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By exploiting in a systematic manner the transformation properties of the general term of the
curved-wave multiple-scattering series under rotations, we derive a recursion formula that allows us
to compute in a fast and efficient way the building blocks of such terms. This method is applicable
both to the polarization-averaged, as well as the polarization-dependent, quantities. One can there-
fore exploit in data analysis, when possible, the additional simplification brought about by the selec-
tive power of the polarization, especially at low energies 20—150 eV, where the effect of the curva-
ture of the photoelectron wave becomes sizable.

I. INTRODUCTION

Since the work of Lee and Pendry' in 1975, the impor-
tance of the multiple-scattering (MS) contributions to the
x-ray absorption coefficient has been stressed in various
occasions, especially in relation to collinear configura-
tions of atoms where, because of the focusing effect, the
corresponding MS contributions dominate over the
single-scattering signal. However, in practice, their
effects have been usually considered more as a nuisance in
the data analysis than as a real piece of structural infor-
mation to be carefully exploited. The argument was that,
except in the collinear case, their effects are negligible in
a first approximation, so that one could get away with the
single-scattering approximation.

It was not until two or three years ago that it became
possible to refine the EXAFS (extended x-ray-absorption
fine structure) analysis and to show that noncollinear MS
contributions, although small in comparison with the
single-scattering signal, can nonetheless be extracted
from the experimental spectrum and used to obtain infor-
mation about bond angles around the photoabsorber.
This was done for the permanganate ion Mn04 in solu-
tion, for the ferrocene and nickelocene molecules, and
for the silicon crystal. In all these cases, the type of
analysis was inspired by the underlying assumption, sup-
ported by the theory, that the contributions of the final I
channel to the absorption spectrum can be written as
[tc=(A'co —Eo)'r ]

at(co) =a((co) I+ g yi(tc)
n)1

where at(to) is the atomic absorption and

y,"(tc)= g At"(tc,p, )sin[tcR (p, )+tp,"(tc,p, )]

represents the partial contribution of order n to the ab-
sorption coefficient coming from all processes where the
photoelectron emanating from the absorbing site 0 is
scattered n —1 times by the surrounding atoms along
path p, of length R (p,. ) before returning to site 0. Its os-
cillatory character signifies the self-interference process
of the photoelectron wave in the final state. Under broad
assumptions discussed in Ref. 5, the series converges uni-
formly starting at 20—30 eV above the absorption edge
and sometimes at lower energy. This fact strongly sug-
gests a type of analysis based on modelling the two
strongest signals present in the spectrum under study
[i.e., the atomic absorption at ( co ) and the single-
scattering oscillation yt(tc)] either by theoretical con-
siderations or by a fitting procedure and subtracting them
from the experimental spectrum. The residual signal so
obtained contains both structural information related to
MS paths and higher-order correlation functions, and
dynamical information connected to e1ectronic correla-
tion e6'ects (when present). The latter should be further
isolated and subtracted if structural analysis is done.
Due to the convergence of the MS series and especially
for light atomic scatterers one expects these MS contribu-
tions to be sizeable at relatively low energy 20—150 eV
where the distortion introduced in the propagation am-
plitude of the photoelectron by the curvature of the
waves is substantial and cannot be neglected.
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For a careful analysis, it is therefore of the utmost im-
portance to have an exact, fast and efficient way of caIcu-
lating the general term of the MS series in the spherical
wave representation. The purpose of this paper is to pro-
vide such a development. Furthermore, the following
treatment constitutes a useful compendium of the MS
theory of x-ray absorption spectra.

The calculation hinges on the systematic exploitation
of the transformation properties of the general term of
the MS series under rotations, which will allow us to
derive a recurrence formula for the building blocks of
such terms. This method can be applied both to
polarization-averaged as well as to polarization-
dependent quantities. The expressions obtained for the
latter are not much more complicated than their aver-
aged counterparts.

II. PRELIMINARIES

In all of the following, we make use of the basic refer-
ence concerning angular momentum: Ref. 7. According
to the multiple-scattering formalism, the x-ray absorption
cross section for an atomic system in the muffin-tin ap-
proximation is, in SI units, '

cr( E ) = 4vrahai—s g g Ml Ml - Im( &L
~
r ~!iiL")

rnoL, L"

X(2m/ih' ),
where e is the fine structure constant, Ace is the energy of
the x-ray photon, ~ is the photoelectron wave number, L
is the compound index L —= (l, m), and lo and mo are the
azimuthal and magnetic quantum numbers of the core
electrons in the initial state, respectively. Furthermore
we have defined the atomic dipole matrix element:

Mt = f d r R&(r)YP (r)a rRf (r)Y& '(r),

where Rf (r) Y& '(r) is the wave function of the core elec-
0 0

tron (before absorption) and R&(r) YP(r) is the photoelec-
tron wave function inside the muSn-tin sphere. It is
defined so that the radial part R&(r) matches smoothly to
j&(iver )cot(5& ) n&(xr ) at the m—uffin-tin radius of the pho-
to absorbing atom (5& is the 1th phase shift of the photo-
absorbing atom, the index 0 refers to the absorbing site).
The sum over mo is the sum over the initial states while
the sum over L and L" is the sum over all the possible
final states of the photoelectron.

In the above formula, we have used real spherical har-
monics YP(r) which are defined in terms of the usual
complex spherical harmonics PP(r) by the unitary trans-
formation:

Yi ( r,. ) =g 3 ', Qi ( r,. ),
m'

where the nonzero elements of A '
~ are (for m )0)

= ( —1 ) /V2, 2 = I /v'2,

i( —1) /V—2, 4' =i &/2, A~i = I .

The matrix element ( aL
~
r !ttL ") of the scattering

path operator w is defined by the matrix equation

(iiL!r ~aL") =rtt„= I(1 aT—,H) 'T, j~~„.
In this equation [T, jItl ~ =( —I/v)t/'5;J. 5tt ~ is a diagonal
matrix describing the scattering process of the photoelec-
tron spherical wave with angular momentum / by the
atom located at site i through the atomic dimensionless
t-matrix element t&'=sin(5I)exp(i5&), 5& being the associ-
ated phase shift (muffin-tin potentials are assumed). The
structural information about the cluster is represented by
the matrix

H j (~,,~, —= —4m i+i'+'-' C ,'~,„h,+ (~R,
&

)Y~i(R.„).
k, p

where C &™&„is a kind of Gaunt coefficient for real spher-
ical harmonics defined by

C
&

i„=—f dO Yi. (r) Y~i(r) YP(r),

and h & is the Hankel function given by"
k

(i+i) e + (1 +k)!
p k 0 k!(1—k)! 2p

The vector R,. =—R; —R. is the vector joining the two
atoms in the cluster located at sites i and j, R; being its
modulus and R; the associated unit vector. The dimen-
sion of the matrices used in the above formulas is
N(l +1), where N is the number of sites and 1 the
maximum azimuthal quantum number used in the calcu-
lation.

%'e shall also use complex spherical harmonics. Then
the corresponding scattering path operator is defined by
the same equation with H replaced by &. This latter ma-
trix is expressed by

I&j't'
&

~ = 4migi + —
C/ &„h& (tcR, )Q&&(R, )„"

A, ~p

where CI' z„are now the standard Gaunt coefficients
defined by

C,' i
—= f d A[PP (r)]*Pii'(r)PP(r)

= [(21 + 1)(2K+ 1)/4n(21'+ I )]'i
X (lOA, 0~ 1'0)(lm A,p~l'm'),

where (lmkp~l'm') are Clebsch-Cxordan coefficients. We
remind the reader that (lOAO~l'0) is zero if 1+1,+1' is
odd. We shall rewrite the & matrix as

.=QOi'&, (sR, )g( —1)' (1 —m. l'm'~aa)P, (R; ),

Oi'& (sR; ) =i ' —'h,+(vR; )[4'(21 +1)]' (10a0~1'0) .

The equivalence of this definition with the previous one is
a direct consequence of the symmetry relations

(lmaa~ 1'm') =( —1)' ' [(21'+1)/(2a + 1)]'~

X (1 —m1 'm '
~
a a )

(Ref. 7, 3.180). We shall show that the & matrix is relat-
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ed to the H matrix by the same unitary transformation as
that between real and complex spherical harmonics.

In his derivation of the curved-wave extended x-ray-
absorption fine structure (EXAFS) formula, Schaich has
shown that the polarization-averaged absorption cross
section could be written

cr =2X4maA'co»c(2m/fi ) ,'[lo—Mi,, i iX—i i—

and Mi i
=—sin(5i ) dr r Ri(r)rRi' (r) is the radial in-

0 0

tegral. The prefactor 2 comes from the sum over the spin
states of the initial orbitals.

If »AT, Vf' is "small enough, " or more precisely if the
maximum modulus of the eigenvalues of aT,&. is less
than 1, then ~ can be expanded into

r=g (AT, A)"T, .

+(lo+1)Mi'o, i, + ixi, + &] Thus we can define Xi =+Xi with

where yl is defined by Xi =
t
—v/[(2l +1)sin (5i)]]Qlm[(&T, &)"T,Jim i~

Xi ——[
—»r/[(2l+1)sin (5, )]I+1m(elm ~r ~elm ) or

Xi =[(—1) /(2l +1)]Im exp(2i5i )2 g g . g (~i' i,ti'~'7, i„„t/, . tx~z i )

mi, I', m'j, 1",m" k, A, ,p

A similar expansion will be carried out for the
polarization-dependent multiple-scattering series. For
the time being, we concentrate on the invariance proper-
ties of the sum that is on the right-hand side of the above
equation.

III. INVARIANCE AND COUPLING
OF THE MULTIPLE-SCATTERING TERMS

In this section we study the symmetries and the cou-
pling procedures of the terms of the multiple-scattering
series. First we show how one can go from complex to
real spherical harmonic representations, then we find the
symmetries of the multiple-scattering terms, finally we
describe a general coupling procedure that will enable us
to obtain painlessly the first terms of the multiple-
scattering series of the polarized and nonpolarized x-ray
absorption cross sections.

A. From complex to real representations

Note that X has a number of implicit arguments
(l, l', I", . . . , A, ;i,j, . . . , k) that we drop for notational
convenience.

The first thing we shall note is that X is invariant with
respect to any transformation changing &'il ~ i. into
~l'p', i"p" with

U„. &il i, -( U )
I' i I"f

m', m"

where U„' ~ are unitary matrices. To show this, we shall
write symbolically

X—tr(JVii ti.&i i tii.. ' ' t» &»i),
where

tr[A ]—:gA

The transformed quantity obtained by applying the previ-
ous unitary transformation is, assuming tI' = tr'

X'=tr(U'&ii. U' t'U'&ii-U' tt/ t"U~~qiU't)

Since the U' matrices are unitary, we obtain

X'=tr( U &ii.ti.&i i-t/ . t»„&»„iU' ) .

Using now the cyclic property of the trace,

X'=tr(&ii. ti.&i.i"t/. . . t»„&»„iU U') =X .

To conclude, we have proved that the terms which
have the form of X are invariant with respect to any
transformation that can be expressed as a matrix product
over the index I, where the transformation matrices are
unitary.

Now, we show that the transition from complex to real
spherical harmonics can be represented by a multiplica-
tion of the & matrices by a unitary matrix. To do that
we start from the two forms of the expansion formula of
the free-space Green function

X=+ g . . . g(W', t/. &'i'~, „m.
m m', m"

X ti" ' ' t i &i pim).k k0

Since the theory of angular momentum has been dev-
ised to deal with complex spherical harmonics, the
theoretical approach of the coupling of the scattering
terms is easier in that representation. However, the real
spherical harmonics are much more practical from a
computational point of view. In this section we investi-
gate the transition from one representation to the other.
Moreover, this easy calculation will illustrate clearly the
general method that will be used in the following sec-
tions.

During the preliminaries, we have shown that the cal-
culation of the nth order scattering term of the nonpolar-
ized absorption cross section involves quantities with the
following form:
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Go+ (r, —r. +R, ;~)

=~+ g ji(iver; )Pi (r;)&I! i ji,(iver))[pi. (r, )]',
I, I' m, m'

Go (r, —r +R;;i~)=vg g ji(vr;)Yi (r;)
I, I' m, m'

I

XH/ i, ji(iver )Yi. .(r ) .

The orthogonality of the spherical Bessel functions leads
to

I ri m, I'm I' rj
m, m'

= & ~i (ri)H/mjim , ~i
m, m'

One can obtain the real spherical harmonics from the
complex ones by the unitary transformation:

Yi (r;)=g A' Pi (r, ) .
m'

The orthogonality of the spherical harmonics yields

Hi'i i. =g(A' )*&'!i~ i,„,A',„, .

PP

Since the transpose of a unitary matrix is also unitary,
the transformation of the & matrices has the right form
and the terms X are equal in real and complex representa-
tions.

The same reasoning shows that the terms of the form

2 '.' ' g I &i (ro)~i, i
m, m" m'

Xti'. . t!.&i. i„[5'i (ro)l

are also invariant with respect to the transformation from
the complex to the real representations. This result will
be useful for the investigation of the polarized multiple-
scattering terms.

B. The symmetries of the multiple-scattering terms

Take a rotation U(a, /3, y) which leaves invariant the
photoabsorbing atom and that transforms each intera-
tomic vector R; of a specific scattering path into R,''.
Then the transformations of the spherical harmonics by
the rotation matrices (Ref. 7, p. 93)

'Pi (Ur, )=+D, (U ')Pi (r, )
m'

and the rotational invariance of the free-space Green
function leads as before to the unitary transformation:

&',m, m =g [D„' (U ')]*&(„,„D„'. , (U ') .

If an inversion is combined with the rotation, one sim-
ply adds a factor ( —l)'+' to the above result. This
shows that the rotations and the inversions of a complete
path 0, i,j, . . . , k, 0 leave invariant the multiple-
scattering term. Accordingly, it is possible to simplify
the computation of the multiple-scattering contributions
by noting that all paths that can be transformed into each
other by a rotation and/or an inversion are equal. By
way of example, for the first shell of neighbors in an octa-
hedral environment, one computes gI with one path in-
stead of six, yI with two paths instead of 30. Note that
this rotational invariance is true for each particular set of
atomic sites O, i,j, . . . , k, 0 and azimuthal quantum num-
bers I, l', I", . . . , 1,, I.

C. The coupling of multiple-scattering terms

In this section, we shall derive some formulas that will
enable us to calculate the multiple-scattering terms. This
procedure will be used to get, in a straightforward way
the double, triple, quadruple, and quintuple scattering
terms.

Firstly, we define the quantities

X"+ '(1,m;1",m" )

Vl J~ JlJ2
(&im, I

&
m tl

i
&I

&
m &, l2 m

Il, . . . , I m), . . . , m

J2 Jn Jn J
i t! &I m i"m" )
2 n n n'

which are sums over azimuthal quantum numbers of the
X introduced in the previous section. It will be proved
that these quantities can be put into the form

X"+'(1 m;1",m"),
'(l, l";a,a)( —l)' (1 —m 1"m" ~aa),

a, a

where the arguments i,j„.. . , j„,j of:-"+'(l,l";a,a) are
implicit (for notational convenience) and:-"+'(l, l";a,a)
is an (a, a)-spherical tensor. We arrived at this expansion
during a study of the influence of rotations on the & ma-
trices. It appeared that all the quantities that can be so
expanded transform under rotation as a single % matrix
or a product of them. To demonstrate that, conversely,
all products of & matrices have this form, we argue by
induction, assuming the validity of the above relation for
X". Then

X" '(l, m;1",m")= g X"(1, ;1', ')t/"&i"
I'm '

g:-"(1,1';a,a)t("Oi.i-(~R )P~~(R, )
I', a, a b, /3

Xg( —l )' (1 —m 1' m'~aa)( —l )' (1' —m'1" m "~bP) .
m'

The last sum can be transformed by using the symmetries of the Clebsch-Gordan coefficients (Ref. 7, 3.180):
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g( —1)' (l —m l'm'~aa)( —1)' (l' —m'l" m "~b/3)
m'

=( —1) +' ' [(2a +1)(2b+1)/(2/" +1)(2/'+1)]'~ g (/maa~/'m')(/' m'b/j~/ "m") .

From Ref. 7, 3.269, we find that the sum equals

g(/maa~/'m')(/'m'bP~/ "m ")=g[(2/'+1)(2c +1)]' W(/, a, l",b;/', c)(acth/3~cy)(lmcy ~/ "m"),
m' C, y

where W(l, a, l",b; l', c) is a Racah coefficient (Ref. 7, 3.240) related to the Wigner 6-j symbol (Ref. 7, 3.312) by

l a
W( /, a, /", b; /', c )—:( —1) + +i +" '

C

Using again the symmetries of the Clebsch-Gordan coefficients we obtain

g( —1)' (l —m l'm'~act)( —1)™(/'—m'l" m" ~bP)

=( —1)'+ [(2a+1)(2b+1)]' g( —1)'W(/, a, /", b;/', c)g(acth/3~cy)( —1)' (l —m 1"m" ~cy),

so that finally

X"+'(/, m;/", m")= g g ti "Oi"i-(irR )( —1)'+"[(2a+1)(2b+1)]'~(
—1)'W(l, a, l",b;l', c)

1' a, b, c

X g:-"(/, /', a, a)P~&(R )(aabP~cy ) X( —1)™(l—m l" m" ~cy) .
a, P, y

The resulting expression has exactly the expected form; thus we have proved that the relation is true for n + 1 if it is

true for n. We have also obtained the recursion relation:

:-"+'(/, l";c,y) =g g:-"(/, /', a, a)ti,"O,, i, . (irR, , )P~q(R, )

1', a a, b, P

X (
—1)'+"[(2a + 1)(2b + 1)]'~ (

—1)'W(/, a, /", b;/', c)(aab/3~cy ) .

Moreover, according to Ref. 7, 3.249,

g:-"(/, /';a, a, )P~&(R~ j )(aabP~cy )

a, /3

is a (c,y)-spherical tensor. Therefore, since the other terms do not depend on a, P, and y, ="+'(l, l";c,y) is also a

(c,y)-spherical tensor. The proof is now completed by noting that, according to the definition of the & matrix, the

property is true for n = 1.
The above result can be generalized to

:-"(l,l";c,y ) =$ g ™(/,/';a, a)ti. =" (/', /";b, P)( —1)'+ [(2a +1)(2b +1)]' (
—1)'W(l, a, l",b;l', c)(aab/3~cy ) .

I', a a, b, P

The physical interpretation of this relation is very sim-

ple. We consider a scattering path that starts from the
atom i and reaches the atom j after n —1 scatterings on
the sites j, , ~ . . ,j, . ~ . , j, , This path can also be
considered as a scattering from i to j followed by a
scattering from j to j. Mathematically, it is a direct
consequence of the associativity of tensor coupling (Ref.
7, 3.275).

From the above relation, we deduce that if we expand
& « ~

r
~

irL" & in terms of n-scattering contributions,

&« Ir"l«" & =g r"(/, /";c, y)( —1)™(l—m l" m" ~cy)
c, y

with

r (l, l";c,y) =( —1/ir)ti (2l +1)'i 5,05 O5ii

r'(l, l",c, y ) =0,

Therefore, by resumming the series we obtain

+&«ir'I«" &+&«lr'I«" &+

all the terms have the form

&~L ~r"~~L" & =yr(/, /";c, y)
c) y

X( —1)™(l—m l" m "~cy) .
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This expression will be useful for the calculation of the
polarization-dependent multiple-scattering terms.

The calculation of the nonpolarized multiple-scattering
terms requires the evaluation of

=g g r"+'(l, l;c, y)( —l)™(l—m I m icy) .
m c, y

To carry out the last sutn we note that (Ref. 7, 3.234)

(Iplm l00) =( —1)™5„/(2I + 1)'~2

so that

g( —1)' (I —m I m icy)

and

—
( 2I + 1 )

I /2 n +1
( I I .0 0 )

=(2l+1)' g (Iplm icy)(lplml00) .
m, p

According to the orthogonality relation for the Clebsch-
Gordan coefficients (Ref. 7, 3.175), one obtains

g( —1)™(l—m I mlcy)=(2I+1)'~ 6,o6 o
m

so that

gg r"+'(I, I;c,y)( —1)' (I —m I m icy)

(2l +1)':-"+'(l,l'0 0)=g g:-"(I,I';a, a)t&,"O&~&(gcR )Qtb(R )( —1)'+"
I', a a, b, P

X [(2a +1)(2b + 1)(2l +1)]'~ 8'(I, a, I, b;I', 0)(aabI3 00)

I', a, a
:-"(I,I', a, a)tI."Op((aRi . )P, (RJ J)( —1)

since 8'(I, a, l, b;I', 0)=5, b( —1)'+' ' l[(2a+1)(2I +1)]' (Ref. 7, 3.258). More generally

(2I + 1)':-"(l,l;0,0)= g:- (I, I', a, a)t&. =" (I', I;a, —a)( —1)'
I', a, a

Now we have all the relations required for a fast calculation of the multiple-scattering terms. Note that all the above
formulas would also be true if we had not summed over the azimuthal quantum numbers in the definition of:-".

IV. NONPOLARIZED MULTIPLE-SCATTERING TERMS

The calculation of the multiple-scattering terms is now obvious. First we shall consider two special cases of:- (a,a):
:-'(I, I";a, a; i,j ) = OP& (IrR,, ) P. , ( R,I )

:- (I,I";c,y;i j„j)= g OP( (~R; )0(( (~R )tI'( —
1.
)'+ [(2a +1)(2b+1)]'~ ( —1)'W(l, a, l",b;I', )c

a, b, I'

X g («bPI cy )&:(R;, ) &~g(RJ, )

a,P

These two quantities will play the role of building blocks of the multiple-scattering terms. Computer experiments
have shown that the high-order multiple-scattering terms could be economically evaluated by first computing =' and:-
for all the values of the indices. Moreover, in experimental spectra, the multiple-scattering terms that contribute the
most correspond to a linear arrangement of the atoms, because of the so-called focusing effect. For these
configurations, one has the further simplification of taking the z axis along the direction R;.:

:-'(l,l";a,a;i j)=OP& (~R;.)[(2a+1)/4~]'~ 5 o,
:- (I, I";c,y;i j „j)= g Ol'I (aR; )OI &-(~R, . )tI

' [(2a +1)(2b +1)/4']8'(l, a, l",b;I', c)(aObOlc0)5 ro
a, b, I'

if j& is betweeni and j.
Each term of the sum defining the last quantity must

be multiplied by ( —1) if i is between j, and j, and by
( —1)"ifj is between j& andi or ifj =i

The amount of memory required for the storage of:"'
and:- can be further decreased by noting the following
symmetries:

:-'(l, l";a,a;i j ) =:-'(I",I;a, a;i j )

=( —1)':-'(l, l";a,aj,i),
:- (I, I";c,y;i, j, ,g)=( —1)':- (I",I,c,yj j „i) .

One observes that = (I, I";c,y;i',j &,j ') =:- (l, l";c,y;i,
j„j)if i',j ', ,j ' can be obtained from i,j, ,j by a transla-
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tion (conserving the atomic species in site ji). Because of
the tensorial nature of:- one has also the rotational rela-
tion:

:-~(l,i",c,y', i',j ', ,j ') =g D~~, (U '):- (l, l";c,y;i j„j)

y

where i', j,-',j' is the result of the transformation of i,j„j
by the rotation U and D' . ( U ') the corresponding rota-
tion matrix. If the rotation is followed by an inversion,
just multiply the above equation by ( —1)'+' . All the
above relations concerning translations, rotations, or in-
versions are also valid for any =", as long as the atomic
species of the sites j„.. . , j„ I are conserved by the
symmetry operation.

The dimensions of:- (I, l";c,y;i, j„j)considered as a
linear vector with respect to the indices I", c, and y, are
given by the formula

ing this relation, one can also derive the position of the
element I";c,y when = (I, l";c,y;i,j „j ) is stored as a
linear vector. This is given by the relation

y'+(Xi+1)(l") + g (2A, +I)+c+1

=211"(I"+1)+c(c+1)+1—I +y .

The modifications needed when I itself is not fixed are
straightforward.

According to the recursion relations developed in the
previous section, we obtain immediately the term re-
quired for the calculation of the double-scattering term:

(21+1)':-'(0,0)
= g:- (I, I', a, a;0j „jz)

1'aux

I-+I
(2c + 1)=(21 + 1)(l + 1)

I"=0c= jl" 1I Since

X t&,
' ='(I', I, a —a; jzO)( —1)'

where I is the maximum value allowed in the l expan-
sion. In practice, since l and l" are either free or saturat-
ed with t$~& ~, I is the maximum I value scattered by any
muffin-tin potential of radius RMT, i.e., l =~RMT. Us-

y& =( —1)"(21+1) '~ Im exp(2i5&) g:-"(I,I;0,0)
[n —I]

where [n —1] means a sum over all the paths starting
from 0, visiting n —1 sites and coming back to 0, we find

g=[(—1)/(21+ 1}]Im exp(2i5&) g g:- (I, I', a, a;Oj „j2)t&' -'(I', I;a, —a;jz, O)( —1)'
jI J2 I

Once expanded, we find the same expression as in Refs. 13 and 3:

g=(4') Im exp(2i5&)g g ( —1)'(2l'+1)(21"+ 1 )t/'. tj,

The term

X g ( —1)'+ ' ' (IOI'OiaO)(l'OI" OibO)(I" OIO~cO)
a, b, c

X W(l, a, I",b;I', c),h,+(&Ro, )h&+(vR; )Ii,+(irR 0)

X(2c+1) ' g (
—1)' r(aab/3~cy)5', (Ro,. )P~&(R) )P, ~(R~o)

a, p, y

(2c+1) '~ g ( —1)' r(aabP~cy)P, (Ro;)P~&(R;.)P, r(R 0)
a, p, y

is a rotational invariant that plays an important role in the theory of angular correlations in particle physics and may be
viewed as a basic structure for determining the Wigner coefficients (Ref. 7, 3.335). Since the vectors Ro;, R,i, and RID
are coplanar, one can use an expression for the last term (Ref. 7, 6.160), which might decrease the computing time:

(2c+1) '~ g ( —1)' r(aabf3~cy)P, (RO;)5'~q(R; }P, r(R o)
a, p, y

= [(2a +1)(2b + 1)(2c +1)]' (4')
Xgf(2c+1)!/[(2c —2k)!(2k)!]I' y' z"( —1)((c k)Oa 0~10)(kObO—~IO)W(c k, c, l, b;k, a)P&(—RO, R,"),

k, l

wherey = —Ro ~Ro, an« = —R, ~Roj
The coupling formula yields immediately the triple-scattering term as weH:

y, =[1/(21 +1)]Im exp(2i5, ) g g:-'(l, l';a, a;0j „j,)t, ' ='(I', I;a, —aj „j,, O)( —1)'
j&,j2,j3 t', a, u
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Once expanded, this expression is identical to the formula of Refs. 13 and 3. We would like to stress that, from a
computational point of view, our formula is very efticient since the " can be calculated once and for all for each ener-
gy, and then combined to give yh. We thus avoid the repeated computation of spherical harmonics, Clebsch-Gordan,
and Racah coe%cients.

Concerning the triple-scattering term g&, we add a comment that could have some practical value when the bond-
angle dependence of y& is noticeable. Generally the bond lengths are relatively well known from the analysis of the g&
term and/or the comparison with model compounds, so that the remaining questions concern the bond angles. In the
investigation of nearly linear atomic arrangements in molecules, it has often been observed that the triple-scattering
term g& is greater than the double-scattering term yz because of the focusing eject. Now consider the path O, i,j,i, O.

Take as a starting point 0, i, and j aligned and use the rotational invariance of the multiple-scattering terms to take the
z axis along the bonds. If we decompose the path into O, i plus i,j, i, plus i, O, the first two paths couple to

:- (/, /";c, y;O, i j,i)= g:-'(/, /', a, O;O, i)t/':- (/', /";b, O;i j,i)
I', a, b

X( —1)'+ [(2a+1)(2b+1)]' ( —I)'W( /a, /", b; /', c)(aOb O~c 0) 5&0.

To obtain the term g& we must couple this = to the =' representing the last bond i, 0. This yields

(2/+ I)'~:- (/, /;0, 0;O, ij,i, O)= g g:-'(/, /';a, O;O, i)t/'- (/', /";b, O;i j,i)
1', 1" a, b

X( —1)' ' [(2a +1)(2b +1)]' W(/, a, /";b;/'; )c( OabO~cO)t/«:-'(/", /;c, O;i, O) .

Now, if we sum over all the indices except b, we obtain a set of y&(b) terms. The advantage of this procedure is that,
because of the tensorial character of:-, the y& corresponding to any bond angle 8 (with 8=0 for aligned bonds) is ob-
tained by the simple computation:

y((8) =g D00(vr, 8, m )y((b) =
QPq (cos8)y((b),

b b

where P&(cos8) are Legendre polynomials. This enables one to fit precisely the bond angle to the experimental g&. This
procedure can obviously be generalized to higher-order terms of the multiple-scattering series, in which one rotates
each bond independently. In that case, one must perform the sum before taking the imaginary part if the rotation ma-
trices are not real. It should be emphasized that the length of each subpath must be kept constant, so that the argu-
ments of the Hankel functions do not change. Consequently, this procedure cannot be used for a g&.

After this digression, we consider now the quadruple and quintuple scattering terms. They are obtained with the
coupling formula:

g~ = [( —1)/(2/+ 1)]Im exp(2i5& ) g
J ),J2 J3,j4 l', 1"a, a, b, p, c, y

:"'(/, /', a, a;0,j„j,)t, ,
' ='(/', /";b, /3;j ~,j„j4)

X t&, ', ='(/", /;c, —yj 4, 0)( —1)'+"[(2a+ 1)(2b + I )]'~

X ( —1)'8'(/, a, /", b;/', c)(aabP~cy )( —1)

y& =[1/(2/+1)]Im exp(2i5&) g g g g:- (/, /', a, a;Oj, ,j2)t&'-= (/', /";b, /3 j2j 3,j4)
j&,j2,j3j4j 5

l' l" a, a, bp, c, y'

Xt&,', ( —1)' [(2a + l)(2b+ I)]'~:- (/", /;c, y;j 4,j 5,0)—
X ( —1)'W(/, a;/", b;/', c)(actbP~cy )( —1)'

The advantages of this formulation from the computational point of view are self-evident.

V. POLARIZED MULTIPLE-SCATTERING TERMS

Up to now, we have considered only the case of a nonpolarized electromagnetic wave'or of a nonoriented sample.
With the tools developed above, we can consider the case of a linearly polarized beam interacting with an oriented sam-
ple. We shall expand the polarization-dependent absorption cross section in multiple-scattering contributions. We cal-
culate the first orders with standard methods, then we use the block form of the multiple-scattering formulas developed
in Sec. III C to obtain the inAuence of polarization on the higher-order scattering terms.



1496 C. BROUDER et al. 39

A. General treatment

To obtain the polarization-dependent absorption cross-section we must start from the basic formula:

o(e)= 4—~a%co~ g g MLMI-Irn(aLIr IxL" &(2m/fi ) .
mo L, L"

The discussion of the transition from real to complex spherical harmonics enables us to write the corresponding formu-
la for complex harmonics:

o.(e)= 4vra—Acoa. Irn g g MLMI*„(xL lr ILL" & (2m/fi ) .
mo L,L"

Using e r=(4~/3)rg„[5'&&( E)]*V~&(r) we obtain

cr(e)=4nah'cow —,'(2mlfi )(2lo+1)g M( (M(,-(lo010I10)(lo010ll"0)y(1„(E),
1, 1"

where we have defined

y&&„(e)=[—v/(sin5& sin5&, )]1m g g g CI &„'[P~&(E)]*(elm Ir Ilail
"m" &Ci . &„P~& (8)

mo m, m" p, p'

Ng. = 3(2lo+ 1)(lo010l lO)(lo010l l "0)/(4w)2

is a normalization factor. The fact that N11- may be zero has no consequence since the dipole selection rules ensure that
l =lo+1 and l"=lo+1 (l =l"=1 for a K edge). Thus the absorption cross section is zero when NI&„ is zero.

Now we can use the representation of (vlmlr

Ill�

"m"
& developed in Sec. III,

( ~lm
I
r

I
~l "m "

&
=g r( l, l ";c, y ) ( —1 )' ( l —m l "m "

I
c y ),

C, y

to simplify this expression. Following Ref. 7, 3.437, we define the reduced matrix element,

(& Ilb Ilc &
—= I (2b + 1)(2c + I )/[4m(2a +1)]I

'~ (bOcOlaO),

so that

CI', „' = (lo Ill III &(lm Ilullomo) .

This gives us the following expression:

XII-(E)= [«(»n5t»n5~-)]&lolllll1&&lolll" 111&

XIm gr(l, l";c,y)g g g (
—1)™(l—m l" m" lcy)(lm ipllomo)

C) f p, p' mom, m"

X (l "m "Ip, 'Ilomo)[P", (E)]*V~) (E)

To evaluate the sum over I, m", and mo we first use the symmetries of the Clebsch-Gordan coe%cients:

( —1)™(l—m l" m "
I cy )(lm I@I

lorn

o )(l "m "Ip, '
lorn o )

=( —1)' "(2lo+1)[3(2l+1)] ' (lo —mo l" m" ll —p')(l —m l" m" lcy)(1 halo
—moll —m)

then we carry out the sum with Ref. 7, 3.267, which gives us

( —1)™(l—m I"m" lcy)(lm lpllomo)(l "m "1p'llomo)[P", (e)] 5'~(c)
p, p' mom, m"

=(2lo+1)8'(l, lo, c, l";l, l)g( —1)' "(1@1—p'lcy)[9'", (e)]*V",(e) .

The third step is to use the tensor coupling of spherical harmonics (Ref. 7, 3.439)
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All this yields finally the reduced expression:

y&&-(e)=[4~ii/(sin5& sin5& )]g W(1, 1o,c, l",1, 1)(c~~l~~l)ImIr(1, 1";c,y)[5 r(e)]*I .
C, P

This formula exhibits the general structure of the polarization-dependent absorption cross section. Because, of the
coefficient (c~~1~~1), c must be 0 or 2. The term c =0 gives the polarization-averaged absorption cross section y&5&& ~

while the term c =2 contains the dependence on polarization.
We know that under suitable conditions, r(l, I";c,y ) can be expanded in a series of multiple-scattering contributions:

r(I, I";c,y ) =r (l, l";c,y )+r'(l, l";c,y )+ . +r"(l, l";c,y)+
with

r (1,1";c,y)=( —I/lr)ti (21+ I)'i 5,O5r05ti, r'(l, l";c,y)=0,
and

r"(I,I";c,y ) =( —1)"+'(1/ir)ti t, ~ g:-"(1,1";c,y ),
[n —1]

where [n —1] means a sum over all the paths starting from 0, visiting n —1 sites and coming back to 0. A direct evalu-
ation gives the first two terms y&& (e)=5&& and y&&.,(e)=0. The other terms are given by

yo-(E) =( —I )"+'4~+ g W( 1, lo, c, I";I, 1)(c 1~~1)Imt exp(i5&+i 5&„):-"(I,I",c, y )[Pr(e)]*I .
c, y [n —1]

I

This concludes our study of the general terms of the polarization-dependent absorption cross section.

B. The polarization-dependent curved-vvave EXAFS

For the EXAFS term, we need to evaluate

:- (l, l";c,y;0, j,O)=g Oi; (aR()) )0,", .(~RO )tj( —1)'+ [(2a +1)(2b+ I)]'~
abI'

X( —1)'W(l, a, l",b;I', c) g (aabP~cy)q/, (Ro,. )P~~(R,o) .
a, P

The last sum can be calculated with the spherical harmonic coupling formula:

g (aabP[cy)P, (Roi)P„(—ROI)=( —1) (c[ia iib ) P, (RO ) .
a, P

Finally, we use the addition theorem

g[Pr(e)]*5'r(RO, ) =(2c+1)P,(e Ro )/4m-

to obtain

y&&-(e) =1m exp(i 5&+i 5& )g t/+OP&, (~RO )0& &
~ (PRO )( —1)' '[(2a +. 1)(2b +1)]'

j, I' a, b

Xg( —1)'W(l, a, l",b; I', c)(c a))b ) (c~~ 1))l ) W( 1, lo, c, l";I,1)(2c + 1)P,(e Ro )

which is our final expression for the polarization-dependent EXAFS of a general edge.
From this expression, we can confirm our previous results. For c =0, the Legendre polynomial is Po(e Ro )=1 and

the corresponding term is independent of polarization. For c =2, Pz(E Ro, )=[3(e.Ro, )
—1]/2, and it is this term

which is responsible for the polarization effects. Since the polynomial Pz(e. RO ) averages to zero, the second term
disappears when the sample is not oriented, and the first term should give back the g (EXAFS) term averaged over all

polarization directions. It can be checked that the term c =0 is indeed the curved-wave EXAFS formula: '.8, 14

5ii-gi = —Im exp(2i5& )g (2l'+ 1)ti', g'(IOI'O~aO) [Ii (KRO~ )] 5g

The above formula for y&» (e) is valid for any edge. If we specialize to the experimentally common case of a X edge,

it becomes much simpler. For a E (or Li) edge 10=0 and we have the identity W(1,0, c, l";1,1)
=5ii. (

—1)'+ '[3(21 +1)] ', therefore,
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Xtt (e) =
—,'5tt 5t iIm exp(2i5i)g tt g Oit. («o) )Ot i(«o/)( —1)'

j, I' a, b

X [(2a +1)(2b + I)]'~ g W( l, a, l, b;/', c)(c a((b ) (c((1((1)(2c+1)P,(e Ro )

Since there exist simple analytical formulas for the Racah coefficients W(l, a, l, b;1', c) and the relevant Clebsch-
Cxordan coefficients, one can make a direct evaluation of these terms to simplify the expression for y&&. (e). This yields

g&„(e)=—
5&&„5t iIm exp(2i5i)hatt, (I(/'+1)[h&+i(lrRoj)] +/'[hi+ i(vRoj )] I

+ [(/'+1)(/'+2)[ht++i(«o )] +1'(1'—I)[hi+ i(«o, )]

—61'(1'+ l)ht++, («o )hi+. i(«o )]P~(e Ro )/(21'+1))

which can also be put into the form

g&& (e)= —35&t-5&,lm exp(2t5, )g tt, [[(1'+I)h&+, ( «o/) /'hi+—i(«oq)] cos (0/)/(2/'+I)

+[hi++i(vRoj )+h» i(vRo )] sin (8 )/'(/'+ I)/(4/'+2)I

where 0 is the angle between the polarization vector and Ro . Note that in the plane-wave approximation the sine
term disappears.

For an L»,«edge, the algebra is a little more involved, but still manageable, and we obtain

y&&„(e)=1m exp(i5&+i5& )g tt'(I A[h&+ +(2«o)j] +B [hl+'(«op)] +C[hl p(KRoj )]

+ [D [hI'+2(«Roj )] +&[ "i+ («oq )] +F[ht —z(«oj )]'

+Ght+ z(~Ro& )h,+ («o~ ) +Hhi(«oj )h, ++2(«o~ ) IPz(e.Ro, ))

with, for l =I"=2,,
3(l'+ 1)(l'+2) 1'(1'+ 1)(21'+1) 3(l' —1)l'

2(21'+ 3) ' (2l' —1)(21'+3) ' 2(21' —1)
3(l'+ l)(l'+2)(1'+3) 1'(1'+ 1)(21'—3)(21'+ 1)(21'+5)

2(21'+ 3) 2(21' —1) (21'+ 3)
3(1'—2)(1' —l )1' 3(l' —l )1'(1'+ 1) 31'(1'+ l )(1'+2)G=, H=

2(21' —1) (2/' —1) (21'+ 3)

for l =0 and l"=2 or I =2 and l"=0, 3 =8 =C =D =F=0,
/2/'(/'+ 1)(21'+1) 3(l' —l )1' 3(l'+ l )(1'+2)

(21' —1)(21'+3) V'2(2/' —1) v'2(2/'+ 3)

and for/=/"=0, 2 =C =D =F. =F =G =H =0, B = —(21'+1).
Note that for the accurate analysis of an I edge, the atomic ratio M&o/M&2 should be calculated. For atomic num-

bers greater than 20, Teo and Lee' find M]o/M, 2 =0.2, approximately independent of the photoelectron energy.
If all the spin orbitals of the initial states have the same radial wave functions, it is possible to take the spin states into

account. If j is the total (spin plus orbital) angular momentum of the initial states, the calculation performed by Miiller
and Wilkins' shows that this simply adds a factor (2j+1)/(2lo+1) to y&&.(e). This remark is also valid for the
higher-order scattering terms.

C. The polarization-dependent double- and triple-scattering terms

The extension of the polarization-dependent EXAFS to higher-order scattering contributions is straightforward. The
recursion formula for ="gives us

:- (/, /"; y)c= g g:- (/, /';a, a;0,j, ,j2)tt.'='(/', /";b, P;j2,0)
I' a, a, b, P

X( —1)' "[(2a +1)(2b + I )]'~ ( —1)'W(l, a, /", b;/', c)(aab/3~cy ) .

Therefore we obtain
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ytt„(a)=4vr(2lo+1)g W(l, lo, c, l";l, 1)(c(~1)~l)
c, y

XIm exp(i5t+i5t )g-g g:- (I, /';a, a;O, .ji,j2)ti'='(I', l";b,Pj2, 0)
I' a, a, b,pj &j 2

X( —1)'+ [(2a+1)(2b+1)]'

X( —1)'W(l, a, l",b;1', c)(aabP~cy )[P'f(e)]*

In the same way

ytt-(a) = —4m (21o+ 1)g W( 1,I o, c l";l, 1)(c i( 1 ii 1 )
c, y

XEm exp(i5i+i5i )

Xg g g:- (l, l', a, a;0,ji,j, )t, '='(l', l";b,pj 2j 3,0)
I' a, a, b, 13j &,)2,j3

X( —1)'+ [(2a+1)(2b+1)]'

X( —1)'W(l, a;1",b;I', c)(aabp~cy )[P~(a)]*

These expressions look formidable, but they are not so
difficult to compute. For a general edge, there exist
analytical forms for the Clebsch-Gor dan coefficients
(a ab p ~ 2y ) and Racah coefficients W ( l, a; l",b; l', 2)
(Ref. 7, pp. 637 and 649). For a IC edge, 1"=l=1, and
the analytical expressions for W(l, a;l",b;l', c) are
simpler.

VI. CONCLUSION

The curved-wave formalism has proved to give
significantly dift'erent results from the plane-wave formal-
ism in a number of cases. Generally, the plane-wave
analysis gives an incorrect phase shift even at high ener-
gies. Moreover, the analysis of experimental spectra
with curved-wave multiple-scattering terms has yielded
unambiguous results concerning the bond lengths and an-
gles of some molecular systems. ' Therefore, it appears
that a thorough treatment of the multiple-scattering con-
tributions both for oriented and unoriented samples has
become necessary.

The present work, which is a formal development of
ideas suggested in Ref. 3, intends to provide such a treat-
ment. By using the powerful tools of angular momen-
tum coupling we have presented a homogeneous forrnal-

ism that enabled us to obtain painlessly the first terms of
the multiple-scattering series, up to the quintuple scatter-
ing for unoriented samples, and up to the triple scattering
for oriented samples and polarized light. Besides, our
formulation opens the way to an easy calculation of the
further terms, if they prove necessary.

For a preliminary application of the curved-wave po-
larized EXAFS formula presented above to a physical sit-
uation, we refer the reader to Ref. 17.

Note added in proof. After the completion of this
work, we became aware of the fact that the polarization-
dependent curved-wave EXAFS formula for a E edge
was given in Refs. 18 and 19. A small-atom approxima-
tion of the multiple-scattering contributions to the
curved-wave x-ray-absorption cross section can be found
in Ref. 20.
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