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Surface corrugation and surface-polariton binding in the infrared frequency range
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We consider the inAuence of a small-amplitude grating on the binding of surface polaritons to
metal surfaces, with emphasis on the infrared frequency range. The grating can compress the field
in the vacuum above the structure very substantially in this regime. Indeed, a grating can bind the
surface polariton in the limit of zero skin depth (or infinite conductivity). The results of recent ex---
periments are discussed in light of these results. We also comment on the inhuence of small-
amplitude random roughness on the spatial profile of surface-polariton fields.

I. INTRODUCTION

Surface polaritons are electromagnetic waves bound to
the smooth surface of a dielectric material. ' On simple
metals, these waves can propagate over a very wide range
of frequencies. If e(co) is the frequency-dependent dielec-
tric constant of the substrate (assumed real here), then
the surface will support surface-polariton propagation at
any frequency for which e'(co) ( —1. If we model e(co) by
writing e(co) =e—co /co, with co„ the conduction electron
plasma frequency and e the contribution from interband
transitions, then surface polaritons propagate at all fre-
quencies below the cutoff co, =co~/(1+e)' . Typically,
m, lies in the visible or near uv frequency range.

In the infrared, or far infrared, the waves are very
weakly bound to a perfectly Oat surface. One may see
this in a variety of ways. If the wave vector and frequen-
cy of the wave are k~~ and ~, respectively, the dispersion
relation is

2I 2
e(co) 1

1+@(co) [e(co) j

where the last form applies in the infrared, e(co) is nega-
tive, and

~
e(co ) ~

))1. For a given value of k
~~,

the
difference in frequency between a plane wave photon
propagating parallel to the surface and a surface polari-
ton is controlled by the term 1/~e(co)~, which is very
small when co«co . The quantity 1/~e(co)~ is a measure
of the binding energy of the wave.

In the vacuum above the surface, the electromagnetic
fields associated with the surface polariton fall off ex-
ponentially as exp[ —cto(co)z], with the z axis normal to
the surface. One has ao(co)=[k~~ —(co /c )]', and in
the infrared, ao(co)—= (co/c)~e(co)~ ' . The skin depth
5(co)=(c /co) ~e(co)

~

' here, so we may also write
ao(co)=(co/c)~5(co). At a frequency of 100 pm, for a
metal with a skin depth 5(co) =500 A, the decay constant
ao(co)=7.2 cm ', so that the wave field decays sensibly
to zero within a distance of about 5 mm from the surface.
In the infrared frequency range when studying the gen-
eration of surface polaritons by various coupling
schemes, it is often difficult to discriminate between the
surface polariton and true electromagnetic radiation
propagating parallel to the surface, because the surface

mode is so weakly bound.
In the infrared, a very large fraction of the energy

stored in the surface-polariton fields resides in the vacu-
um, where no dissipation of energy occurs. A conse-
quence is that the propagation length of the surface po-
lariton is expected to be very long. This is indeed found
to be the case but, so far as the present authors know,
virtually every experimental study finds the propagation
length to be quite a bit shorter than expected from the
theory of a perfectly planar metal surface, described by
dielectric theory. The discrepancies are typically a factor
of 2, or perhaps more. The difference is often ascribed,
quite reasonably, to surface roughness, which can scatter
the surface polaritons in a variety of ways.

Recent experiments by Stegeman and his colleagues
prove more disturbing. These authors excite surface po-
laritons in the far infrared (116 pm) by use of a grating
coupler, to find excitation efficiencies very much larger
than expected on the basis of perturbation theory. The
results can be understood qualitatively if, for some
reason, the waves are bound to the surface more tightly
than suggested by the dielectric theory of a Aat surface.

The purpose of this paper is to point out that the pres-
ence of a diffraction grating, even with an amplitude
quite small compared to the wavelength, can increase the
binding energy of surface polaritons on metal surfaces
very substantially over that expected from the dielectric
theory of the Oat surface. The grating also compresses
the fields more tightly against the surface, i.e., the decay
constant cto(co) discussed above can be much larger than
expected from dielectric theory. These effects operate to
some degree in any frequency range where surface polari-
tons propagate, but they can dominate for waves on met-
al surfaces at far infrared frequencies, where the "bind-
ing" provided by the dielectric response of the substrate
is so very weak.

On the fiat surface, 1/~e(co)
~

must be finite for the sur-
face polariton to bind, as we have seen. In the limit
~e(co)~ —+Do (also the limit of infinite conductivity), the
fields do not penetrate the substrate (the skin depth van-
ishes), and we have no surface polaritons. The binding of
the waves to the surface is thus a consequence of dielec-
tric response characteristics of the substrate. We show
here that in the limit of infinite conductivity, the waves
do bind to a grating in the absence of field penetration
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into the substrate. This results follows directly from the
literature on a mathematically isomorphic problem:
The surface of an isotropic elastic solid does not support
surface acoustic waves of shear horizontal character. But
shear horizontal waves do "bind" if a periodic grating is
present, as first noted by Auld and co-workers. If one
formulates the surface-polartion problem in terms of the
magnetic field in the wave, which is everywhere parallel
to the surface for propagation normal to the grooves of
the grating, then in the limit of infinite conductivity the
wave equation and boundary condition at the surface be-
come identical to those encountered in the discussion of
shear horiztonal surface acoustic waves in the isotropic
elastic medium. The velocity of sound is replaced by that
of light in vacuum.

Our view, then, is that numerous experimental studies
of surface-polariton propagation on metal gratings in the
far infrared range have been interpreted within the
framework of the incorrect zero-order picture, which as-
sumes that the dominant contribution to the binding en-
ergy comes from the dielectric response of the substrate.
The proper zero-order picture in numerous instances is
that of a wave on a surface whose conductivity is infinite;
the dominant contribution to the binding energy is pro-
vided by the interaction of the fields with the grating
structure, and the dielectric response of the substrate
plays a minor role.

It has been shown recently that the presence of random
roughness' of one-dimensional character can also "bind"
shear horizontal acoustic waves to the surface of a semi-
infinite isotropic elastic solid. We show here that such
roughness also may compress the fields of a surface polar-
iton more tightly to the surface of a metal in the far in-
frared range than expected from dielectric theory [ao(co)
is increased by roughness]. This effect may be an impor-
tant ingredient in understanding attenuation-length stud-
ies in the infrared frequency range. In its presence, a
larger fraction of the energy stored in the wave resides
within the substrate, where energy dissipation occurs.
The attenuation length is thus shortened by an effect dis-
tinct from roughness-induced scattering. It is dificult to
explore this issure in practice since, in the usual cir-
cumstances, the nature of the roughness on a sample sur-
face is poorly understood.

In Sec. II we present the calculation that provides the
basis for the above remarks. Our aim is to present a sim-
ple discussion, with approximations introduced that are
directed toward the frequency regime of interest here.
We obtain rather simple final results as a consequence.

II. THEE)RETICAL ANALYSIS

The extinction theorem provides a useful approach to
formulating a description of the interaction of light with
diffraction gratings, and the propagation of surface polar-
itons on such structures. " Here we shall use the extinc-
tion theorem, in combination with certain approxima-
tions, to obtain a description of the inAuence of a periodic
grating on the properties of surface polaritons, with at-
tention to the infrared frequency range. The notation
used here follows that used earlier by Weber and Mills. '

The surface of our grating is defined by the equation
z=g(x); its grooves thus are oriented perpendicular to
the x axis, and the z axis is perpendicular to the surface
of the semi-infinite sample upon which the grating is
ruled. The period of the grating is a, so that g(x
+ na ) =g(x) for any integer n. The substrate lies in the
region z (g(x ).

Let H (x,z) be the magnetic field associated with the
surface polariton, in the vacuum above the sample,
z )g(x). The extinction theorem" ' provides the follow-
ing statement about H (x,z):

Ids' H (x', z') aG, (x —x')

Bn '&

,
aH (xz )

Bn '& z'= g(x')

=0. (2.1)

In this expression, the integration is over the surface of
the grating, 0/Bn & denotes differentiation along the
direction normal to the grating (with n ) directed toward
the vacuum), and Go(x —x') is the free-space Green's
function

e i (,co lc )
~
x —x'

~

Go(x —x') =
ix —x'i (2.2)

This boundary condition is also referred to as the
surface-impedance boundary condition. Quite recently, a
careful discussion has established its range of validity and
given the explicit form of the leading corrections to it. '

With use of Eq. (2.3), Eq. (2.1) becomes

Ids'
BGD(x —x')

+—,Go(x —x') h(x') =0,
c

/
e(co)

/

'"
(2.4)

Equation (2.1) is valid for any choice of x, provided that
x lies below the grating in the substrate, i.e., z (g(x).

A full treatment of the dispersion relation of surface
polaritons requires use of Eq. (2.1) in combination with a
second statement provided by the extinction theorem. '

However, in the far infrared frequency range, the prob-
lem may be simplified through introduction of an approx-
imation. There are several lengths in our problem: the
skin depth 5, the height and period of the grating, d and
a, respectively, and the wavelength k and penetration
length 10=no ' of the surface polariton into the vacuum.
The three lengths a, d, and k are all of the same order of
magnitude, and as we saw in Sec. I, Io))k. The skin
depth of a good metal will be smaller than the four other
lengths by several orders of magnitude in the infrared
range. Over lengths of the order of the skin depth, the
grating is quite flat, and the fields above the grating ex-
hibit very little spatial variation. Under these conditions,
we may relate BH /Bn and H just above the surface
by the relation valid for a perfectly Aat surface

aa CO(x z)~ —p )= H (x z)i =g(on, ' ' c e(co)~'"

(2.3)
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where h(x')=H (x', g(x')).
Surface polaritons have the form of Bloch waves in the

presence of the grating. It follows that we may write

h(x)=e'" u(x), (2.5)

where u(x) is a periodic function of x, with period a, and
the wave vector k lies within the first Brillouin zone,—~/a + k ~ +~/a. Thus, we also have

h(x)= g e ' h, , (2.6)

where k, =k + (2n/a )s.
When Eq. (2.6) is inserted into Eq. (2.4), algebra along

the lines given in Refs. 1 1 or 12 allows one to generate a
hierarchy of equations for h, . We proceed here by ignor-
ing the influence of roughness on the term proportional
to ~e(co)

~

' in Eq. (2.4). Such corrections are quite
small, when the depth d of the grating grooves is small
compared to the period a. '

After some algebra, we find the following hierarchy of
equations, which must be satisfied for each integer m:

a$ ]/2 hg 0
C C

I 6
(2.9)

which requires

a
i]/2 (2.10a)

or

In the limit ~e~ ~~, Eq. (2.7) yields for surface polari-
tons precisely the same dispersion relation as obtained for
shear horizontal acoustic waves bound to the surface of
an isotropic, elastic continuum upon which a difFraction
grating has been ruled, provided the shear wave sound
velocity is replaced by the velocity of light in vacuum.
We see, at this point, that the grating "binds" the surface
polariton, even in the limit ~e(co)

~

It is also the case that for the perfectly flat surface Eq.
(2.7) yields a proper description of the surface polaritons.
If we let g(x)~0 to obtain a flat surface, we have
I] ](p;m)~5 o. The hierarchy in Eq. (2.7) then reduces
to

—k k, +a, I' '(s —m;m)h, =0 .

(2.7)

2 2
cO CO 1

2 2 (2.10b)

In this expression, k =k+(2vr/a )m, and
1/2

2 1
k — (co+i ri)

C

I]- ](I];m ) = +a/2 1 - —a g(x)
dX —e 2Tiipx /ae m

—a/2 0
(2.8)

with g a positive infinitesmal and the convention
Re(a ) )0 employed. We also have

The expression in Eq. (2.10b) is the dispersion relation of
the surface polariton of frequency co, expanded in powers
of 1/~e~ with the first correction term retained. Equation
(2.10a) gives the attenuation constant which describes the
field profile in the vacuum above the substrate (this was
denoted by ao in Sec. I). The formulas here have all wave
vectors k within the first Brillouin zone of the grating.

We can develop an approximate dispersion relation
from Eq. (2.6) that proves accurate for gratings with
small amplitude. We can write Eq. (2.6) in the form

CO

m
/

[]/p m

2

(2. 1 la)

where h, satisfies

CO

S

[
/]/P s

I (m. s;s) co cd

a, I' '(0;s) c' ' ' ce~' '
2

(2.11b)

A form of self-consistent second-order perturbation theory follows if we retain only the term proportional to h on the
right-hand side of Eq, (2.11b). This is equivalent, for our problem, to the method employed by Glass, Weber, and
Mills, ' who found the procedure to be quite accurate, when results obtained with it are compared with exact results.

This procedure then provides the following expression for the decay constant a, which in fact is to be calculated
self-consistently from this expression

CO a, co—k k, +
CO I' '(s —m;m )I' '(m —s;s) c hei

c ~e~'/',
] ] a a,I] '(0;s)I' '(0;m )

co
k k

~m~2

t]/2
(2.12)
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We shall be content to substitute the unperturbed frequency into the right-hand side of Eq. (2.12) to obtain the
description provided by second-order perturbation theory. In the numerators, the terms involving ~e~

'~ are small, as
is the case also in the denominator, unless k lies very near the zone boundary, and k, does also. Thus, we have

N 2
I( )(s —m;m)I( ((m —s;s)(k —k, )2

c~e~', ( ~ a, a I' '(0;s)I' '(0;m)
(2.13)

For small-amplitude gratings, I' '(0;p)=1 and I' '(p;
m)= —

g a, where
details of the geometry. Thus, if /3 is a dimensionless con-
stant of order unity, we have

g = I dx —g(x)e—a/2 0
(2.14) da = 5+P

c a
(2.19)

The skin depth of the substrate, 6 =c /co
~
e

~

', so that we
may arrange Eq. (2.14) to read

i (k —k )~5s —m m s5+
s (~m) s

(2.15)

g(x ) =d cos(2vrx /a ),
we have

(2.16)

The expression in Eq. (2.15) is quite simple, and may be
used to decide in any particular case whether the surface
polariton "binds" primarily because of the presence of
the grating structure or because of the dielectric response
characteristics of the substrate. In the former case, the
second term in Eq. (2.15) will dominate the first, and in
the latter the first will dominate the second. If the second
term dominates the first, which we believe to be the case
for the experimental configuration used in Ref. 5, then
the correct zero-order picture of the surface polariton is
that its binding to the substrate is a consequence of the
presence of the grating; the mode will be much more
tightly bound than expected if o, is approximated by the
value appropriate to the Hat surface, which is given by
the first term in Eq. (2.15).

The attenuation constants o.', which appear in Eq.
(2.15) need not all be real. If k, (co/c, then a,. is pure
imaginary in the limit that the infinitesimal g in its
definition approaches zero. Then n has an imaginary as
well as a real part. The grating can couple the surface
polariton to radiative waves, whose wave-vector com-
ponent projected onto the plane of the surface is smaller
than co/c. In the presence of such couplings, a, acquires.
an imaginary part. In the interest of simplicity, we as-
sume all o., are real in what follows.

For a simple sinusoidal grating with

and the dimensionless ratio

dR=
a6

(2.20)

e a c1/2 2 2
CX

(2.21)

We may obtain an expression for the complex wave vec-
tor k of the surface polariton by noting a = ( k
—co /c )'~, and squaring Eq. (2.21). For simplicity, we
assume the second term on the right-hand side of Eq.
(2.21) is real, and we let e=e, +i@a, where ez((e, . To
first order in e2, we have

serves to tell which limit we are in. When R ))1, the
binding is dominated by the interaction of the wave with
the grating, while when R &&1 the profile of the wave is
well approximated by that appropriate to the Hat surface.
For the experiments of Ref. 5, d =—6 pm, a =100 pm, and
5=500 A. This gives R =—7 well into the regime where
the waves are much more tightly bound to the grating
structure than they would be on a perfectly Hat surface.

In Sec. I we commented that the increased binding
provided by the grating (or roughness, as discussed next)
will shorten the mean free path of the surface polariton,
because a larger fraction of its energy density resides in
the substrate, where energy dissipation may occur. This
grating-induced damping mechanism is distinct from the
scattering eff'ects discussed elsewhere, as noted earlier.
A description of this additional damping follows from
Eq. (2.15), modified to allow the substrate dielectric con-
stant to have a nonzero imaginary part. When e(u) is
complex, and we use the definitions of k and k„Eq.
(2.15) may be arranged to read

+i+&,,

o. =—5+ +
c 2 0 &m+&

Then (k —k ~, ) =(2'/a ) . Thus, for a we find

(2.17)

(2.18)
where

r)2 ~ CO 2 ( r)+a~ +i
3~~ a

c c

co 1 4& co

(2.22a)

(2.22b)

If we have the experiments of Ref. 5 in mind, the wave-
lengths of the surface polaritons generated are of the or-
der of the grating spacing. Thus, both 0. +& and n
will be of the order of ~/a; the precise values depend on

is the decay constant which controls the spatial profile of
the wave in the vacuum above the grating. We write
k =k "'+ ik ' ' where in the far infrared frequency
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range, k' "-=co/c. Then to first order in ez, we find

k =—— f,1 co 2
(2.23)

where f=5a'"'—:fill; l=(a'"') ' is the penetration
length of the wave into the vacuum above the grating.

When 6 &(l as is true for the limit of interest here, the
dimensionless number f is a measure of the fraction of
the energy density of the wave which is stored within the
substrate, where dissipation may occur when @2&0. In-
teraction of the wave with the grating compacts jt onto
the grating, f thus increases, and the mean free path of
the surface polariton is thus shortened by the increased
dissipation.

It is also straightforward to derive the inAuence of
small-amplitude random roughness of one-dimensional

character on the attenuation constant from Eq. (2.15).
Formally, one lets the period a of the grating approach
infinity, then assumes that for a very large and finite, g(x)
is a random function. If angular brackets denote an aver-
age over an ensemble of surface profiles, & g(x)g(x') ) be-
comes a function of only x —x', as a ~~.

One may then establish the relation

&lg, l'&= —I '
dxe "' '&g(x)g(0)), (2.24)

and it is conventional to let &g(x)g(x')) =crag(x —x'),
where o. is the root-mean-square roughness height, and
g(x —x') is normalized so that g(0)=1. A common
choice for g(x —x') is the Gaussian g(x —x')
=exp[ —(x —x') Iro], where ro is called the transverse
correlation length.

After some algebra, we find

a(k, co) = 1 2 co q (y —1)+ — dy+ dy exp ——ro (1 —y)
4 c' (y+1)'"

+1 2 (1 )3/2
+i dy exp ——ro (1—y )—

1 4 c2 (1+y )i/2
(2.25)

The term on the right-hand side of Eq. (2.25) contribut-
ed by the one-dimensional roughness is identical to the
expression which applies to shear horizontal waves, di.s-
cussed earlier in Ref. 9. Since the quantity in curly
brackets has a positive definite real part, we see that in
the limit of infinite conductivity, roughness of the as-
sumed character will bind surface polaritons to the sur-
face. When ~e~ is finite, the presence of such roughness
will increase the value of ct(k, co), and thus compress the
surface polariton fields more tightly to the surface. It
would be of considerable interest to extend the discussion
to the case of true random roughness of two-dimensional
character. The extension is not straightforward, since in
this case one may no longer assume the surface polariton
is a true TM wave.

From Eq. (2.25) extended to allow e to be complex, it is
easy to see that roughness-induced compaction of the
wave onto the surface shortens its mean free path. One
may see this by proceeding along lines similar to the

analysis which follows Eq. (2.20).
In conclusion, the analysis of experimental data on

surface-polariton propagation on metal surfaces in the far
infrared frequency range must take into account the pos-
sibility that the spatial profile of the wave may differ sub-
stantially from that appropriate to the perfectly Bat ideal
surface. A small-amplitude grating, or the presence of
roughness, may give rise to a wave more tightly bound to
the surface than expected from dielectric theory applied
to the perfectly Aat surface.

ACKNOWLEDGMENTS

We are grateful to Professor G. I. Stegeman for stimu-
lating our interest in this problem, and for many useful
discussions. The research of D.L.M. was supported by
the U.S. Department of Energy, through Grant No. DE-
FG03-84ER45083, while that of A.A.M. was supported
by National Science Foundation (NSF) Grant DMR-85-
17634.

For articles on the basic properties of surface polaritons, see
the collection of articles in Surface Polaritons, edited by V.
M. Agranovich and D. L. Mills (North-Holland, Amsterdam,
1982).

Z. Schlesinger, B. C. Webb, and A. J. Sievers, Solid State Corn-
mun. 39, 1035 (1981);E. S. Koteles and W. H. McNeill, J. In-
frared Millimeter Waves 2, 361 (1981);Z. Schlesinger and A.
J. Sievers, Appl. Phys. Lett. 36, 409 (1980).

J. Schoenwald, E. Burstein, and J. M. Elson, Solid State Com-
mun. 12, 185 (1973).

4D. L. Mills, Phys. Rev. B 12, 4036 (1975); A. A. Maradudin

and W. Zierau, Phys. Rev. B 14, 484 (1976).
5K. W. Steijn, G. I. Stegeman, and R. J. Seymour (unpublished).
D. L. Mills, J. Appl. Phys. 48, 2918 (1977)~

78. A. Auld, J. J. Gagnepain, and M. Tan, Electron. Lett. 12,
650 (1976).

Yu. V. Gulyaev and V. P. Plesskii, Zh. Tekh. Fiz. 48, 447
(1978) [Sov. Phys. —Tech. Phys. 23, 266 (1978)].

9N. E. Glass and A. A. Maradudin, Electron. Lett. 17, 773
(1981).

i A. A. Bulgakov and S. I. Khankina, Solid State Commun. 44,
55 (1982); Xue Mei Huang and A. A. Maradudin, Phys. Rev.



1574 D. L. MILLS AND A. A. MARADUDIN 39

B 36, 7827 (1987).
F. Toigo, A. Marvin, V. Celli, and N. R. Hill, Phys. Rev. B 15,
5618 (1975).

M. Weber and D. L. Mills, Phys. Rev. B 27, 2698 (1983).
This statement is contained in Eq. (2.2) of Ref. 12. In the
present case, Ho(x, z) is zero.

t~This is Eq. (2.4) of Ref. 12, applied to the region z )g(x).
This relation follows quite directly from the discussion in Sec.
8.1 of J. D. Jackson, Classical E/ectrodynamics (Wiley, New
York, 1975).

R. Garcia-Molina, T. A. Leskova, and A. A. Maradudin (un-
published work).
If the integration over the actual grating surface is converted
to one over the x-y plane, ds' is replaced by dx'dy'[1
+g'(x')~]', with g'(x) =dg/dx. Our approximation just re-
places ds' by dx'dy' in this one term. Even if d/a-0. 2, the
error amounts to only a few percent.
N. E. Glass, M. Weber, and D. L. Mills, Phys. Rev. B 29, 6548
(1984).


