction. The vertices k& &
and

A,
&&

related to absorption and emission of magnons ac-
cording to (39) equal A. t &

=A, t ~
= —J(2S /N )' . Dia-

grams of the electron self-energy describing EEEI via vir-
tual magnons are shown in Fig. 3. Note that the Hamil-
tonian (39) forbids the electron self-energy exchange dia-
grams with two-magnon Green's functions.

Using the method of Sec. II it is easy to see that for
T & Tp there the characteristic values co —T and

qp (q (qD. Hence (Dp ) =(Dp ) =0 . For the
electrons of each of the spin-split subbands the energy re-
laxation time is

—
gp&, —e 1+b,o „~~R( )

P

(gp g, i 0—)(gp—+g, +i 0)

where

g, =(E —b, )' sgn(e), ~E&b,

(43)

(44)

and b, is the energy gap. Vertices a and g carry factor
&, and vertex a ' carries 1.

The kinetic equation, which describes the energy relax-
ation in a superconductor, is

The electron Green's function in a superconductor in
the Numbu representation has the form

e-m $ +e-m $

27773Z 2 ~F T2

16Sd J Oc
(41)

For the conductivity we take into account the contribu-
tions of the electrons of both subbands,

dn,
dt

—
—,'Tr f dp Im[C "(p,E)]

KV E, (2'�)
X IR (p, e) —S(E)[X (p, e)

~e-m 3w SZ 7 JT
0 p 16d cFOc

(42)
g R( )]I

(45)

EEEI in ferromagnetic metals via virtual magnons may
explain the fact that the quadratic temperature depen-

In RPA for EEEI due to virtual scalar photons and longi-
tudinal phonons we have

2 2—'Tr f f dpdqdco 1+4P +4P RT(e, (o)
av (2~)7 q2+K2 q2+K2 q2+K2

X Im[G "(p, c)]cr,1m[a "(p+q, E+(p)]&,lm[Ppp(q, (p)]

After some algebra equation (46) takes the form

(46)

2 2
c 77 AK f d

rc 1+ e(8+co)
dt 256EFPF E g~g, +„

(47)

and the energy relaxation time

f d(o 1 — F(rp, T, b, )[XT(co)+n,+„],jef ~FJ F E e+(0

where function F is defined by the equations

Im[Ppp(q, (p)]= — F(co, T, b, ),
gUF

F(co, T, E)=f dc, ' [S(E')—S(E'+(o)] ., E'(e'+co) —6

(49)

(50)

In order to separate out the processes of scattering and recombination of quasiparticles in (50) it is necessary to go from
the electronic representation to the quasiparticle representation,
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F„«(co,T, b, ) =2f ds'
[

r 2 g2]1/2[( Sr + )2 g2]1/2
[S(E')—S(e'+co)],

F„,(ro, T, b. )=e(co—2b, ) f dE' 2,/2, /2
[S(s'—co) —S(s')],

[ r 2 g2)1/2[( r )2 g2]1/2
(52)

where e(x ) = 1, x )0, and e(x ) =0, x &0.
In some limited cases we have

1/2

T
+e-uy 24 mc

2

2

HATT

2A

1/2

T exp( b /T —), (61)

+scait exp( —b, /T), T « b, «co

F„,«=a@exp( 5/T—), co « T «b,
F =COr 26 ((CO

I'„,=neo/2, ~—2A &&6 .

(53)

(54)

1 m xATb,
(

64pF KF

~ EAT
(21rb T)' exp( 4/T) . —

128pF cF
1

jef

(55)

(56)

The kinetic equation which determines the quasiparticle
energy relaxation due to the processes of interaction be-
tween electron quasiparticles and vector photons has the
form

UF f d f d
kc 1+ s(8+co)+4

k,k.+

X Im[ V„(q,co)]RT(co,s),
(57)

where V»(q, co) is defined by Eq. (9), where P»(q, co) for
q/)) 1 equals

'ITV UF
P„(q, co ) = i V—( o), T, b, ),

Sqc
(58)

V(co, T, b, )=f dE' [S(E')—S(E'+co)] .

We will not give detailed calculation of function 7, be-
cause after q integration in (57) the dependence on the
function 9 for T, & T & T, ( T, is the transition tempera-
ture) disappears and as a result the energy relaxation time

2 + 2

12 mc g, + E(E+ro)

X [i1iT(co)+n,+„] . (60)

For T « 6 and c, =6 the recombination and scattering
relaxation times equal

In order to get the quasiparticle recombination time Yff
and the scattering time r', s. we should go to the quasipar-
ticle representation also in Eq. (48). For the low-
temperature region T « 5 we have for c=5

(2~~T)'/2 . (62)
12 nzc

Note that the expressions (61) and (62) in comparison
with (55) and (56) do not contain the additional small fac-
tor exp( —b, /T ), and hence the electron —vector-photon
interaction is more important then EEEI at low tempera-
tures. The comparison of ~, ,~ with the relaxation time
T ph associated with the scattering of quasiparticles on
thermal phonons in pure' and impure' superconductors
shows that they may be of the same order.

The electron energy relaxation time determines a num-
ber of parameters which characterize the superconduct-
ing state, e.g. , the relaxation times for the amplitude and
phase of the order parameter, ' ' and general contribu-
tions of ~,ff and ~, , together with ~, h are important.
Besides it there are some effects in nonequilibrium super-
conductors which depend on the comparison between
the electron-electron and the electron-phonon relaxation
times. For this phenomena the contribution of ~, » is
especially important at low temperatures.

V. SUMMARY

The main results of the paper can be summarized as
follows. The contribution to the energy relaxation time
and the conductivity from EEEI associated with virtual
longitudinal phonons, scalar photons, and their interfer-
ence is calculated in RPA.

It has been shown that the processes of the
electron —vector-photon interaction are dominant in the
electron energy relaxation in pure metals below the heli-
um temperature. Unfortunately, the most reliable
method of measuring the inelastic electron relaxation
time is studying the localization effects on the conductivi-
ty of disordered systems, ' where the contribution of the
electron —vector-photon interaction is negligible. Howev-
er, the electron —vector-phonon interaction may be the
most important mechanism of the electron-electron in-
teraction in superconductors at low temperatures T «b„
where the relaxation time associated with EEEI has the
additional small factor exp( b, /T). It was also shown—
that EEEI due to the exchange of virtual magnons in fer-
romagnetic metals is essential for both the conductivity
and the energy relaxation time at low temperatures,
where the process of interaction of electron with one
thermal magnon is forbidden.

The recent study of the electron-electron interaction in
inpure and low-dimensional metals ' ' shows nontrivial
modification of the inelastic electron relaxation time
(more exactly, the dephasing time of the electron wave
function). The results of the present paper show that
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even in pure metals the electron-electron energy relaxa-
tion time is not universal and strongly depends on the
type of boson, which carries the interaction.
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