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Previous studies have demonstrated that thermal fluctuations destroy superconducting long-range
order within the mixed state of a type-II superconductor. These fluctuations are shown to be in-

compressible shear motions of the flux lines forming the flux lattice. Despite the absence of super-
conducting order, the existence of a flux lattice phase is indicated by a renormalization-group
analysis. The Lindemann melting criterion suggests that the lattice might melt when (1 —T/T, , ) is
of order H' '.

As long ago as 1971, Maki and Takayama' had extend-
ed the earlier analysis by Eilenberger of the thermally
excited fluctuations of the Abrikosov flux lattice to show
that these fluctuations would destroy superconducting
off-diagonal long-range order (ODLRO). However, the
destruction of ODLRO in conventional superconductors
is significant only for fields H very close to H, z, such that
(H, z

—H) /H, 2 (R, where R increases logarithmically
with the size of the system, and for a sample of size 1 cm
lying in the range 10 —10 . These fluctuations turn
out to be much more important for the high-temperature
superconductors due to their shorter correlation lengths. '

In this paper it is shown that the fluctuations which
destroy ODLRO correspond to an incompressible shear
motion of the flux lines forming the flux lattice and an
eA'ective Hamiltonian which greatly aids in their analysis
is derived. A renormalization-group treatment of this
Hamiltonian indicates that the system is at its lower criti-
cal dimension, but that there should be a phase transition
at finite temperature. There exist useful analogies with
the Kosterlitz- Thouless (KT) theory of the two-
dimensional superfluid which also has no ODLRO, but
which has a nonvanishing superfluid density p, . Rather
surprisingly the root-mean-square displacement 1 ( T) of a
flux line due to the thermal fluctuations remains finite in
the thermodynamic limit. Thus the fluctuations which
destroy ODLRO leave the flux lattice intact. The possi-
bility of a flux lattice, but no ODLRO was anticipated by
Fisher and Lee and described as "exotic." While d(T) is
finite it becomes comparable to the flux lattice spacing I,
at temperatures high enough such that (l —T/T, )

—H, which according to the Lindemann criterion
would imply that the lattice should melt. It is perhaps
significant that the line which marks the onset of glassy
behavior has the same functional form.

The starting point of the calculation is the convention-
al Czinzburg-Landau phenomenological free-energy densi-
ty functional

F=r~g~ + —,'u ~g~ +(2m) '~( —irrrV —2e A/c)P~'-

+(8—H) /8~

such that the area Q of the fundamental cell is given by
the flux quantization condition Q =xry» =1 +3/2
=No/B. Explicitly

P(r 0)=(2y„/x, )'r exp( —y /2P)

X 9,(rrr/x, (xrr+ryrr )/xr ), (2)

where Q = 2srP, r = (x +iy ) and 0~ is a Jacobi theta func-
tion. Eilenberger observed that the functions

P(r ~ ro ) =exp(ik x )P(r + ro ~0), (3)

where ro=(xo+iyo) —=P( —k +ik ) form a complete
orthonormal set which span the space of the lowest Lan-
dau level for k=(k, k ) within the first Brillouin zone
(BZ) associated with the triangular lattice. The reader re-
quiring further details of these functions and the approxi-
mation scheme used here should consult Ref. 2.

Writing P = crit ( r
~
0) +Art and expanding F only to

second order in 5g leaves a quadratic form which when
diagonalized leads to two branches of excitations —a
"hard" mode whose contributions are small and which
henceforth will be neglected and a "soft" mode whose
eigenmodes in the long-wavelength limit are such that the

which is valid for H=H, 2(T). The vector potential A is
related to B via B=curlA, and following Eilenberger, it
will be approximated by 8( —y, 0,0) where 8 denotes the
spatial average of the magnetic induction, whose direc-
tion is that of the applied field H, i.e., the z axis. The
complex order parameter P can be expanded in the eigen-
vectors of the operator (

—ifiV —2e A/c) . As usual, we
shall retain throughout only the lowest Landau level in
this expansion which again should be a valid approxima-
tion for H =H, ~(T). Denote by P(r~O) (with amplitude a)
the function which is obtained by minimizing the func-
tional F with respect to P and A under the above approx-
imations. ~P(r~O) has the periodicity of a triangular lat-
tice of lattice constant I, with periods

r, =(x, ,y, ) =(1,0),
rrr (xrr yrr ) =(—v'3/2)l
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contribution from the mode labeled by q, k to 5ilr is

5g=ia [exp(iqz)P(r~rii)+exp( —iqz)P(r~ —rz)] .

The amplitude a is real. Then correct to O(a )

F=FM„+—,
' g (p, q'+c«P'k')a'/a',

q, k

where I' M„ is the mean-field free energy, i.e., the
minimum of F I 1( I. The superfluid density p, at the level
of the mean-field theory is given by

p, =+~,p(1 —B IH, 2)/I4m'[1+(2x. —1)P]I, (6)

the shear modulus of the flux lattice

ODLRO, i.e., & 11 ) =0, and it becomes large whenever
B~H, 2. Experimentally perhaps the easiest region in

which to explore the effects of fluctuations is for fields H
larger than prescribed by (1 —T/T, ) = 2 X 10 H r

Along this line for temperatures close to T, D is unity.
[B is always well approximated by H in the region of va-
lidity of Eq. (1). We have set H, 2=400 kG in making
these estimates' —a value appropriate to a field along
the crystal's c axis. ]

We shall next proceed to identify the flux line motion
which accompanies the soft mode. The special case when
ro=(xo, 0) will be studied first. Then using Eqs. (2), (3),
and (4) and expanding to second order in x„gives

0.48H, 2 (2ir —1)(1 B /H—,2 )

[8rr[1+(2ir —1)P] J

(7)

P=a3' exp( —y /2P)

X [03(rrr/l~r)(1+i 0)

X ( T/T, )[(1 B /H, z)(1 —T/—T, )]

where the Ginsburg criterion parameter'

(10)

where P is a numerical constant = l. 16, ir is the Ginsburg
parameter, and p, =A o. /m. Maki and Takayama' had
previously demonstrated the existence of the k in the
fluctuations but had not realized its coefficient was just
c«P . This connection provides an important clue as to
the nature of the fluctuations which destroy ODLRO.

To estimate the importance of these fluctuations it is
convenient to compute '

D=&(P—aP( ~0)~')„/ ',
sp denotes a spatial average and the angular brackets a
thermal average calculated with a relative probability
exp( F/k8 T). Flu—ctuation effects are small if D «1
where

dq d'k ka TD=
2m p, q +c«P k

k~T
ln[L (2/P)'r ],

47rP (p c66)'rz

and the k integral has been approximated by taking it
over a circular Brillouin zone of radius A where
A =2/P, and cutoff at ~k~ =1/L, where L is a linear di-
mension of the sample in a direction perpendicular to the
applied field. Writing H, 2(T)=H, 2(l —T/T, ) one ob-
tains for large ~

D =2.6e' ln[L (2/P)' ](B/H z )

—2a sin(qz)(mx„/al) 03(m.r /1
~
r)

+i 0(rr x() /1 )0'3'(rrr/l~r)/2+ ],
where r=(1+iv'3)/2 and 0=2a cos(qz)/a. Using the
identity

0';(z~r) = —(4/~i)a0, (z~r)/ar,

Eq. (11) gives, correct again to second order in

x()(= Pk ), —

g =a3'r'exp(i 0 y /2P)—

X 03( m Ir +[2 asin(qz)/a]Pk ] /l )~r —v'3Pk 0/2) .

This is of the same form as Eq. (2), except for the phase
factor exp(i 0), a changed flux lattice periodicity in which

~, =I, y, =o,
x„=(—,

' —v'3Pk 0/2)l, y, i
= i/3l/2,

and a displacement u of the flux lines along the x axis by
—[2a sin(qz)/a]Pk . Notice that the area xiyii of the
new unit cell is unchanged by the fluctuation. The flux
lines move in the soft mode as if the flux lattice were in-

compressible. It is easily deduced from the changed di-
mensions of the unit cell that the only nonvanishing
strain is Byu& Pky 0.

The case of a general wave vector k=(k„,k ), i.e. , a
value of (x„,y~)=P( —k, k„) can be similarly analyzed
provided one first rotates the vector potential A (which
has up to now been along the x axis) to point in the direc-
tion of r„; then

e=16rr a. (kiiT, ) /W~ A B( k kyx key k x+k k y 0)/(k +k~) (12)

For T ) T„H =0, fluctuations in
fair

are only iinportant
when ~(1 —T/T, )

~
& e.

The magnitude of e is very sensitive to the only poorly
known value of ~ and to effects of crystal lattice anisotro-

py which have been neglected in this treatment but which
are readily incorporated. From experiments" on the
specific heat near T, we estimate that in YBCO a=0.002.
For a sample of 1 cm dimension ln[L(2/P)' ])10 for
B & 10 Cs. Note that D becomes logarithmically infinite
in the thermodynamic limit, which implies the absence of

a.u„= —a, u, = —Pk„k, 6,
(13)

0 u, = —Pk, O, 0„u =Pk, g .

The strains in Eq. (13) imply that the relationship be-

(There is a phase factor change to itr associated with this
gauge change. ) The displacement u is once again perpen-
dicular to k and the strain fields can be read off from Eq.
(12) and the previous result for the special case
remembering that k of that is replaced by k +k:
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tween displacement u and a phase 0 which also varies
in the plane perpendicular to the applied field [as
0=0ocos(qz +k, x +k y)] must be

u. =I a, O, u, = —I a.O. (14)

+(a, u, +a, u„)']], (15)

with (u, u ) related to 0 via Eq. (14). The elastic energy
term is that appropriate to a pure shear on integrating
by parts and dropping surface terms the elastic energy
density reduces to ,'c66P (—V'&0) where Vt=t) /(3

+a'gay In what follows p, and c66 will be assumed to
be nonvanishing despite the absence of ODLRO, just as
in the KT theory.

Hamiltonians similar to Eq. (15) have been studied in
connection with smectic liquid crystals' and the same
renormalization-group (RG) techniques can be employed.
Dividing the Hamiltonian by T, the temperature, one
finds that under the length rescaling appropriate to Eq.
(15) (x ' =bx, y' = by, z' =b z) that at the new length scale
the temperature T'= T. Thus temperature is a marginal
operator and hence a line of fixed points should exist for
all temperatures less than T, (B ). For T ) T, (B ) the
temperature would flow towards the infinite temperature
sink. Addition to the Hamiltonian density of a term like
[(t),u ) +(t), u ) ], which corresponds to a bending
motion of the flux lines, is irrelevant in the RG sense, as
also are all anharmonic terms (in contrast with the smec-
tic liquid crystal case' ). Hence one can conclude that
these are no (logarithmic) corrections to the correlation
functions which can be derived from Eq. (15).

To examine the stability of the flux lattice itself against
thermal fluctuations we shall calculate d ( T) = ( (u„
+u )) =P'(( ).0t)'+( ),0t)'&:

k~ Tk
d (T)=P

2~ az (2tr) p, q +c66P'k

Since Eq. (14) is valid for any value of q and k, it must
hold generally for any slowly varying spatial dependence
of 0. Observe that it also guarantees that the flux motion
generated is as if the lattice were incompressible since
(a„u. +a, u, )=0.

An effective Hamiltonian associated with a slowly
varying phase 0 and consistent with Eq. (5) for the energy
of the soft mode is

H= —,
' f d'r [p, (t), 0) +c66[(c) u —t) u )

This is finite in the thermodynamic limit, indicating the
stability of the flux lattice. However, according to the
Lindemann criterion one expects a crystal to melt for
d (T)=cl, where c is a small constant (typically —0. 1)
which from Eq. (16) gives the melting criterion

0.36'' (B /H, 2 )( T/T, )

X [( 1 —B /H, 2 )( 1 —T /T, ) ] = c (17)

or when (1 —T/T, ) —1.2X 10 c H for T~ T„
using our previous values for the parameters e and H, 2.
Setting c =0.06 brings this expression into coincidence
with the experimental results of Ref. 7 for the equation of
the line which marks the onset of irreversible behavior.
Whether genuine melting takes place at this line is
beyond the scope of this paper, but it is perhaps
significant that Bishop (quoted in Ref. 15) reports a melt-
ing of the flux lattice near H, 2.

Pinning of the flux lines by crystal defects, etc. , will al-
ways be present. It has been modeled by adding to Eq.
(1) a term r(r)~tb~ and using the replica method to aver-
age over the disorder associated with the random spatial-
ly varying r(r). The fluctuation calculations reported
here remain essentially unchanged. '

If ODLRO is absent in the mixed state why is it that
the high-T, materials behave as superconductors in a
magnetic field? One answer is that for the sizes of system
experimentally accessible the fluctuation effects are usual-
ly small except for various special regions close to the
phase transition boundaries. Even in these regions
ODLRO would appear present on short time scales. This
is because ODLRO is destroyed by the thermal fluctua-
tions associated with the motion of flux lines and such
processes are intrinsically slow and pinning effects will
make them even slower. Superconducting phenomena
where intrinsic time scales are much shorter than the
time scales of flux lattice motion will be hardly affected
by the fluctuations. Thus a full treatment of the effects
discussed here inevitably requires a dynamical approach
but I believe that they may have important consequences
for the magnitude of critical currents and the decay of
persistent currents.
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