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Position-dependent effective mass for inhomogeneous semiconductors
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A systematic approach is adopted to extract an eftective low-energy Hamiltonian for crystals with
a slowly varying inhomogeneity, resolving several controversies. It is shown that the e6'ective

mass m (R) is, in general, position dependent, and enters the kinetic energy operator as
—V[m (R) ]V/2. The advantage of using a basis set that exactly diagonalizes the Hamiltonian in
the homogeneous limit is emphasized.

I. INTRODUCTION

The motion of charge carriers in a conduction band,
for example in a semiconductor, is described by the band
edge E and the effective mass m. When lattice distor-
tion, ' graded chemical composition, or heterostruc-
ture ' introduces inhomogeneities which vary slowly, on
a length scale A, )&a, where a is the lattice constant, it is
natural to consider a position depend-ent band edge E(R)
and efFective mass m (R), both determined by the local
properties of the crystal near R. The force eVE(R) on
the charge carriers e has well-known consequences for
charge transport, while the varying band gap can match
a range of wavelengths in photovoltaic devices. ' Howev-
er, there are several controversies concerning a position-
dependent m (R). (1) It has been asserted that m (R) is in
fact. independent of R." (2) Various inequivalent forms
have been proposed for the kinetic energy operator f' in
terms of p(R) =m (R)

T= —(pV +V p)/4 (Ref. 4),
T= —VpV/2 (Ref. 11),
T= —&pV &p/2 (Ref. 7),

or more generally as

—(p V—p~Vpr+H. c. )/4

in terms of the von Roos parameters' a, P, and y with
a+/3+y= l. The ambiguity is of first and second order
in Vm (R)/m (R)-q, where q =2tr/A~ is a characteris-
tic wave number associated with the inhomogeneity. The
lack of uniqueness has caused concern, ' and the different
possibilities affect the boundary condition across hetero-
junctions. (3) The consistency of a position-dependent
m (R) with Galilean invariance and the Bargmann super-
selection rule' has been discussed. ' ' (4) Finally, the
semiclassical limit has received attention, with one sug-
gestion that a dissipative force appears.

We address these issues in this paper, with particular
reference to the problem of uniqueness. The apparent
lack of determinacy stems from attempts to approximate
a matrix element of the form

Jd3r W(r —R)*L(r)U(r)W(r —R'),

in which II' are (fairly localized) Wannier functions cen-
tered at r =R and r =R', L is the slowly varying inhomo-
genity profile, and U(r) is some potential (not necessarily
slowly varying). The efFective-mass approximation is ob-
tained by regarding L (r) as nearly constant near R and
R', but different approximations, e.g.,

L (r) = [L (R)+L (R')]/2,
L (r ) =L ((R+R') /2)

(2a)

(2b)

lead to inequivalent kinetic energy operator f', i.e.,
different von Roos parameters a, 13, and y. These ambi-
guities can only be resolved if (2) is replaced by an ap-
proximation valid to O(q ), where (V) L(r)=O(q ).
We shall show that a systematic formulation to this accu-
racy yields a unique kinetic energy operator, of the form
—V@V/2, i.e., von Roos parameters a=y=0 and P= 1.
There are, however, corrections to the band edge propor-
tional to VL and V L.

We first comment on the length and wave-number
scales in the problem and on the appropriate basis set for
expressing the calculation.

The effective-mass approximation, based on an expan-
sion in the wave number k (to second order), is valid for
k «a ' (though in practice it often works well for a
large fraction of the band). The inhomogeneity length
scale defines another small parameter q =2m/A, «a
Since k a ' and q -(size of sample) ', it might appear
that powers of q need not be kept. This argument is im-
plicitly invoked when the possible nonuniqueness of f'is
said to be unimportant, being of order Vm/m -q. '

However, terms in the Hamiltonian of order Vm or VL
lead to differences in the wave number of the same order,
and hence to phases [e.g., in the Wentzel-Kramers-
Brillouin (WKB) approximation] of order

r2
f V'L dr=L(r2) —L(ri), (3)

& rl

which are not negligible in graded semiconductors, where
the composition may change by typically 30% across the
sample, or across heterojunctions. For this reason, the
first power of q must be kept, no matter how smooth the
inhomogeneity. To be systematic, we shall keep all terms
k q, with M+%~2, in order to extract a low-energy
Hamiltonian from the full theory. Except in Sec. V, we
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do not assume the amplitude of the inhomogeneity to be
small.

In one group of works in the literature, '" wave func-
tions are represented in the Luttinger-Kohn (LK) basis'
ty„&(r)j, where k is a Bloch wave vector and n is
superficially a band label. These, unfortunately, do not
diagonalize even the homogeneous part of the Hamiltoni-
an. In other words, while the set ( p„kj for all k and all n

is complete, the subspace spanned by tqr„zj for all k and
onePxed n does not coincide with the nth band, so that n

in jy„zj is a pseudoband label. A unitary transformation
e' is therefore needed to diagonalize the effective low-
energy Hamiltonian, but in practice this can only be im-
plemented to a certain order in 0, so that the homogene-
ous limit, which provides the motivation and physical in-
sights for the position-dependent effective-mass theory, is
not obtained exactly. Secondly, the classification of ma-
trix elements in the LK basis, e.g., ( n k

~ U~ n 'k' ), as diag-
onal (n = n') or off-diagonal (nAn') does not correspond
to the distinction between intraband and interband pro-
cesses, obscuring physical interpretations.

Therefore we shall adopt the more convenient Wannier
basis, ' ' which does not suffer from these problems. In
fact, one can write the unitary transformation as"
6j=0&+62+, where Oi serves to remove the off-
diagonal part of the homogeneous Hamiltonian. Obvi-
ously, 0& exactly takes us from the LK basis to the Wan-
nier or Bloch basis, so that most of the problem associat-
ed with working to finite order in 8 is automatically taken
care of.

The practical significance of a correct treatment of a
position-dependent effective mass may be illustrated
through semiconductor materials of current interest to
research in optoelectronic devices, for example
In Ga, ~As, where the efFective mass, say of the elec-
trons, varies by over a factor of 2 (from 0.07 to 0.026
times the electron mass) as x varies from 0 to 1. In ma-
terials relevant to research in band-gap engineering, such
variations can be achieved over hundreds or even tens of
atomic layers, implying that Vm is substantial and must
be dealt with correctly.

The rest of this paper is organized as follows. In Sec.
II we first present a simple physical argument to show
why m (R) must be position dependent; otherwise the
other issues would not arise. We then formulate the
problem and derive our main result. Section III presents
a similar low-energy analysis for the external potential V,
showing that it is modified by terms of order a V V. In
Sec. IV we discuss Galilean invariance and semiclassical
correspondence and in Sec. V we deal with claims that
m (R) is independent of R and show that incautious use
of the LK basis can lead to erroneous results. Our results
in the Wannier basis are explicitly compared with the
known results in the LK basis. The conclusion is given
in Sec. VI.

II. FORMULATION

U(r)= g [U~(r —R)—U„(r—R)] .
R

(6)

The last term in (4) is an external potential, whose time
dependence, if any, will not be explicitly indicated.

In view of claims to the contrary, we first give a physi-
cal argument to show why m (R) must depend on L (R),
i.e., Vm(R) is in general not zero and not negligible.
Consider a sample divided into three regions 1, 2, and 3,
each of macroscopic dimerision D. In regions 1 and 3,
L (R) assumes constant values L, and Li, which may be
quite different; in the intermediate region 2, L, interpo-
lates smoothly between these two values. Construct a
wave packet of size d «D in region 1; so long as d »a,
this can be achieved by superposing states with momen-
tum

~
k

~
&&a ', to which the concept of effective mass

applies, i.e., the expansion to 0 (k ) will be accurate. For
simplicity let the external potential be zero. The evolu-
tion of this wave packet must be indistinguishable from
that in a homogeneous material described by
8& =A'0+L

&
U(r), for which there is, by the usual

theory, an effective mass m &. The same argument applies
to region 3. However, by the usual homogeneous theory,
the difFerent limiting Hamiltonians A', and Bi obviously
give different effective masses m i and mz. Except in Sec.
V, we do not assume that the change in L, is small, only
that it is slow; thus m, —m z ~ L, —L, z cannot be ignored.
The above remarks, essentially a paraphrasing of the ar-
guments leading to (3), provide the main motivation
behind the concept of a position-dependent effective
mass, and underlines the need to preserve an exact homo-
geneous limit, and thus the danger associated with the
LK basis —an issue to be discussed at length.

Returning to (4), we work in the Bloch basis which di-
agonalized 80:

Bog„g(r)=E„(k)it„k(r), (7)

where n is a band index and for simplicity we assume that
the bands have nondegenerate minima at k=O. The usu-
al effective mass m„=(p) ' in band n is given through
the expression

E„(k)=E„+,'p'Jk;k +O(k ), —

in which i and j are Cartesian -indices. As usual, we write

where Hp describes the reference homogeneous material
with a certain crystal symmetry, for example,

V + g U„(r—R),1

2mp R

where Pi= 1, R denotes the lattice sites, and U~ is the po-
tential due to an atom A. L (r) is the slowly varying in-
homogeneity profile and the potential U(r) has the same
crystal symmetry as 80. For example, if a fraction p(r)
of the A atoms are replaced by 8 atoms, then in the
virtual-crystal approximation L (r) =p(r) and

Consider a crystal with the Hamiltonian

A'=Ao+L (r) U(r)+ V(r), (4)

k(r) e a k(r)

where, for future reference, we expand the periodic func-
tions u„i,in powers of k:
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u„k(r)=f„(r)+ik;g„'(r) —
—,'k, k.h„'J(r)+ (10) L(r)= QL(q)e

q
Since g„'k and i'„ i, differ at most by a phase, we can
choose f„,g„',and h„'J all to be real functions. We shall
also need the Wannier functions at site R,

P„z(r)=N ' pe' ' W„(r—R) .
R

We now represent an arbitrary wave function P(r, t) as

the slow variation of L(r) being refiected in the concen-
tration of L(q) in regions of small q. Then some arith-
metic gives

=N ' g L(q)e 'q e'~' 'S„„,(p, p+q), (18)
vq

P(r, t) = g F„(R,t) W„(r—R),
n, R

(12)
where

and the object is to find an effective Hamiltonian to de-
scribe the evolution of the envelope functions I'„.Using
the completeness of the Wannier functions, we have

S„„(p,p')=N f d r u„&(r)*U(r)u„,(r),
C

(19)

aI„
i ( tR)= nR l—tl)dt Bt

=(nRIPIq&

( nRIBI n' R'&F„(R', t),
n', R'

(13)

the integral being over a unit cell c. On account of the
exponential phase factors in (18), p and q will become V
operators, acting either on L (R) or F„(R),hence giving
the small quantities VL =O(q) and VF„=O(k);thus in
order to extract a low-energy effective theory, we shall
expand S„„to second order in its arguments. By using
(10) in (19), we find

where in obvious notation
I
n R & denotes the Wannier

state W„(r—R). The problem then reduces to evaluating
the matrix elements of H between Wannier states. In this
section we ignore the external potential V and consider
only Ho and L (r) U(r).

Going through standard manipulations, we find

(nRIBo In'R' & =N ' g e'"' 'E„(k)5„„,,
k

(14)

[More generally, the factor in parentheses should be re-
placed by E„( i V ), but for v—irtually all applications, one
stops at second order. ] We may summarize (15) schemat-
ically as

Ho~(E„,'p'~V; V )5„„——.(15')

The effect of inhomogeneity is rejected in the matrix
element

and using (8) for E„(k)and going to a continuum approx-
imation [i.e., assuming F„(R,t) is sufficientl slowly vary-
ing in R], we get

(nRIHOIn'R' &F„(R't)=(E„—zp„'V;VJ)F„(R,t) .
n', R'

(15)

S„„(p,p') = U„„'+i (p U„„!—p; U„'„,)

—
—,'(p p'U„„'J+p;pU„'J'. )

+p,p'U„'J + (20)

where the notation for the superscripts is 0~f, i ~g',
and ij~h 'J, or more explicitly

U„„'= (f„I UIf„&=N f d r f„(r)U(r)f„(r),
C

U.'„i= &f„I UIg.' &, U.". =
& g.' I UIf. &,

U„'„'J=(f„lUIh„' &, U.".'=&h."IUIf. &,

In the rest of this section we assume that U has negligible
interband matrix elements, '" so that all matrix elements
in (21) are proportional to 5„„,and we further suppress
the band index n in intermediate steps. We shall see in
Sec. V that interband matrix elements only affect the re-
sults to 0 (L ) and are therefore negligible for small L, ir-
respective of the nature of U. The analogous assumption
would not be sensible in the LK basis. For the diagonal
matrix elements, (19) simplifies slightly to

= f d r W„(r R)*L(r)U(r) W„(r—R—'),
S(p, p')=U ' +i(p —p;)U '

,'(p;pJ+p;pJ)U '"+—ppj U" . (22)

and various approximations are based on replacing L (r)
by a constant; see discussion following (1). To resolve the
ambiguities requires an approximation accurate to VL
and V L. A Taylor expansion of L (r) about, say,
Ro=(R+R')/2 is inappropriate because the operators
(r —Ro), , (r —Ro),.(r—Ro), etc. map functions out of the
Hilbert space of functions satisfying periodic boundary
conditions. It is therefore best to imagine that L (r) also

'

satisfies periodic boundary conditions' and expand it as

We insert (22) into (18) and perform the sum over
F„(R',t) as in (13) to get

g (nRILUIn'R'&F„.(R', t) = Ao+ 3 i+ &2, + &2b ~

n', R'

(23)

where, corresponding to the four terms in (22),
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AD= U ' L(R)F„(R,t),
A, = —U '[V;L(R)]F„(R,t),
A 2, = U0'J

[ V; [L (R)VJF„(R,t )]
+ ,' [V,—V,L (R)]F„(R,t)j,

A2q = —U'JV; [L (R)VJF„(R,t)],
which can be summarized schematically as

LU~[U ' L —U '(V;L)+ ,'U '"—(V;VJL)]

+ [( U 'i —U'i)V;LV J ] .

(24a)

(24b)

(24c)

(24d)

(24')

V(r) will vary on the same length scale as L (r), and to be
consistent it will be necessary to keep to 0 (q ) in V(r) as
well. The task is trivial, since we need only replace
L (r)~ V(r) and U(r)~I, where I is the identity opera-
tor in the derivation of the preceding section. Thus in
analogy to (26), we find that V(r) in the nth band should
be replaced by

V„'(R)=I„„'V(R) I '—V V(R.)+ ,'I„„'~—V;VV(R),

(2g)

where the notation for the matrix elements of I follows
(21). Similarly, one generates an additional kinetic term
analogous to (27):

The calculation leading to (24) is sketched in Appendix
A. In (24'), the term in the first set of square brackets is a
c number (i.e., diagonal in the R variable), afFecting the
band edge but not the effective mass. In the second term,
the V operator will operate on the R variable in F„as
well.

Collecting (15') and (24'), we see that 8 +LU can be
represented as the kinetic energy operator 5 (now restor-
ing band indices),

(I„„'iI J)V;L—(R)V) . (29)

It can be shown (Appendix B) that (29) vanishes identical-
ly, which is expected since an external potential should
not generate a kinetic energy term. Incidentally this pro-
vides indirect support for the particular form of the
coefficients of L (R) in (27). Moreover, symmetry of the
crystal will eliminate the second term in (28) and it can be
shown that (Appendix B)

f'= [E„(R)——,
' V;p'~(R)V~ ]5„„

where

E„(R)=E„+[U„„'L(R)—U„„'V';L(R)

+ ,' U„„'iV;Vt—L(R)],

(25)

(26)

y0, 0
nn

I„'J= (f„~(r r), (r ——r ),. ~f„)
—:(5r, 5r, )„,

where r; = (f„~r;~f„).Thus,

(30)

p'~(R) =p'J —2( U '~ —U'i)L (R) (27)

III. EXTERNAL POTENTIAL

In a single-electron theory, V(r) in (4) includes the po-
tential due to other carriers and in equilibrium must ad-
just itself so as to cancel the effect of the varying band
edge and effective mass; e.g., see (33). As a consequence,

We therefore arrive at the major conclusions of this
section. (1) Since U '1—U'~ is in general nonzero, the
effective mass has a nontrivial R dependence. It is not
surprising that the corrections involve U ' and U',
referring to the periodic functions g' and h'~, which sum-
marize the physics of the band up to 0 (k ). In contrast,
in the LK basis, which refers only to f but not explicitly
to g' and h'~, the corresponding physics would be hidden
in the canonical transformation 0. (2) The ordering of
the operator is uniquely in the form —VpV/2, or in
terms of the von Roos parameters a=y=0, P= 1. Al-
though this choice has been suggested' as one of the pos-
sible forms which is accurate to 0 (q ), we have, for the
first time, deriued it by a low-energy reduction accurate
to 0(q ); insofar as any ambiguity arises only in 0(q)
and 0 (q ), only such a derivation can be meaningful. (3)
However, there is a correction to the band bottom, the
meaning of which becomes clearer in the next section. (4)
The effective Hamiltonian in the Wannier basis is neces-
sarily linear in L.

There is no diSculty in principle in carrying the for-
mulation to higher orders in k and q.

V„'(R)= V(R)+ —,'(5r, 5r )„V;VJV(R)

=N f d r f„(r)'V(R)f„(R),
C

(31)

i.e.,-'the average potential seen by a particle in the bottom
of the band, as is entirely sensible.

IV. GALILEAN INVARIANCE
AND CLASSICAL CORRESPONDENCE

The claim' that a position-dependent m(R) violates
Bargmann's theorem' based on Galilean invariance has
been disputed and analyzed at length, ' so it su%ces to
emphasize just one trivial, but nevertheless, crucial point.
It is indeed true that there is a conAict between Galilean
invariance and a position-dependent m (R), but this
convict is not to be resolved in favor of Galilean invari-
ance. On the contrary, the position dependence of m (R),
mathematically derived from an accepted Hamiltonian
(4), is not in doubt. The confiict simply means that there
is no Galilean invariance, which is only to be expected if,
for example, the material composition has a spatial gra-
dient. Even for a homogeneous crystal, Galilean invari-
ance is only an approximate concept for wave functions
varying slowly on the lattice scale a, and is a result de-
rived from the effective-mass approximation rather than
an a priori condition.

We expect classical correspondence in the regime
q «k «a ', i.e., when the parameters in the effective
Hamiltonian, say L(R), are nearly constant over one
wavelength. To simplify the discussion, we restrict to
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one band, drop the band index, assume isotropy, and
write V„'(R) simply as V(R). Then the effective Hamil-
tonian is, from (25),

H' =E(R)——,'Vp(R)V+ V(R)

with the classical analog

H' =P /[2m (R))+[E(R)+V(R)],

(32a)

(32b)

where P, corresponding to —i V, is the conjugate momen-
tum. In the classical limit, the ordering of the VpV in
(32) is, of course, unimportant. The equations of motion
are

dR/dt =OH' /BP=P/m (R),
dP/dt = —BH' /BR

(33a)

= —V[E (R) + V(R) ]+[P /2m (R) ]Vm (R) .

(33b)

1
V I m (R)[E E(R)—V(R)—] I .

m (R)
(33b')

Note the necessity of ordering m (R) and V carefully in
order to obtain such a better form.

We can also seek a &KB solution to the quantum
equation 8 ' F(R)=EF(R) in the one-dimensional case,
through the standard ansatz F(R)=expiS(R); we find

F(R)=[m(R)/P(R)]' exp i I dR'P(R'), (34)

where

P (R) =
I 2m (R )[E E(R)—V(R )] J

'i— (35)

is the classical momentum and the prefactor in (34) indi-
cates that the time spent in any hR is inversely propor-
tional to the velocity P(R)/m (R).- The presence of the
nonconstant factor m (R) in the prefactor is crucial for
consistent interpretation.

Even in the classical limit, terms of first order in Vm
must still be retained, because its cumulative effect over a
large distance m (R& ) —m (R2)- Vm. (R& —R2) is not
negligible. The suggestion that the ordering ambiguity is
irrelevant for smooth variations' should therefore be
viewed with caution.

V. OFF-DIAGONAL TERMS AND COMPARISON

The last term in (33b), quadratic in the velocity, has been
interpreted as a dissipative force. This cannot be
correct, since the Hamiltonian ensures preservation of
phase volume. We can write (33b) in a more transparent
form. In the case where BV(R)/Bt =0, H' is a constant
of the motion, say with value E. Then (33b) becomes

d P /dt =V [E —E (R)—V(R) ]

+[E—E(R)—V(R)][Vm (R)/m (R)]

do not affect our conclusion that m (R) is, in general, R
dependent. In this section, the external potential V will
be ignored, and it sufFtces to consider small L (r).

Let us write the effective Hamiltonian as

(36)

where A,o, k„X2are forrnal parameters, and ho are terms
obtained from Ho, as in (15'), f are diagonal terms ob-
tained from LU, as in (24'), and k2 are off-diagonal terms
obtained from LU, so far neglected. The nature of these
terms, i.e., whether diagonal or off-diagonal and the
dependence of L, is summarized in Table I.

Since L is regarded as small, the X2 term, neglected so
far, can be dealt with perturbatively. However, because
this term is off-diagonal, it affects the eigenvalues, i.e., the
dispersion E„(k),only in second order. Thus to O(L'),
there is no correction to the conclusion of Sec. II. For
this reason the single band formalism is often adequate.
In any case, this proves that at least generically m (R) is
truly position dependent, which is hardly surprising in
view of the discussion at the beginning of Sec. II. Note,
for comparison below, that this happy state of affairs
would not be obtained if there is an off-diagonal term of
0 (LO).

Now we are in a position to examine critically a
claim" based on a calculation in the LK basis that m (R)
has no position dependence. Apart from the general ar-
gument given at the beginning of Sec. II, it is necessary to
point out the mathematical steps in that claim" which
are questionable. In analogy to (36), we can write the
Hamiltonian in this case as

(37)

(In the notation of Ref. 11, AD= 1; f 0 +H, f &~H—',
f z~H, and f3~ V'. ) The nature of the various terms
are summarized in Table II; note, however, that now di-
agonal and off-diagonal refer to the LK basis. The Xo and
A,

&
terms, independent of L, come from the homogeneous

Hamiltonian.
Now the only small parameter is L, and the limiting

homogeneous Hamiltonian, regarded as generic, contains
no small parameters. To assume otherwise is to violate
the all important requirement that the L ~0 limit must
be recovered exactly, as emphasized earlier. In particu-
lar, A, , cannot be regarded as small. So in diagonalizing
(37), all terms of order A, PA, 2 and XPA, 3, any N, must be
kept. In Ref. 11, only terms proportional to A, X,A.2, and

TABLE I. The nature of terms associated with the three
coefBcients in the present approach: diagonal (D) vs off-
diagonal (OD) in the Wannier basis, and dependence on L.

Our conclusion in Sec. II is based on the neglect of o6'-

diagonal terms. In view of our criticism below of the in-
correct treatment of off-diagonal terms in the LK basis,
it is at least necessary to prove that the off-diagonal terms

Ao

~1
A2

D or OD

D
D

OD

L tt

LO
Ll
L1
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TABLE II. The nature of terms associated with the four
coefficients in Ref. 11: diagonal (D) vs off-diagonal (OD) in the
LK basis, and dependence on L.

D or OD

part proportional to f„anda part orthogonal to f„:
lh."& =P".If. &+ Ih ".&, (40)

k2
A3

D
OD
OD
D

LO
Lo
Ll
Ll

where

1 + Pnnrn'n
l J

m() „(~n)(E„E„—)
(41)

alld

l

mQ n' (+n) En' En
(38)

where

p„',„=(f„,lP'lf„), P'= —iv; . (39)

The second-order function h„'J is best separated into a

X]k3 are kept; in particular, X&A,2 and A, ,k3 are neglected.
It is precisely such neglected terms which will generate
the position-dependent mass.

The systematic. way to proceed is first to remove all
oft'-diagonal terms of order A, &, and secondly to remove
the remaining oft'-diagonal terms to first order. The first
step, apparently tedious, merely transforms to a basis in
which the homogeneous Hamiltonian Aaf 0+A,)f ', is ex-
actly diagonalized —and this is nothing but the Bloch-
Wannier basis. The proposed procedure is then
equivalent to our formalism in Sec. II.

By examining Table II, it would appear that diagonal
terms of 0(L') should appear among the contributions
retained in Ref. 11, namely A, 3 and A, (A,2 (note that two
off-diagonal terms multiplied contain a diagonal term).
However, the momentum vector k appears only in the A, i
term and only linearly, so the A, 3 and A, &A,2 terms, respec-
tively 0 ( k ) and 0 ( k ' ), do not contribute to the effective
mass This shows why the 1

& k2 term going like k L ',
must be retained in order to discuss the R dependence of
m (R).

In one sense our result and the claim of Ref. 11 are not
in convict. The claim in Ref. 11 would be entirely
correct if phrased as follows: for those special cases in
which A.)f ', can be regarded as small (in the sense that its
square is negligible), m(R) then has negligible position
dependence. Our result is, for general'cases, m (R) has a
position dependence. It may in fact be the case that
many solids fall into the "special" category, but this
would have to be justified on a case-by-case basis and not
assumed as a matter of formalism.

Most works in the literature which address the ques-
tion of efFective mass are not accurate to 0(q ); the one
exception is Ref. 5, which obtained essentially the correct
answer in the LK basis. In order to compare the results
for the e6'ective mass, we have to express the matrix ele-
ments U„„'jand U„'„Jinvolving f„,g„',and h„'~ in terms of
the LK basis functions y„),=e'"'f„by eliminating g„
and h„' in favor of f„.This is done in Appendix 8 and
we find that

1 Pn' Inn "n +('~J )

m 20 „(~„)" (E„—E„)(E„-—E„)
n" (Wn)

(42)

From these we find that

p'J(R) p, 'J = —2L (R)—( U„„'JU„'„J)—
2L (R)( A—+B —C), (43)

where A, 8, and C are given in Appendix 8 and come
from the matrix elements (f„

l Ul P'Jf„),(f„
l Ul h '~ ), and

(g„'l Ulg J ), respectively. This result is nearly the same as
that given in Ref. 5, which is

p,'~(R) p'i= 2L—(R)( —,
' —A + ) 8 —C) . (43')

It is not difficult to see that (43') cannot be correct.
Consider the special case U =I and L (R)=const,
representing an additive constant in the microscopic
Hamiltonian. Obviously the e6'ective mass should not be
modified in this case. From the expressions given in Ap-
pendix 8, it is readily verified that in this limit A =C and
8 =0, so that (43) is consistent but (43') is not.

Apart from this minor disagreement in the numerical
coefficient in (43), the result in Ref. 5 is correct. It is un-
fortunate that the greater complication of the LK basis
has caused Ref. 5 to be misunderstood and criticized. "
The much simpler expressions in the Wannier basis [e.g.,
(27)] should help to clarify the issues.

VI. CONCLUSION

We have systematically extracted the e6'ective low-
energy Hamiltonian for a crystal with a slowly varying
inhomogeneity, with use of a calculation accurate to
second order in the V operator. A number of controver-
sies are then resolved. (1) The effective mass is in general
dependent on the position. (2) The ordering of operators
in the kinetic energy is —V)MV/2. (3) Galilean invariance
and the Bargmann theorem do not apply. (4) The classi-
cal limit does not show dissipation.

From a technical point of view, the LK basis is shown
to be inconvenient for the physical reason that it does not
incorporate the homogeneous limit exactly (unless one
compensates by a complicated canonical transformation).
In the Bloch-Wannier basis, the neglect of interband
transitions is justified if the inhomogeneity is weak
(ILI «1).
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Note added in proof. The same conclusion on the or-
dering of operators in the kinetic energy has recently
been obtained from another point of view. '
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APPENDIX A

Dropping the band index and changing the dummy
variables R'~R —R', p —+p —q, we have from (18)

(A 1)

It then follows that q~i Vl, where the notation means
that V operates only on the R variable in L, but not on I'.
Likewise p —+ —i V operating on e'p, which turns into
iVF by an integration by parts, and hence into iVr-
Thus we have

S( iV—F iV—L, i VF—) g L(q)e 'q' N ' g e')' F(R—R') =S( i Vz—iVi—, iV—~)[L (R)F(R)], (A2)
q R', p'

and (24) follows by trivial algebra. Incidentally (A2) is exact, and can be expanded to higher order if desired.

The orthonormality of the Bloch functions gives

APPENDIX B

5„„.=f d r(f„+ik;g„' ,'k;k h„'—i+—)*(f„+ikg& ,'k;k h„'—i+—.. )

=I„„'~ +ik;(I„„'lI„'„)—
—,'k;k—j(I„„'&+I„'J„'2I„'J)+—

from which we can conclude that for n =n'

I„„'=1, i.e. , (f„lf„&=1,
I„'„J=r„j,i.e. , (f„lh„"&=&g„'lg&i,

(81)

(82)

(83)

showing that (29) vanishes identically.
To express matrix elements involving g„' and h„' in terms off„,we first choose a phase convention such that I„„'=0,

I.e.,

(84)

Now from the Schrodinger equation

Hoe' '(f„+ik,g„'—,'k, k h„'J.+ .—)=(E„+)p'Jk;k )e'"—'(f„+i.k;g„' ,'k;k h„'J+—.—), (85)

we obtain

(Ho E„)g„'=(i/mo—)P if~

(Ho E„)h„'J= (—i /m, )(p 'g„'+p'g„')

+ (6"/m() p'„')f„. —

(86)

(87)

while the orthogonal component is determined by pro-
jecting (87) onto f„,(n'An), giving (42).

The relevant matrix elements of U can then be ex-
pressed via

ll, J
nn

1 Pnn'Pn'nJ

mo n (~n) «n —En)'
(88)

and, using P '/mo =i [Ho, r, ], (88) can be written as (30). .

Now h„'J can be decomposed into components parallel
and perpendicular to f„asin (40). The parallel com-
ponent is determined from (83),

(89)

By projecting (86) on f„,(n'Wn), the part of g„' orthogo-
nal to f„is determined; by convention there is no com-
ponent parallel to f„.Hence we obtain (38). From this

I J
1 + Pnn'Pn'n

Uo o

mo n (~n) «n En)'—

1 U„„'p„'„.p J.„+(i~j )

(E„—E„)(E„-—E„)
n" (Wn)

c—:& g„'
I
Ulg„' &

rroo j
1 I nn" ~n "n'Pn'n

m() . (~n) ( n n)«n —En)—
n" (,Wn)

(810)

(811)

(812)
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