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Percolative c(2 X 2) adlayer structure in nonequilibrium adsorption models
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(Received 15 June 1988)

We consider simple adsorption models describing two systems [H20 on Fe(001) and Oz on
Pd(100)] in which c (2 X 2) short-range order is formed during chemisorption, and metastable satura-
tion states result. This ordering is characterized using concepts from correlated percolation theory.
Rapid increases in average domain size near saturation are associated with "ghost percolation
thresholds" just above saturation. Generalizing these adsorption models to include an island-
forming propensity, u, is shown to move the saturation state closer to c(2X2) percolation. The
a~ oo behavior is elucidated by analyzing corresponding "continuum two-phase grain growth mod-
els" using ideas from stochastic geometry, continuum, and random lattice percolation theory.

I. INTRODUCTION
Equilibrium ordering in commensurately chemisorbed

adlayers' and, more recently, the evolution of order dur-
ing equilibration at constant coverage (e.g. , following a
rapid quench), have been elucidated using various
powerful statistical-mechanical concepts and techniques.
However, there has been little study of the evolution of
order during chemisorption, or of metastable states re-
sulting from the kinetic limitations of low surface mobili-
ty. Here we consider various simple irreversible filling
models describing the development of c(2X2) short-
range order during chemisorption. These will be de-
scribed in detail below. The strongly model-dependent
local structure and structure on the characteristic or
correlation length scale, tqgether with the associated
diffracted intensity behavior, have been analyzed previ-
ously. ' Here we focus on the more universal structure
and behavior associated with longer length scales.
Specifically, we characterize the dependence of various
nonlocal measures of domain size on coverage (e mono-
layers). We also characterize the ramified, fractal large-
scale domain structure, which is most dramatic in the
metastable saturation states. These studies are facilitated
via adaption and extension of ideas from percolation
theory.

%'e first introduce the concepts necessary for a quanti-
tative characterization of disordered c (2 X 2) structure.
In perfect c (2X2) ordering on a square lattice, adspecies
occupy one of two (&2XV'2)R45' sublattices (Fig. 1),
and are correspondingly assigned one of two "phases, " +,
say. For the disordered c (2 X 2) distributions considered
here, no nearest-neighbor (NN) pairs of sites are filled,
and the fractional coverage 8— for adspecies of both
"phases" are equal (on an infinite lattice). We emphasize
that the phase here only refers to the sublattice on which
an adspecies resides. It does not mean "thermodynamic
phase. " [For example, clearly the ordered c(2X2) ther-
modynamic phase of the hard-square lattice gas includes
adspecies on both sublattices. ]

Various "connectivity rules" could be involved to de-
scribe c(2X2) domains. We could say that adspecies be-
long to the same domain if they are connected by second,

and average radii of gyration, R,„(i), for i = 1 and 2, by

R,„(i)= Q R, s'n, gs'n, . (2)

The connectivity length, measuring the average separa-
tion between two adspecies in the same domain, is given
by &2R„(2).' We also consider the effective dimen-
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FIT&. 1. (a) Perfect c(2X2) ordering. (b) Two 2NN domains
linking to form a single AB domain.

i.e., diagonal NN bonds (2NN connectivity). Alternative-
ly, second or third NN bonds could sufBce to connect ad-
species in the same domain. The latter corresponds to
longer-range so-called AB connectivity, where A (8)
denotes empty (filled) sites, and domains are associated
with connected clusters of NN AB bonds. Clearly 2NN
domains can link to form larger AB domains (Fig. 1).
For either connectivity choice, domains of different phase
cannot cross, so c (2 X 2) domain percolation on an infinite
lattice is impossible for reasons of topology and symme-
try. We note here that more complicated connectivity
rules are generally required to relate domain structure to
other, e.g., thermodynamic, properties of the adlayer. '

Next we discuss various quantitative measures of
domain size. ' Let n, denote the number, and R, the
average radius of gyration, of domains with exactly s ad-
species (given a choice of connectivity rule). Then define
the average domain size (number of adspecies), s,„,by

s,„=ps n,
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sion, d, for domains, which typically differs from the lat-
tice dimension of 2. We determine d —=p

' from the
slope, p, of a lnR, versus Ins plot for large s ( ~ 50), rather
than the strict s~ ~ value of the slope. ' In previous
diffraction studies we have invoked "chord length mea-
sures" of domain size, e.g. , the average number of ad-
species in horizontal (or vertical) double-spaced strings,
or in diagonal strings.

Domain perimeter structure is also of interest. Let t,
denote the average number of empty perimeter sites
second NN to filled sites in domains of s adspecies. In
the models considered here, for fixed 6, t, /s decreases
smoothly as s ~ oo to a nonzero limit, R, which measures
domain ramification. '

There have been many studies of the divergent behav-
ior of s„and R,,(i) for model systems incorporating per-
colation transitions. ' Various connectivity rules have
been considered. " Most studies have assumed a random
distribution of occupied sites (or bonds). More recently,
equilibrium (Ising and Potts model) and various none-
quilibrium prescriptions of correlations have also been
considered. ' ' However, this study differs funda-
mentally in that the physical models do not incorporate a
percolation transition. Instead .we shall characterize the
behavior of these filling models in terms of a "ghost per-
colation transition" occurring slightly above the satura-
tion coverage. To further elucidate this structure, we
also adopt another approach suggested previously, '
which involves imbedding the physical filling process into
a larger class in which the ghost transition becomes real.
Here this is achieved by biasing the filling of one phase
over the other.

Various standard techniques can then be used to ana-
lyze such (real) transitions. Here we adopt powerful
finite-size-scaling (FSS) procedures, ' which we now de-
scribe briefly. Suppose a transition occurs at some criti-
cal value, 5„of some bias parameter 6. The 6 depen-
dence of the average c(2X2) domain size for an L XL
lattice with periodic boundary conditions is assumed to
satisfy"

M (5)-L +~ 'G((6 —5, )L' ), (3)

where G(z)-z r as z~~, and y (v) is the scaling ex-
ponent for s„(the connectivity length). Then intersec-
tion points of the ratio functions RL (6)=M&1 (5)/ML(5)
for different I. should approach 6„as L~~. Conver-
gence will be slower for systems with longer-range corre-
lations. Their values at these points should approach
2 +~~ . All calculations here suggest random percolation
values for scaling exponents, which is expected for finite-
range correlations. Thus we shall only report estimates
of 6, determined from where Ri (5) equals the random
percolation value, 2, of 2 +~

In Sec. II we analyze the five-site model where empty
sites on a square lattice fill randomly provided all four
NN are empty. A related eight-site model is analyzed in
Sec. III where 2NN pairs of sites fill randomly provided
all six NN sites are empty. The effect of introducing an
island-forming propensity into the five-site model is con-
sidered in Sec. IV. Finally, in Sec. V we summarize our
findings, and discuss some extensions of these ideas.

II. FIVE-SITE FILLING MODEL:
DISORDERED c (2X 2)O/Fe(001)

s.„=[(1—e/e„)r, (e)]-~,
R,„(1)'=~,e[(1—e/e, )~,(e)]-'+~,
R,„(2) = 3 e[(1—e/e )F (e)]

(4)
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FICx. 2. Saturation state of the five-site model (random filling

with NN blocking). X and Y denote filled states of different

phase. Empty sites within domains are denoted by 0.

In this five-site model empty sites on a square lattice
are irreversibly filled at random provided all four NN
sites are empty. Filling continues up to a saturation cov-
erage, e„of0.364 (Refs. 18—20) where there remain no
empty sites with all NN empty. References 5, 6, 18, and
20 examine the behavior of various local quantities and
the diffracted intensity for this model, which was pro-
posed to describe the formation of metastable
c (2 X 2)O/Fe(001) following exposure of Fe(001) to
H20.

Here we rely on computer simulation to study nonlocal
domain structure for both 2NN and AB connectivity.
We find surprisingly large domains in the saturation state
with s„—165, R,„(2)-21, and R,„(1)-13.3 for 2NN
connectivity (see Fig. 2). Many trials on large lattices are
required to reduce uncertainly due to large statistical
fiuctuations especially at saturation (where we use 100
trials on a 300 X 300 lattice). Our uncertainties are +6%.
The situation is much worse for AB connectivity, where
domains are much larger, e.g. , s,„~1200 at 6, where
finite-size effects significantly inAuence our 400X400 lat-
tice results.

A dramatic increase in s,„and R„(i) is observed near

6, due to extensive linkage of smaller domains. In fact,
one might anticipate that analytic extension of these
quantities to 6 6, would produce a diUergence at a
coverage 6&p, somewhat above O„characterized by ap-
propriate random percolation critical exponents. We de-
scribe 6&p as a "ghost percolation threshold" since this
divergence is not realized in the physical coverage range.
Thus we write (cf. Ref. 10)
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where y= —,3„v=—', , v' —P/2= —'„'. The F;~1, as 6~0,
and are nonzero at 6=6GP. We have also used results
from formal 6 expansions to incorporate exact low-6
behavior, R „(i) —A;6, where A, =2 (6) and A 2

=4 (12)
for 2NN ( AB) connectivity.

These ghost percolation ideas are supported by Fig. 3
where we have plotted simulation values of s,, ' ~,

[R,„(1) /(A, 6)] ' ' ', [R„(2) /(3 6)]
against 6. A common zero, 6Gp, of the extrapolated
functions is certainly compatible with the data. Using a
least-squares polynomial fit (weighting high 6 points
more heavily), we estimate that 6op=0.43 (0.41) for
2NN ( AB) connectivity. This procedure also yields poly-
nomial approximations to the F, which, in conjunction
with (4), provide simple formulas for s,„and R „(i)

These reproduce simulation data for s„and R,„(i) to
within at worst +6% uniformly over 0~6~6, . For
2NN connectivity, we obtain F; =1+a,6+b, 6 with
a; = 1.17,1.06,0.97 and b; = —4.97, —4. 88, —4.65 for
i=0,1,2, respectively. For AB connectivity, we obtain
F; =1+a;6+b;6 +c;6 with a, = —0.27,0.96,0.93,
b; = —7.55, —11.7, —12.5, and c; = 11.4, 16.9,19.9 for
i =0,1,2, respectively.

Next we describe the 6 dependence of the ramification,
R = lim, t, /s, and effective dimension, d, of large
domains. First we consider the low-6 regime. One can
readily verify that formal 6 expansions ' for the various
c (2 X 2) domain (cluster) probabilities exhibit lead
coe%cients independent of domain shape. Thus as 6~0,
domains exhibit random animal statistics even for this
constrained filling problem. Thus the structure of these
c (2 X 2) animals with 2NN ( AB) connectivity corre-
sponds to that of standard random animals with NN
(NN+2NN) connectivity. For the former, values for
R=1.20 and p=0.64 have been reported previously.
We find that R and p decrease with 6 to saturation
values of R=0.83 (0.92) and p=0.59 (0.57), for 2NN
(AB) connectivity. The most rapid decrease is near 6,

1.0:

0,9

0.8

0.30 0, % 0.36

FIG. 4. Near-saturation 6 dependence of R for the five-site
model with 2NN (+) and AB (~ ) connectivity.

analogous to random percolation behavior. ' (See Fig. 4
for R values. ) R values are larger for AB than 2NN con-
nectivity indicating that strings of 2NN domains consti-
tuting the largest AB domains include some "smaller"
2NN domains. For completeness, Fig. 5 shows satura-
tion values of perimeter length (t) to size (s) ratios for
many 2NN domains.

One approach to elucidate the ghost percolative behav-
ior involves imbedding the physical adsorption model
into a larger class which incorporates a c (2 X 2) percola-
tion transition. ' In this class, the filling rates,
k —=(1+5)k, for the two + c(2X2) phases differ for
nonzero "bias" 5. Consider first percolation for a 2NX
connectivity choice. A finite-size-scaling (FSS) analysis of
saturation states reveals a percolation transition at criti-
cal bias 5 =0.160+0.002 (with 6+/6=0. 636). Random
percolation critical exponents are found (as is the case for
all our analyses). As 5 increases from 0 to 5, for these
saturation states, R drops further to 0.72, and p appears
to approach the random percolation threshold value of
0.53 (as determined by the critical exponents' ) Next
consider the case 5=1 which corresponds to random
filling on the square + phase sublattice with 6, =

—,'.
Clearly, here 2NN percolation occurs at 6=6'/2 where
6' =0.5927 is the standard random site percolation

2.0

O.O 0. 1

Coverage
0.3

200 4(00 600 800
!

1000 1200 1400 1600

FIG. 3. Simulation results for the e dependence of s,, '

[R„(1)!(A e)] ' ' ~', and [R,. „(2) /(A2e)] ' ' ' for the
five-site model for both 2NN and AB connectivity.

FIG. 5. Perimeter length (t) to size (s) ratios for 2NN
domains in the five-site model at saturation.
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0.5 III. EiGHT-SITE FILLING MODEL:
METASTABLE c (2 X 2)O/Pd(100)

0.4

e-—P

A

- PERCOLATION LI NE
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0, 0 0.2

I I

0.4 0. 6 0. 8 1.0

FIG. 6. Percolation phase diagram for the five-site model
with bias, 5. Dashed lines show values of the majority phase
partial coverage corresponding to percolation and saturation.

The percolative features described above for the five-
site model should be shared by other microscopic adsorp-
tion models which produce disordered c(2X2) distribu-
tions. To support this claim, here we consider the eight-
site model proposed to describe the formation of metasta-
ble c (2 X 2)O/Pd(100) at low Pd temperature and high Oz
pressure: ' dissociative adsorption of 02 occurs at 2nd
NN pairs of empty sites provided all six NN sites are
empty; we assume adatoms are immobile (but more gen-
eral models have been considered ). Here we augment
previous studies with more extensive simulation results
and FSS analyses which parallel those of Sec. II. Results
are presented only for the 2NN connectivity choice.

The dramatic increase in domain size near saturation,
6, =0.362, where s„—280, R„(2)—29, R„(1)—19, is
again associated with a ghost percolation threshold, O~p,
somewhat above 6, . Incorporating the correct low-6 be-
havior, we write

TABLE I. Determination of critical bias for c (2 X 2) 2NN
percolation in the five-site model at saturation, and for fixed 0;
5 values satisfying RL(5) =2 are shown.

L=16 L= 32 L=64

threshold for a square lattice. '

The percolation phase diagram, Fig. 6, provides a com-
plete picture of percolation in these models. The percola-
tion line running from (5,6)=(1,0.296) to the saturation
state (5,6)=(0.160,0.367) is accurately determined by
FSS analysis at fixed 6 (see Table I). The zeros of s,, '/r

extrapolated to 6~ 6„ for various fixed 5(5, (as de-
scribed for 5=0 above), determine the natural extension
of the percolation line back to 6=0. The proximity of
this "ghost percolation line" to the physical (5=0) satu-
ration state explains the percolative features of the latter.

In an analogous treatment for AB conneetivity, one
finds a much smaller, critical bias for the saturation state
of 5 =0.065+0.001 (Ref. 23) (with 6+/6=0. 555). For
5= 1, percolation now occurs at 0=6"/2, where
6"=0.407 is the random site percolation threshold for
NN+2NN connectivity on a square lattice. " Thus in
the percolation phase diagram, the percolation line now
runs between (5,6)=(1,0.204) and the saturation state
(5,6 ) = (0.065,0.365), and extends back to
(5,6)=(0,0.41). It is closer to the physical saturation
state than for 2NN connectivity.

s,„=2[(1—6/Bop)Fo(6)]

R „„(1 ) =
—,
' [( 1 6/Bop)—F, ( 6) ]

R,„(2) =
—,
' [(1—6/BGp)F~(6)]

where the critical exponents assume random percolation
values, and the F; ~0, as 6—+1, and are nonzero at OGp.
Simulation data for s,. „and R,„(i) is compatible with a
common Bop of about 0.43 for these quantities (see Fig.
7). This data is reproduced to within at worst +7%%uo uni-
formly over 0~ 8 «e, using the following polynomial
fits to F, =1+a,g+b, E3: a, =1.26, —0.81, —2. 37 and
b, = —5.06, —1.62, 2.02, for i =0,1,2, respectively.

Saturation values of R =0.72 and p =0.60 have been re-
ported previously. Figure 8 shows saturation values of
perimeter length (r) to size (s) ratio for many 2NN
domains. Note that R and p decrease with 0, most
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FIG. 7. Simulation results for the 0 dependence of
(s,. „/2) ' r, [2R.„(1)] ' ' ~', and [2R,. „(2) ] ' ' ' for 2NN
domains in the eight-site model.
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FIG. 8. Perimeter length (t) to size (s) ratios for 2NN
domains in the eight-site model at saturation.

quickly near e„just as in the five-site model. However,
in this eight-site model, the structure of domains as B~O
is described by correlated square lattice animals built ran-
domly from dimers (occupying NN pairs of sites), rather
than from monomers. '

A complete percolation phase diagram can be con-
structed analogous to Sec. II. Note that adatoms from
each diatom fill sites of only one c(2X2) phase. We bias
the adsorption rates, k —=(1+5)k, for difFerent + phases,
as previously. FSS analysis shows that a c(2X2) per-
colation transition occurs in the saturation states for crit-
ical bias 5, =0.16 (Ref. 25) (with 6+/6=0. 63). Note
that 6= 1 corresponds to dimer adsorption onto NN sites
of the square + phase sublattice. Here saturation occurs,
at 6, =0*/2, and percolation 0=6'"/2, where
6 =0.9068 and 6"'=0.562 denote the jamming cover-
age and filled site percolation threshold, respectively, for
random dimer filling of NN pairs of sites on a square lat-
tice. The former is an old resUlt, but the latter is new.
Thus in the percolation phase diagram, the percolation
line runs between (5,6)=(1,0.281) and the saturation
state (5,6)= (0.16,0.365), and extends back to,
(5,6)=(0,0.43). Only the saturation line differs qualita-
tively from the five-site model.

IV. INFLUENCE OF c {2 X 2 ) ISLAND-FORMING
PROPENSITY ON DOMAIN

PERCOLATIVE STRUCTURE
Models for the two adsorption processes described

above involve only random adsorption, subject to certain
blocking constraints (which could be associated with
infinitely repulsive NN adspecies interactions). Clearly
this is a first approximation. Consider chemisorption via
a physisorbed precursor. In general, the density of this
precursor, and thus the adsorption rates, will be
inAuenced by interactions between precursor species and
nearby chemisorbed species. " In particular, attractive in-
teractions will enhance chemisorption near island edges,
thus producing an island-forming propensity (see the
simulations in Ref. 4). For example, in systems with
strongly repulsive NN interactions, attractive 2NN in-

teractions could lead to a c (2X2) island-forming propen-
sity. Since many systems fit into this category, we are
motivated to study below some corresponding simple ad-
sorption models. Finally we note that the total adsorp-
tion rate for island-forming processes will increase (in-
duction) after nucleation and growth of the "first few" is-
lands. In contrast, the total adsorption rates for the pro-
cesses discussed in Secs. II and III decrease monotonical-
ly.

Thus here we consider adsorption processes involving
competition between nucleation and growth of regular
c(2X2) islands. At high 6, in-phase islands coalesce on
meeting to form ramified domains. We assume that a
metastable saturation state results, with domains of
dift'erent phase separated only by domain boundaries.
Define the correlation length, go, as the separation at
which the pair correlations are reduced by, say, —,'. Then
the characteristic linear size (number of adspecies) for in-
dividual growing islands scale like gp (so:$0). We ask
the following question: Does the saturation state ap-
proach percolation with increasing island-forming pro-
pensity, i.e., do the saturation values of R,„/go and
s,„/so diverge as go~ ~'? The following argument sug-
gests that this is the case. Suppose that s„ is analytically
extended above saturation, 8„to determine a ghost per-
colation threshold, ezp, which we assume is below —,'.
Then clearly one has BGP —6, (—,

' —6, =O(go ')~0 as

go —+ ~, which implies that the saturation state percolates
in this limit.

Specifically, here we introduce an island-forming pro-
pensity into the five-site model by assuming that the rate,
k;, for irreversibly filling an empty site (with all NN s
empty) depends on the number, i, of filled 2nd NN sites.
A multiplicative (Eden) rate choice k, cca' (k, /ko=a,
i ~ 1) produces individual c (2 X 2) islands with diamond
shape (roughly circular Eden cluster structure); a ~ 1

measures the clustering propensity. The characteristic or
correlation length, go, scales like a' (a'~ ), and thus
—,
' —6, scales like a ' (a ' ), as a~ ~ for multiplica-
tive (Eden) rates. See Ref. 5 for a detailed discussion of
these results, and for pictures of the saturation state.

Direct analysis of s,„(6),etc. , and 6&p, for large o'. , is
not practical here because domains become so large. In-
stead we study the c(2X2) percolation transition for
2NN domains obtained by biasing the rates
ko =(1+5)ko for nucleation of + phase islands, but not
the other growth and coalescence rates where k;—

+ =k;, for
i ~1. Table II and Fig. 9 gives FSS results for the a
dependence of the saturation-state critical bias, 5„ indi-
cating that 6, ~0, as e~ ~, for both rate choices. Note
the difhculty in achieving convergence, and need to use
large lattices, for systems with larger g'0 (e.g. , for k; ~ 16',
we ran 80, 400 and 2000 trials on 256X256, 128X128,
and 64X64 lattices, respectively, and several thousand
trials on smaller lattices). These results are compatible
with the above picture of how the saturation state ap-
proaches percolation, since this implies that
5, =0(6&p —6, )=O(g'o '), as go —+~. [This assumes
that the percolation line has slope O(1).] Since random
percolation critical exponents are always found, this fur-
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TABLE II. Determination of saturation critical bias for
c(2X2) 2NN percolation in the five-site model with multiplica-
tive (M) and Eden (E) rate choices; 6 values satisfying
R L (5)=2 ""are shown.

L=16 L=32 L=64 L= 128

1 (E,M)
2 (E)
5 (E)

15 (E)
100 (E)

2 (M)
5 (M)

16 (M)
64 (M)

0.207
0.172
0.151

0.050
0.163

0.216
0.179
0.137
0.081
0.036
0.154
0.086
0.042

0.215
0.176
0.126
0.086
0.046
0.155
0.088
0.027
0.02

0.091
0.048
0.01

a —1/2

00 02 04 06 08 10
0.25 I I I

0, 20

ther implies that as e~ ~ and the saturation state
domains approach percolation, the effective dimension of
large domains approaches the random percolation
threshold value of —'„'.

One could construct complete percolation phase
diagrams for these processes analogous to Sec. II.
Here we just make a few observations. Clearly
—,
' —6, (5&0)~

—,
' —6,(6=0)=O(go ')~0, as a~ oo.

The left end of the (ghost) percolation line
(5,6)=(O, BGP) is "sandwiched" between (0,6, ) and
(0,—,'). The right end is given by (5,6)=(1,6'(a)/2},
where 6'(a) denotes the percolation threshold for a pro-
cess where all sites on a square lattice fill irreversibly
with rates k; =k;(a) depending on the number, i, of filled
NN sites. The 6'(a) have been determined previous-

i5, 16

Finally we provide some direct analysis of a~ ~
domain structure recognizing that, in this limit, lattice
c (2 X 2) island-growth processes become continuum
two-phase grain-growth-type processes. ' ' Here
grains, representing individual islands, nucleate at con-
stant rate at randomly chosen unconverted points in the
plane; they are assigned one of two phases, +, with prob-
abilities p

—=( I+|i)/2; details of grain shape and growth
depend on the specific (biased) c (2 X 2) island-forming

model being considered. In any case, at completion of
the process, i.e., at saturation, the plane is divided be-
tween territories of + and —phase. For such continu-
um systems, exactly one phase must percolate, unless
both are at a common percolation threshold (cf. Ref. 30).
Thus, by symmetry, for 6~~0, the + phase percolates, and
at 6=0 both are at the percolation thresho1d. This con-
clusion is, of course, consistent with the above remarks.

It is instructive to consider, specifically, the (biased)
Eden rate choice in the u~~ limit which becomes a
biased two-phase Johnson-Mehl-type model: ' ' grain
nucleation and phase assignment is as described above;
grains have essentially circular shape and expand at con-
stant rate until impingement; thereafter free boundaries
continue to expand at constant rate. Figure 10 shows
this evolution and the resulting Johnson-Mehl tessellation
of the plane for a random phase assignment (6=0). One
can see how adjacent grains of the same phase connect to
form ramified regions at saturation. We pursue these
ideas further by constructing a random lattice dual to
this Johnson-Mehl tessellation of the plane: grains are
identified as sites; sites corresponding to neighboring
grains are linked by bonds. We observe that, for 6=0,
like-phase domains are at the percolation threshold if and
only if the site percolation threshold, p„, of this random
lattice equals —,', the minimum allowed value. ' Note that
removing two-sided "lenses" from this tesselation does
not effect the connectivity of this random lattice and pro-
duces an average coordination number of 6 (Euler's rela-
tion). Thus we expect p, „ to equal —,

' by comparison
with results for the random lattice dual to a Voronoi
tessellation, and for a triangular lattice. Of course,
this result also follows from the general arguments above,
which furthermore imply that p„=—,

' for a broad class of
random lattices generated by various grain-growth mod-
els. Standard random percolation critical exponents are
also expected (cf. Ref. 32).

In closing this section, we briefly consider the growth
of c (2 X 2) islands about randomly distributed seeds.
Consider the continuum regime of low seed density. For
circular islands, the saturation state is determined by ap-
propriately assigning phases, +, to regions of the Voronoi
tessellation associated with the seed distribution. For a
random phase assignment, the analysis of the correspond-
ing random lattice site percolation problem in Ref. 32 can
be applied to show that this saturation state is at the per-
colation threshold. This result also follows from the gen-
eral continuum percolation arguments described above.

0.15

0.10—

0, 05

0.00
0, 0 0.2 04 06 08 10

a '"

h.-:8~I. , Q)
'

Q@e-

.- 6tI.'I3~ ~
FIG. 9. Dependence of the saturation state critical bias 5, on

the clustering propensity a for the five-site model with a (a)
multiplicative, (b) Eden rate choice.

FIG. 10. Evolution the (unbiased) two-state Johnson-Mehl
grain growth model. The horizontal or vertical cross hatching
of grains represent the different phase choices.
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V. SUMMARY AND EXTENSIONS

In this communication, we have considered simple
models describing the development of c (2 X 2) short-
range order during chemisorption. In previous work on
these models, we have investigated the structure of the
pair correlations and individual growing islands, and the
diA'racted intensity behavior. Here we have provided a
quantitative analysis of the large-scale percolative adlayer
structure, adapting ideas from correlated percolation
theory. In particular, we have elucidated the coverage
dependence of various measures of domain size through
introduction of the new concept of "ghost percolation
thresholds, " occurring above saturation. This concept is
elaborated further by obtaining, via FSS analyses, accu-
rate percolation phase diagrams for classes of biased ad-
sorption models incorporating the original model. Intro-
ducing a c(2X2) island-forming propensity ct shifts the
saturation state closer to percolation. This behavior is
elucidated by analyzing two-phase grain growth models
for the a~ ~ limit using ideas of stochastic geometry
and continuum and random lattice percolation theory.
The basic structure in these models is always dictated by
the random percolation universality class. Consequently,
we also expect to see this type of structure for a much
broader class of models describing disordered c(2X2)
adlayers.

In future work, we shall analyze the large-scale frac-
tal structure of the saturation state domain boundaries.
We shall determine whether these can be described by
suitably correlated self-avoiding-type walks (cf. Ref. 34),
with correlations rejecting local adlayer statistics. In a
separate communication, we shall analyze the percola-
tive characteristics of the disordered c (2X2) equilibrium
distributions associated with the hard-square lattice gas.
It has been asserted that a percolation transition in the

Ising model universality class occurs here at the critical
coverage for A8 connectivity. This change in universal-
ity class might be anticipated since the correlation length
diverges at the critical coverage. In contrast, the pair
correlations in filling models always have finite range
with superexponential asymptotic decay. Another
focus of this work will be to exploit further ideas of ana-
lytic extension used above in connection with ghost per-
colation. Specifically, such ideas shall be used to eluci-
date the behavior of chord length measures of domain
size in these c(2X2) filling models.

Note that island coalescence, which is responsible for
the percolative structure described above, is greatly re-
duced with increasing degeneracy (number of phases) of
the ordered regions. Consider the development of four-
phase p(2X2) short-range order on a square lattice. For
a model where sites fill randomly only when all NN's and
second NN's are empty, simulations reveal saturation
states with small, stringy p (2 X 2) domains, and 0, very
close to the "generalized Palisti conjecture" estimate of
(1 —e ) /4-0. 1869. ' For a process where circular
p (2 X 2) islands nucleate continuously and expand at con-
stant rate, the saturation state structure is determined by
randomly assigning one of four phases to regions in a
Johnson-Mehl tessellation. Linkage of adjacent like-
phase regions is limited. In fact, phase assignments exist
which produce no linkage (the four color probl-em ).
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