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High-order corrections to the image potential
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A self-energy formalism for determining the image potential for a charge outside of a metal is

generalized to include high-order corrections. In this first systematic development of the image po-

tential in higher-order perturbation theory, the image potential is given as an asymptotic series in

inverse powers of the distance of the charge from the surface.

A charged particle approaching a solid surface experi-
ences an attractive potential arising from the polarization
which it induces in the medium. The classical image po-
tential for a particle of charge Q at fixed distance z from a
metal surface is V = —Q /4z. At microscopic distances,
quantum mechanics is necessary to describe the interac-
tion between the charge and the medium. It is known'
that the forces, long-range in character, experienced by a
charge external to a solid surface may be considered to be
due to the interaction between the charge and the virtual
excitations of surface modes, i.e., surface plasmons in
metals or surface optical phonons in ionic crystals, since
the fields due to bulk electronic excitations extend only a
few atomic units beyond the surface. Quantum theories
in this simple scheme of interaction ' give important
dynamical corrections to the classical image potential in-
cluding recoil effects due to the exchange of virtual quan-
ta of surface excitations between the charge and the sur-
face. It is the latter that we emphasize here. .

Sunjic, Toulouse, and Lucas used a method based on
the canonical transformation approach of Lee, Low, and
Pines for the polaron problem and found a series expan-
sion in inverse powers of z for the image potential seen by
a charge moving slowly with respect to the surface.
Manson and Ritchie approached this problem
differently. They developed a self-energy formalism
based on the Rayleigh-Schrodinger (RS) perturbation
theory that yields an expression for the image potential.
It is the topic of this Brief Report to generalize this for-
malism to higher order and to present the results of the
first application of this method to the image-potential
problem.

We approximate the Hamiltonian for the system of a
charged particle interacting with surface excitations as

H =HO+ H, =p /2m + g fico„a „a„

where sc is a vector parallel to the surface, and p is the
momentum of the particle. The coupling constant for
surface plasmons on metals is given by ct,=Q vrhco, /I. tc,

where I. is the area of the surface, and co, =co /2'~ is
the surface-plasmon mode eigenfrequency. For surface
optical phonons, n should be multiplied by a factor of
(eo —1)/(@0+1)—(e„—1)/(e„+1),where eo and e„are
the dielectric constants at zero frequency and very high
frequencies, respectively. Ho is the Hamiltonian of the
charged particle and the surface excitations. H

&
is the in-

teraction Hamiltonian between the charge at position
(p, z) and the surface modes. For convenience, we con-
sider metal surfaces only in what follows.

If a classical, massive charged particle is located at the
position (p, z), the resulting Hamiltonian may be diago-
nalized exactly. The classical image potential is found to
be just the shift of zero-point energy of the system due to
the interaction of the charge with the surface plasmon
field. ' To see this, we make linear transformations
b„=a,+P, and b„=a,+P„' where P„ is a c number.
The system Hamiltonian can be written as

H = g fico„b,b„+bE, (2)

ifp„is taken to be —a„e ~'~e '"'t'. Then, the zero-point
energy shift is

AE = —get e "/@co (3)
K

which is exactly the energy shift found from second-order
perturbation theory. Thus in every order of RS perturba-
tion theory beyond the second (n =2), the coefficients of
the terms proportional to Q" must vanish identically.
Using the dispersionless approximation co„=~„inserting
the value of a given above into Eq. (3), and converting
the summation into an integration, we get

+ g a,e ~'e'"' (at„a+t), oo 2
~E= —Q

2 0 4z
(4)
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which is identically the classical image potential.
The system Hamiltonian as given in Eq. (1) is similar in

form to that for the polaron problem, which has been
treated by various methods. It is known that RS pertur-
bation theory is superior to Brillouin-Wigner perturba-
tion theory in treating the binding energy of the polaron.
Here, we apply high-order RS perturbation theory to the
system represented by Eq. (1) and find dynamical correc-
tions depending on mass and velocity.

Second-order RS theory applied to the present problem
assumes the creation by the particle of any number of vir-
tual plasmons, neglecting plasmon-plasmon correlations.
Fourth- and higher-order RS theory allows for such
correlations.

We review the self-energy formalism of Ref. 4 using
second-order theory first. The energy shift in this order
may be written

&polr&&OIHi l~&&rip&&p~lH) lpoo&

E& Ez fi—ro„+—i 5

FIG. 1. Diagram for the second-order contribution to the
self-energy.

assume that the energy shift and the spatially dependent
self-energy X( '(r) are related by the following expression:

LE( '= f d r&polr&Z( )(r)&rlpo& . (6)

Equating the integrands of Eqs. (5) and (6) and dividing
the resulting equation by & pcl r & & r

I pc &, we get

y(2)(r)— & r Ip & &OIHi l~& & p~lH) Ipoo&

&rip, & E, E, —Rro„—+i5

corresponding to one plasmon in the intermediate state
(Fig. 1). Here, I p & and

I
a & are the state vectors for the

particle and plasmon field, respectively, and lp~& is the
product-state vector for the noninteracting system. We

Using a similar unfolding procedure we find the self-
energy as an infinite series. We assert that it is given by

X(r)=X' '(r)+ X( )(r)+ X(b)(r)+ X( )'(r)+

where

y(4) —y

y(4) —y

XXXX &010, l~, & &p, , olH) Ip2~2& &p2~2IH) lp3o& &p3~) IH) Ipoo&

& ripe & (E Ez Aco„—+ i—5)(E& E& Ac—o„—Are„+—i 5)(E& E& fico„—+i5)—

XXXX &rip, & & ol~) la) & & pi, olHi lp2~2 & & p2a) III) lp3o & & p3a2IH) lpoo &

&rlpo& (E Ez Aa)„+—i5)(E—
&

E Aro„—Ac—o„—+i5)(E E& —Ace„+—i5)

(9a)

(9b)

and

& rip& & &OIH, la & & pztclH) lpoo&g(4) —g(2)(r) y y„&rip, & (E, —E,—r~„+t5)'

(9c)
(b) (c)

3
(d)

correspond to the three diagrams (a), (b), and (c) in Fig. 2.
Figure 3 shows corresponding diagrams in sixth order.

We use a plane-wave basis set for the charged particle
to evaluate the terms of Eq. (8) to sixth order. The state

(b)

FICx. 2. The (a) nested, (b) crossing, and (c) anomalous dia-
grams contributing to the fourth-order self-energy correction.

FIG. 3. Diagrams corresponding to sixth-order self-energy
corrections. Diagrams (a)—(j) are self-explanatory, while dia-
grams (k)—(m) are anomalous.
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vector (r~p) can be written as

&rip)= 1

where (P,p) is the momentum of the particle resolved
into components parallel and perpendicular to the sur-

face respectively.
The matrix elements in Eqs. (7) and (9) are evaluated

by converting the summations into integrations as
L~ao, assuming dispersionless plasmons (c0 =co, ) and
taking Pp=0. The result for the real part of X is given by

2

Re [X(z)]=—
4z

Up 3Up cos(poz)+ 0 ~ ~ 2—
2Q)gz 267 z K~Z

Smu3' St71U p

in cgi~z

8AcO~Z, 4P7zcO Z cO Z

Q 35fi

(fico, )2(4z)4 mco,

where Uo =Ape/m is the velocity of the charged particle
perpendicular to the surface, m is its mass, and
sc, =2m', /fi. We omit the imaginary component of
X(z), which will be discussed in another publication. We
also omit terms of order Q and higher which decrease
proportionally to exp( —ic,z).

This result is difFerent from the one given in Ref. 3.
The velocity-dependent terms in the first bracket agree
with the corresponding ones there, but the recoil e6'ects
evinced in second order in Eq. (11) are characterized by

K Z
the exponential factor e, which is much more sensi-
tive to the mass and the position of the particle than the
corresponding inverse power function of Ref. 3. The
terms in the last bracket, the fourth-order correction, are
similar to the corresponding terms proportional to Q
that appear in Ref. 3, but dier by numerical factors, and
more importantly, by signs. A possible explanation of the
discrepancy in these results is that correlations among
virtual surface plasmons are not included in the canonical
transform method used in Ref. 3 (see Ref. 5), while the
present approach accounts explicitly for such correla-
tions. Our formalism has the advantage that higher-
order corrections are readily evaluated in the model
problem posed here, and are generated in a systematic
way.

Note that the recoil corrections given in Eq. (11) fall
into two categories. Those important at points z —1/ic„

K Z

close to the surface [the term containing the factor e
of Eq. (11)], tend to weaken the interaction. Those im-
portant in the asymptotic region tend to make the in-

teraction potential stronger there. We should point out
that this first category of recoil terms, those which decay
exponentially away from the surface, should not be taken
too seriously as our model becomes no longer valid at the
very small displacements when such terms are apprecia-
ble. However, we have included them in Eq. (11) in order
to point out that there is a class of recoil terms which are
exponentially decreasing, and that analogous terms will
also appear in more sophisticated models.

In conclusion, we have generalized the self-energy for-
malism of Ref. 4 to include high-order corrections and
have given an explicit expression for the self-energy of a
moving charge near a metal surface through the sixth or-
der of perturbation theory. Comparison with the result
given in Ref. 3 has been made. This approach can be ap-
plied to investigate the properties of bound positron sur-
face states' and image-potential induced surface states. "
Among other possible applications are high-order correc-
tions to the van der Waa1s forces between atoms' and en-
ergy transfer between a moving atom and a solid sur-
face. '
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