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for body-centered-tetragonal copper: Application to epitaxial growth of Cu on Fe{100}
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From the results of our ab initio pseudopotential total-energy calculation on Cu in the body-
centered-tetragonal (bct) crystal system, a first-principles phase diagram for bulk bct Cu is derived
as a function of externally applied stresses. An interesting fcc-to-bce structural transition is predict-
ed, induced by the application of a biaxial tension and a hydrostatic pressure. The biaxial tension
needed to initiate the transformation is found, however, to be too large to attain macroscopically
without inducing plastic flow (i.e., dislocation motion) in single crystal copper. An explanation for
the existence of a metastable (albeit rather disordered) phase of becc Cu on an iron substrate, recent-
ly observed by Wang et al., is put forth by considering the energy of tetragonal distortions on the
cubic phases of Cu. The results of our bulk bct calculations suggest that the disorder observed on
Cu/Fe{100} is due to a nonoptimal match of lattice constants. The growth of a stable bct phase of
Cu on a suitable cubic substrate with lattice constant 2.76 A may be possible.

Molecular-beam epitaxy (MBE) and other modern
surface-science techniques allow the synthesis of metasta-
ble phases of materials with structural and/or magnetic
properties not found in the bulk. The transition metals
are of particular interest, showing a regular hcp-bcc-
hcp-fee bulk structural trend as the d band is filled, in ad-
dition to a wide range of metastable structural and mag-
netic properties upon epitaxial growth. The advent of
tractable ab initio electronic structifre methods, employ-
ing the local-density approximation (LDA) for the
exchange-correlation energy of an interacting homogene-
ous electron gas, allow one to accurately study such sys-
tems and are a powerful tool in the interpretation of ex-
perimental data. The transition metals have been studied
extensively using various LDA calculations, e.g., the all-
electron full-potential linear augmented-plane-wave
(FLAPW) method,' the Korringa-Kohn-Rostoker (KKR)
method,? the augmented-spherical-wave (ASW) method,’
the linearized muffin-tin orbital (LMTO) method,* and
the pseudopotential method. Unlike other ab inito
methods, however, the pseudopotential method has tradi-
tionally been rather difficult to apply the 3d transition
metals with great accuracy because of the highly local-
ized nature of the 3d charge distribution.

We have recently introduced a real space formulation
of the mixed-basis (MB) pseudopotential method® that ex-
tends the ab initio pseudopotential method to study of
the 3d transition metals. This modified MB method was
applied to the study of elemental copper in the fcc and
bece structures. At all densities studied, the fcc phase was
found to be energetically favored and no hydrostatic
pressure-induced phase transition between fcc and bcc
was predicted. For fcc copper, the lattice constant, bulk
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modulus, and cohesive energy were calculated to within
0.6%, 6%, and 4.5% of the experimental values, respec-
tively. The calculated band structure compared well with
photoemission data and, overall, the results were in good
agreement and of comparable accuracy to other all-
electron ab initio results.

Recent experimental data has caused us to reconsider
the fcc-bec copper problem. Wang et al.® reported a
low-energy electron diffraction (LEED) analysis of epit-
axially grown copper (~12-25 monolayers) on a
Fe{001} substrate that suggests the film, although rather
disordered, contains a detectable phase of ‘“‘somewhat dis-
torted” bee copper. In support of their conclusion, they
cite the ASW spin-polarized band calculation of Marcus
et al.’ that predicts a zero-temperature lattice constant
of 2.87 A for bee Cu and 2.82 A for bcc Fe. Based on
these results, the bcc modifications of Cu and Fe would
appear to be ideal epitaxy partners, with the Cu lattice
compressed by only 1.8%.

A continuum elasticity model based on Landau theory
has been developed by Bruinsma and Zangwill® to explain
the behavior of such strained epitaxial metal overlayers.
Here we consider the problem from a more microscopic
point of view and put forth an explanation for the ex-
istence of this metastable phase of Cu by considering the
energy of tetragonal distortions on the bulk fcc and bee
phases of Cu. The previous calculation, which con-
sidered the stability of the fcc and bee phases of Cu under
the application of a purely hydrostatic pressure, was not
sufficiently general to make any comment on the behavior
of Cu under the application of a nonuniform stress.
Therefore, to examine this question in more detail, we ex-
tend the previous work to examine the stability of a con-
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tinuous range of structures between fcc and bec within
the body-centered-tetragonal (bct) crystal system, where
fcc and bee are special high-symmetry structures of the
lower-symmetry bct lattice. Figure 1 shows the relation-
ship between a general face-centered-tetragonal (fct) and
bet unit cell. The lattices are equivalent to each other
and differ only by a rotation of 45° about the ¢ axis. Note
that for ¢/a=1, the bct lattice reduces to a bcc lattice
and for ¢ /a =V'2, the rotated bct lattice reduces to a fcc
lattice. Thus a variation of the ¢ /a ratio allows one to go
continuously from the bcc to fcc structure, all within the
same crystal system.

The rationale for examining copper in the hypothetical
bet crystal system is the possibility it affords for consider-
ing more general stress-induced phase transformations.
Most ab initio calculations consider energy as a function
of uniform compression and expansion. This volume
variation simulates the application of the conjugate ther-
modynamic field, —90E /dV, or pressure. Energy versus
volume curves thus allow one to examine the relative sta-
bility of various phases of a material under the applica-
tion of hydrostatic pressure. The addition of an extra de-
gree of structural freedom in the bct system (independent
variations of ¢ and a) allows one to introduce a second
conjugate thermodynamic field, in addition to the hydro-
static pressure. Coupled with a knowledge of the total
energy variations of such a system, these fields can serve
as useful tools to probe possible structural phase transi-
tions induced by anisotropic stresses.

The present calculation employs the usual plane-wave
basis set augmented with a localized basis of “optimized”
d functions® that are constructed to be rigorously nono-
verlapping in the solid state. Thus, unlike the convention-
al MB method,’ matrix elements and parts of the charge
density involving the localized functions are evaluated
directly in real space by very fast and accurate one-
dimensional integrals. We employ an ab initio non-local
pseudopotential derived by Bachelet et al.!° to represent
the copper valence electron-ion interaction and use the
results of Ceperley and Alder!! for the local-density ap-
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FIG. 1. Relationship between the bct and rotated fct unit
cells. Shown are four bct unit cells, whose body-centered atoms
are lightly shaded for clarity. These atoms also function as
face-centered atoms for the rotated fct unit cell.

proximation in the parametrized form given by Perdew
and Zunger.'? The total energy is calculated in the
momentum-space formalism of Ihm, Zunger, and
Cohen.!® Recently, this formalism was successfully ap-
plied to the study of the structural properties of bulk
NiAl and the NiAl(110) surface.'*

Since a satisfactory convergence test with respect to
the various energy cutoff parameters was performed in
the previous study of cubic copper,’ those values were
reused in the present calculation (except the k-point sam-
pling) and were found to yield the same the total energy,
Fermi level, eigenvalues, etc., for the bcc and fcc struc-
tures within the bct system. To simplify the thinking
about the shape of the real and reciprocal primitive cells
as ¢ and a are varied, we chose to model the bct crystal as
a simple tetragonal (st) lattice with a two-point basis (the
point group for both the st and bct lattices is D, with
16 point operations). We use a plane-wave basis set of
about 160 plane waves (|k+G/|2,, =15 Ry), a localized
basis set of ten optimized d functions (five functions per
Cu atom); 6000 plane waves to expand the relatively
smooth local potential (|G,,/>=169 Ry), and 24000
plane waves to expand the charge density (|G|2,,=430
Ry). The charge density is accumulated on 27 k points in
the irreducible Brillouin zone (128 k points in the full BZ)
and the Fermi level is calculated by the usual Gaussian
weighting technique,!> which stabilizes the total energy
with respect the number of k points. The total energies
and self-consistent potentials are converged to within
0.01 and 0.5 mRy, respectively.

The cutoff radius, r,, for the nonoverlapping d func-
tions is chosen as 2.25 a.u. (as in Ref. 5). This fixed ra-
dius naturally restricts the degree to which a given struc-
ture can be compressed and at all times the nearest-
neighbor distance is required to be greater that 2r,. For
the bct lattice, there are three distinct regions of nearest-
neighbor distance, dyy: (1) ¢/a<V2/3, dyy=c¢; (2)
V2/3<c/a<V2, dyn=0.5 (c*+2a*)'? (3) c/a> V2,
dyn =a.

Figure 2 shows a contour plot of our calculated total
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FIG. 2. Contour plot of total energy surface for bct Cu as a
function of ¢ /a vs V /V,. Contour spacing is 0.5 mRy. The fcc,
a-bet, and bee equilibrium structures, as shown in Fig. 4, are
marked.
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energy surface for Cu in the bct system, with constant-
energy contours separated by 0.5 mRy. The independent
structural parameters are chosen as c/a and V/V,,
where V is the unit-cell volume (¥ =0.5ca?) and V, is
the experimental fcc Cu unit-cell volume (V,=79.37
a.u.®). The energy surface is a quintic interpolation gen-
erated from the results of 70 self-consistent structure cal-
culations. The numerically interpolated contour plot has
three distinguishing features: a global minimum on the
fee structure line (at ¢ /a=1.43, V /V;=1.02) and two lo-
cal minima, one on the bcc line (at c¢/a=1.0,
V/V,=0.95) and the other on an intermediate structure,
labeled “a-bet” for reference (at ¢ /a=1.12, V/V,=1.0).
Note that the fcc global minimum represents a 1.1% er-
ror in ¢/a and 1.1% error in volume ratio when com-
pared to the experimental fcc copper structure. The rela-
tive energies per atom for the two local minima are found
to be E(a-bct)—E(fcc)=-+3.2 mRy, and E(bcc)
— E(fcc)= +4.8 mRy.

Besides the three principal minima, the surface also ex-
hibits considerable fine structure, which most likely is not
physical but rather may result from some limitation in
the choice of localized basis functions used to represent
the highly localized d electrons. Nevertheless, we believe
the overall shape of the surface and the placement of the
minima are correct. As will be discussed below, the final
results were found to be rather insensitive to the fine
structure.

The total energy curves for Cu in the fcc and bec struc-
tures, as calculated within the bct system (Fig. 3), are
identical to the previous results for Cu as calculated with
the cubic system.> The curious bimodal shape of the bec
curve, reported previously,’ is reproduced in this lower-
symmetry crystal environment and has been previously
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FIG. 3. The total energy curves (per atom) for fcc and bee Cu
in the bct crystal system. The triangles (squares) represent the
calculated fcc (bee) data points. The solid curves are obtained
by a spline smoothing algorithm. The dashed curve is a least-
squares fit of a fourth-order polynomial to the bce data points.
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associated with a symmetry breaking of the filled Cu d
band under compression.® The energy surface results
show, however, that the shallow “minimum” is not really
a minimum, but rather is part of a local plateau region in
the energy surface. A fourth-order polynomial least-
squares fit to the bcc data points (Fig. 3, dashed curve)
yields a minimum V/V, of 0.98 and a bulk modulus of
1.26 Mbar. For comparison, Chelikowsky and Chou'®
find a bec Cu bulk modulus of 1.85 Mbar and a V/V,
minimum of 1.0 using the Gaussian orbitals [linear com-
bination of atomic orbitals (LCAQO)] pseudopotential
method. !’

In addition to the work of Bruinsma and Zangwill,8 the
bct structural transformation has been studied previously
by several authors,!® although usually within the frame-
work of linear elasticity theory and/or a pair-potential
formalism. Such methods, while very useful, lack the ac-
curacy needed to distinguish the subtle energy differences
that result as ¢ and a varied. The ab initio nature of our

.calculation allows us to map the total energy surface of

the system very accurately and to consider the possibility
of a zero-temperature phase transition between fcc and
bee Cu induced by external stresses. For later conveni-
ence in constructing such a phase diagram, we define the
extensive thermodynamio variables as ¥ and a2, and then
introduce the natural conjugate thermodynamic fields, P,
the applied hydrostatic pressure, and u, the external biax-
ial surface tension. We then may construct the zero-
temperature Gibbs free energy per atom of the system,
for a given external P and u, as follows:

G=E+PV+pua?,

where E is the total electronic energy per atom in the
pseudopotential framework and the last two terms
represent the external mechanical energy. Dimensional-
ly, u is a surface tension, or force per unit length, with a
negative value of u corresponding to a uniform expansion
along the a axis of the crystal. For a given P and u, the
minimum value of G, for all ¥ and a? values considered,
represents the equilibrium state of the system. Thus by
systematically varying the external fields and tracking the
equilibrium structure, we map out the phase diagram for
the system (Fig. 4).

It is important to note that the nature of the phase dia-
gram is dominated by the three principal minima in the
surface and is quite insensitive to the fine structure or
“wiggles” discussed above. Also, the shape of the phase
diagram was also found to rather insensitive to the exact
details of the surface fitting algorithm.

Note that for =0, we confirm the previous result that
fcc Cu is stable under the application of a purely hydro-
static pressure. With no external fields (P=p=0), we
have G=F and the crystal prefers to sit in the fcc global
minimum; however, the application of a positive P
(compression) and a negative u (expansion) can work to-
gether to lower the Gibbs free energy of the system and
bring about a structural transition. For zero external hy-
drostatic pressure, we find at pu=—623 dyn/cm, or
equivalently, at u/cy= — 17 kbar (where ¢, is the equilib-
rium fcc Cu lattice constant of 3.61 A), a structural tran-
sition from fcc Cu to the a-bet structure is possible. For
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FIG. 4. Equilibrium structural phase diagram of bulk bct Cu
as a function of biaxial tension vs external hydrostatic pressure.
The surface tension p has been scaled by ¢, the equilibrium lat-
tice constant of fcc copper (¢, =3.61 A) to yield the more famil-
iar units of kbars (1 kbar=10° dyn/cm?).

a range of hydrostatic pressures from about 20 to 170
kbar, we find a direct fcc to bee phase transition is possi-
ble under the application of a nonzero biaxial tension,
with u/cy, equal to at least —10 kbar.
minimum, ¢=3.62 A and a=2.6°5 ;X, and at the bcc
minimum, ¢c=2.82 A and a=2.82 A. Thus, P and u are a
natural set of external thermodynamic fields in that they
provide the correct mechanical forces necessary to ini-
tiate the fcc-to-bece transition: a uniform compression of
the system (provided by P) coupled with a competing bi-
axial pulling out along the a axes (provided by u).

Note that the range of both the transition pressures
and biaxial tensions involved in the phase diagram is rela-
tively modest in size. One therefore might imagine that
such an experiment could be performed, since pressures
in the Mbar range are now readily accessible with
diamond-anvil techniques. Unfortunately, the applica-
tion of a biaxial tension is rather difficult to realize
without inducing plastic deformation in copper. At the
zero-pressure transition point, w/c, is —17 Kkbar,
whereas the minimum stress needed to plastically deform
a very pure copper single crystal is only —3.4 bars (ref.
19) and may be even smaller depending on sample
preparation. Thus plastic deformation (i.e., dislocation
motion) occurs at stress levels 3 orders of magnitude
smaller than our predicted transition pressure and hence
effectively hinders the structural transition in bulk
copper.

We now turn to the more interesting question of what
transformations are possible in the Cu/Fe{100} epitaxy
system. In this case, where the film is only a few mono-
layers thick, the microscopic stresses present at the inter-
face can be many times larger than the yield stress of the
material, so the above argument on the plastic flow of Cu
will not be relevant. Although a rigorous treatment of
the Cu/Fe{100} system really requires a separate

At the fcc |

ab initio supercell calculation, the results of the present
study (carried out for bulk bct Cu) are fairly easily rein-
terpreted in light of the epitaxy problem and provide a
sufficiently reasonable explanation for the observed re-
sults of Wang et al. to merit consideration. With this
caveat in mind, we proceed as follows.

The first question to consider is whether the experi-
mental results of Wang et al. are understandable in
terms of the derived phase diagram (Fig. 4). Although
the experiment is carried out at zero external hydrostatic
pressure, there is no way to estimate the biaxial stress
present at the surface and therefore no way to isolate the
location of the structure on the phase diagram. It is not
even clear if such an association between a metastable ep-
itaxial overlayer and a bulk equilibrium phase diagram is
meaningful. Also, it is important to realize that the
phase diagram represents the situation where ¢ and a are
allowed to vary independently so as to minimize the free
energy for a given externally applied P and u. While this

- may be an appropriate set of constraints for a bulk sam-

ple, a more natural constraint for the epitaxy situation is
to fix the in-plane lattice constant a to match the underly-
ing substrate. Since the bulk modulus for Fe at 4.2 K is
1.73 Mbar compared to 1.42 Mbar for Cu at 0 K,? it is
reasonable to expect the Fe substrate to be stiffer than the
Cu overlayer.

The relevant information to consider, therefore, is the
energy variation of Cu as a function of ¢, the lattice pa-
rameter perpendicular to the interface, for a fixed in-
plane lattice constant a. This information is already con-
tained within the calculated energy surface and is readily
extracted. Consider three slices of the energy as a func-
tion of ¢, or equivalently, ¥V /¥, for a fixed in-plane lat-
tice constant a, with a=2.86, 2.76, and 2.56 A [Fig. 5(a)].
These values correspond to ag,; the O K lattice constant
for Fe,?! and the a values at the a-bct and fcc minima, re-
spectively. * Figure 5(b) shows the structure path that
these slices represent with respect to the energy surface.
Note that the a-bct structure shown in the phase diagram
(Figs. 2 and 4) does not lie on the exact minimum of the
shallow total energy well near the ¢ /a=1.1 line, but rath-
er lies slightly off to one side. This is reasonable, since in
the construction of the phase diagram one seeks the
minimum of the Gibbs free energy, which need not neces-
sarily correspond to the minimum of the internal energy.
Nevertheless, for simplicity of notation, we shall refer to
both the exact numerical minimum at c¢/a=1.12 and
V/Vy=1.0 [a=2.76 A, point C in Figs. 5(a) and 5(b)]
and the equilibrium bulk phase at c¢/a=1.11 and
V/Vy=1.02 (@a=2.79 A, Figs. 2 and 4) as the a-bct struc-
ture since they are both associated with shallow
minimum near ¢ /a=1.1.

Now consider the layer-by-layer growth mechanism for
the Cu/Fe{100} system. The reference point for this dis-
cussion will be the 5 structures labeled 4-E in Figs. 5(a)
and 5(b). The first layer grows as a square lattice with
a =ag, with little or no strain because of the near-perfect
lattice match between substrate and overlayer. Since the
¢ lattice constant is not constrained as the second layer
grows, the system forms its minimum-energy structure,
subject to the boundary condition at the interface (point
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B). Note that the bcc phase (point A) is not the equilibri-
um (i.e., minimum-energy) structure, nor is it found to be
for any a value, although for a=2.83 A the two minima
A and B are of equal depth. For increasing or decreasing
a values, however, the minimum associated with point B
is lower in energy. As with the bulk bct phase diagram,
the bee phase can be stabilized by the application of an
external uniaxial pressure, this time perpendicular to the
interface. A common tangent construction between the
points A4 and B yields a uniaxial pressure of approximate-
ly 23 kbar necessary to stabilize the bcc phase. With
respect to small negative distortions in the in-plane lattice
constant @, the B structure is clearly not a stable
minimum and as a result, as the layer grows, the lattice
would prefer to transform to the nearby stable local
structure, the a-bct structure (point C). This structure,
however, has an in-plane lattice constant a different by
4% from the lower Cu layers and substrate. The epitaxi-
al layer thus grows more strained as additional mono-
layers are deposited and eventually the strain mismatch
becomes too large for the substrate to support. The Cu
overlayer then distorts and grows in an incommensurate
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FIG. 5. (a) Energy vs volume ratio curves for fixed in-plane
lattice constant a, with ¢=2.86 A (solid curve), a=2.76 A
(dashed curve), a=2.56 A (dotted curve). (b) Constant a lines
corresponding to the energy surface cuts shown in (a).

and disordered fashion. The calculation suggests that the
ordered component of the Cu overlayer is predominantly
a strained body-centered tetragonal structure with a ¢ /a
ratio of approximately 1.07 (point B) and most likely not
a true bcc phase. The disorder results because the Cu
and Fe lattice constants are not optimally matched for
the growth of the bce phase.

As to the possibility of growing any metastable phase
of Cu epitaxially, our results suggest two possibilities: (1)
for a substrate lattice constant of 2.82 A (this intersects
the bcc minimum at V' /¥, =0.95), the application of an
external uniaxial pressure on the surface could possibly
stabilize the bcc phase, since the bcc minimum is a stable
minimum with respect to small variations in a; (2) a cubic
substrate with a lattice constant'of 2.76 A (to match the
stable a-bct minimum) may support the growth of bct Cu
with no applied uniaxial pressure.

In summary, an explanation for the existence of a
metastable and disordered phase of bcc Cu on an iron
substrate observed by Wang et al. has been put forth by
considering the energy of tetragonal distortions on the
fcc and bee phases of Cu. We believe the analysis of the
calculated bct energy surface in terms of a constrained
in-plane lattice constant captures the essential physics of
the problem and provides a reasonable explanation for
the observations. Naturally, these conclusions are open
to some question due the one-component bulk nature of
the calculation, but nevertheless, the energetics of bulk
bet Cu do naturally suggest the suitability of such epitaxi-
ally possibilities.

The bimodal bcc Cu total energy curve (Fig. 3) differs
from that obtained by Marcus et al.” and more recently
by Chelikowsky and Chou.!® Our previous work has sug-
gested that the nearcore nonspherical charge distortion of
the full Cu d shell is largely responsible for the anoma-
lous bce deep energy minimum. Whether this nonspheri-
cal distortion is physical or computational in origin, how-
ever, is not yet clear. A possible computational explana-
tion is that under compression the bcc core region may
be trying to move in such a manner that is too large to be
represented by our plane wave basis set. We are current-
ly investigating the possible inadequacy or “stiffness” of
our localized basis set by extending this study to Ag.
Given the quality of our fcc Cu results, however, such a
core relaxation does not appear to be a problem in the
face-centered cubic structure. Further independent cal-
culations on the copper system would greatly help to
clarify this situation.
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