
PHYSICAL REVIEW 8 VOLUME 39, NUMBER 18 15 JUNE 1989-II
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We report numerical simulations of hopping conduction in lightly doped semiconductors. We
model the hopping using a Miller-Abrahams resistor network. We investigate the effect of the den-
sity of states (DOS) on the temperature dependence of the hopping conductivity a ( T) in a regime of
temperature T well above the regime associated with variable-range hopping (VRH). In this "high-
T" regime, we study a "peaked" DOS and a "fiat-flat" DOS. The "peaked" DOS has a maximum
at the T=O K chemical potential LMO and decreases away from p&. The "flat-flat" DOS consists of
two flat regions: an inner narrow region with density g;„n„centered about IMO, and an outer broad
region with density g,„„,)g;„„„.For the peaked DOS, we obtain at "high T" results consistent
with o(T)=ooexp[ —(To/T)'~4], where To is much smaller than the To for VRH. This behavior
agrees with certain experimental results for the conductivity in lightly doped n-type GaAs and n-

type InP, and thereby provides direct support for the explanation by Shegelski and Barrie [Phys.
Rev. B 36, 7549 (1987); 36, 7558 (1987)] that such experimental behavior results from a peaked
DOS. For the fiat-liat DOS, we find o (T)=ooexp[ —( To/T)'~2] at "high T" if the energy width of
the inner region is a fraction y=0. 1 of the total width of the DOS. This result indicates that a
"filling in" of the Coulomb gap (i.e., the DOS is nonzero at po) is insufhcient to destroy T ' be-
havior. We suggest that the trend toward T ' behavior evident in hopping-conduction experi-
ments is due, not to a filling in of the Coulomb gap, but instead to a narrowing of the Coulomb gap
(y ~0.02). Such narrowing of the gap forces T ' behavior down to very low T and allows T
behavior at high T.

I. INTRODUCTION

At 1ow temperatures, electronic conduction in lightly
doped n-type semiconductors occurs by electrons hop-
ping between states localized about the donor impurity
sites. ' Experimental studies of hopping conductivity in
lightly doped semiconductors have revealed drastic
differences in the temperature dependence of the hopping
conductivity o(T). In these investigations, the con-
ductivity was found to be of the form

—( TD/T)o(T)=ooe

where op' To and s were independent of the temperature
T. The drastic difference in the results is that —despite
using the same materials (viz. , either n-type GaAs or n
type InP), having essentially the same donor impurity
concentrations nD and compensations K, and performing
the experiments in a common range of temperatures (1
K ~ T 5 7 K)—some of the experiments reported s= 1

while other, more recent, experiments ' found s = —,
' (see

Table I for details ' ).
Prior to the publication of these more recent experi-

mental works, ' the experimental situation for hopping
conduction in light1y doped semiconductors appeared to
be well understood. At extremely low temperatures
(T~ 1 K for the materials studied), Mott variable-range
hopping (VRH), " ' for which s =—', was expected; at

higher temperatures (but still in the hopping conductivity
regime, viz. , 1 KS TS5 K), activated behavior, ' ' for
which s= 1, was expected. Experimentally, Ref. 8 report-
ed VRH for the low-temperature range 0.1 K 5 T ~ 1 K,
while Refs. 2—5 reported activated behavior for the
higher-temperature interval 1 K~ T S5 K (see Table I).
An intriguing puzzle resulted due to Refs. 6 and 7, which
reported s= —,', for the higher-temperature interval 1.4
K ~ T ~ 5-7 K, as shown in Table I.

An important aspect of the experimental situation con-
cerns the values of To and the experimental range of T
for those experiments with s= ~i (Refs. 6—8). According
to the theory of VRH, " ' the conductivity will be given
by Eq. (1.1) with s =—,

' provided that the temperature is
low enough. The theory also predicts the value of the
quantity To ~ The experimental temperature range and
values of To of Ref. 8 are in good agreement with the
theory of VRH. However, the va1ues of To reported in
Refs. 6 and 7 were far too small, and the experimental
temperature ranges were far too high, to be understood
on the basis of the theory of VRH. The arguments which
led to this conc1usion have already been spelled out in de-
tail' and will not be reported here. Instead, we illustrate
the striking differences between Refs. 7 and 8 by showing
in Table I the values of To resulting from the two experi-
ments, both of which used GaAs. The values of To in
Ref. 7 are 20 to 80 times smaller than those in Ref. 8, and
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the associated s =—,
' behavior occurs in a temperature

range 10 times higher than that of Ref. 8.
In summary, the essential features of the experimental

results, as shown in Table I, are (1) in the higher-
temperature regime (1 K & T & 7 K), both s= 1 behavior
and s =

—,
' behavior have been reported; (2) s =

—,
' behavior

has been reported for both the high-temperature regime
(1 K& T&7 K) and the low-temperature regime (0.1

K & T & 1 K); the values of To for the high-T regime are
many times smaller than the values of To for the low-T
regime.

An explanation for the differences'in these experiments
has been proposed by Shegelski and Barrie (SB).' '9 The
basic elements of the proposed explanation are as follows.

(i) The two temperature regimes evident in Table I may
be categorized by the ratio of kT to the spread hc. in en-
ergies c of the localized electronic states. The low-T re-
gime corresponds to kT «hE, while the high-T regime is
where kT is comparable to he, . For example, in lightly
doped n-type GaAs, Ae is of order 1 meU, and 1

K & T & 7 K corresponds to 0.1 meV & kT 50.6 meV, i.e.,
kT is not very much smaller than Ae, and therefore 1

K & T & 7 K is a high-T regime.
' '

(ii) The low T, s =—,', To-=10 —10 K results of Ref. 8

are in accord with the theoretical expectation of VRH in

these materials for T & 1 K; the high-T, s =—', To 10 K
results of Refs. 6 and 7 cannot be consistently regarded as

being evidence of VRH: the temperature intervals are
we11 above the temperature range for VRH in these ma-
terials and the values of To are much too small. ' ' In-
stead, in this high-T regime, the s =—,

' behavior may be at-
tributed to a density of states (DOS) which has a max-
imum at the T=O K chemical potential po and decreases
away from po. Such a DOS will be referred to as a
"peaked" DOS.

(iii) The different values of s for the high-T conductivi-
ties, Refs. 2—5 (s= 1) and Refs. 6 and 7 (s = —,

' ), may sim-

ply be due to the existence of fundamentally difFerent en-
ergy dependences g (e) of the DOS in the various experi-
mental samples.

The principal objective of the present work is to inves-
tigate the effect of the DOS on the hopping conductivity
at temperatures which are well above the temperature re-
gime of VRH. In so doing, we test the explanation pro-
posed by SB. In particular, we test the explanation that
the high-T, s = 4, small-To experimental results may be
accounted for if a peaked DOS is used.

As in the work by SB, our study is based on the
resistor-network model of Miller and Abrahams. In
this approach, a doped semiconductor is modeled by a set
of resistors. Each pair i,j of donor impurities is associat-
ed with a resistance R; which depends on the distance r, -

separating the two donor sites and the ground-state ener-
gies c; and c. of the electronic states localized around the

TABLE I. Essential .eatures of experimental results for the hopping conductivity o(T) in lightly doped semiconductors. Two
types of behavior were reported, one with s=1 in cr(T) =ooexp[ —(To/T)*], the other with s = 4. Indicated are the values of the

donor impurity concentration nD, the compensation E, and the range of temperatures T ( T;„&T ~ T,„) for which the behavior
was found. For Refs. 7 and 8, the values of Tp are also given. For Ref. 7 the Tp values are as reported in that paper; for Ref. 8, we
estimated Tp from their Fig. 2. The temperature intervals fall into two categories: "high T" (1 K & T& 7 K) and "low T" (0.1

K & T & 1 K). The two principal features of the table are (1) at high T, the same material with essentially the same n& and E exhibits
either s=1 or s =—' behavior, and (2) s =

~ behavior occurs at both high T and low T, and the values of Tp at high T are 1 to 2 orders

of magnitude smaller than those for low T.

s=1, high T

Ref.

2
3
4

Material

InP
GaAs
GaAs

GaAs

Sample

several
several

1

2
3
1

2
3

TED

(10' cm )

1 —5
2.1 —7.2
7.62
3.03
8.81
1.35
1.90
2.10

0.35—0.75
0.1—0.67
0.19
0.62
0.78
0.70
0.62
0.53

Tmin

2
2
1.5
1.5
1.5
1.7
1.6
1.6

(K)

4.2
5
3
3
4
5.0
5.3
4.2

Tp
(K)

s= —', high T InP

GaAs

2.1

3.0
8.4
6.4
8.7
9

0.62
0.47
0.32
0.64
0.43
0.31

1.4
1.4
1.4
1.4
1.4
1.4

44
3.2
2.6
7
6
5

1072.9
915.1
764.4

s=4, low T CsaAs 2
2.5
5.2
7.2

0.024
0.67
0.2
0.3

0.4
0.2
0.2
0.1

1.2
1

1

1

6X 10
4X 104

4X 10'
2X 10
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donor sites. The conductivity of the semiconductor is
given by the conductivity of the resulting resistor net-
work.

For doped semiconductors such as n-type GaAs or n-

type InP, which have isotropic, parabolic bands, the
resistance R," is given by '

R; =Rof JX~ e (1.2)

(1.3)

where X;~ =2r,j /a, a is the electronic localization length,

p is the electronic chemical potential, sj. & s;, and Rp is a
constant which depends on various properties of the ma-
terial.

Many investigations have been done using the T—+0 K
asymptotic form for R;; this is valid only when
kT(&hc. . ' ' The T—+0 K form for the resistor net-
work can be used to derive the, well-known Mott law of
VRH. " ' As noted above, the results of Ref. 8 may be
understood as VRH in the T~0 K limit.

The other experimental results, Refs. 2—7, occur in a
higher-temperature range, where kT may be of order hc.,
in which case the T~0 K form of the resistor network is
not valid. Shegelski and Barrie developed an analytic
theory' ' which was based on the full resistor network
of Eqs. (1.2) and (1.3), and not the T~O K simplified
form. They used their analytic theory to calculate the
hopping conductivity cr(T) in the high-T regime. They
found that the experimental results for s= 1 (Refs. 2—5)
could be understood using the full resistor network in the
high-T regime and taking the DOS to be fiat. They also
proposed that the high-T, s = —,

' results, with small values

of To (Refs. 6 and 7) could be accounted for by using the
full resistor network in the high-T regime and using a
peaked DOS. (An example of a peaked DOS is given in
Sec. II.)

In this paper, we report numerical simulations which
determine o(T) for the full resistor network of Eqs. (1.2)
and (1.3). We examine three fundamentally dift'erent
DOS. We compare our numerical results to the analyti-
cal results obtained by SB. In a previous publication we
veri6ed SB's results for high T and a Hat DOS. In this
paper, we pay particular attention to the conductivity
which results from a peaked DOS. Furthermore, we ex-
amine the o( T) resulting from a DOS which is funda-
mentally difterent from both a fiat DOS and a peaked
DOS. This third DOS divers from the other two in that
its minimum value occurs at c=pp. By examining these
three DOS, we explore the extent to which the DOS can
afFect o ( T) when T is well above the VRH regime.

We Snd that the DOS can drastically aCect the form of
tr(T). In particular, we establish that a peaked DOS
gives cr(T) which is consistent with those high-T experi-
mental results where s = 4 and Tp is small, thereby pro-
viding direct support for SB s explanation of these experi-
mental results.

II. METHOD

Since the method that we use to calculate cr(T) has
been described in our previous paper, we state only its
main features. We perform a numerical simulation based
on the full resistor network of Eqs. (1.2) and (1.3). We
model a lightly doped semiconductor by distributing sites
randomly in a three-dimensional unit cube. The sites i
are assigned energies c.; randomly but in accordance with
a chosen DOS. We refer to a particular set of positions
and energies of the sites as a "sample. "

Prior to being reduced to the Miller-Abrahams
resistor-network form, the problem of calculating the
conductivity involves stochastic variables which include
the electron occupation numbers of the sites and stochas-
tic processes which include transitions of electrons be-
tween sites. However, once the problem has been cast in
the form of the Miller-Abrahams resistor-network model,
only the average occupation numbers and average transi-
tion rates are involved —as represented by the resistors of
Eq. (1.2)—and the only stochastic variables that remain
are the positions and energies of the sites, or, equivalent-
ly, a "sample. " We take into account the randomness in
the positions and energies of the sites by producing
several samples.

For each sample, we construct a resistor network using
Eqs. (1.2) and (1.3). Then, for various temperatures T, we
calculate the current I which flows in the resistor net-
work when a potential di5'erence of one unit is applied
across the sample. We repeat this process for each sam-
ple, and average over the samples to obtain the average
current (I(T)). For convenience, we work with the di-
mensionless temperature t =kT/hs, where b, e is the
band width of the DOS, and we make (I(t) ) dimension-
less by choosing R p as the unit of resistance.

The choice R p
= 1 means that, for each sample, the nu-

merical values of the conductance and of the current are
equal. As we show below, the standard deviations in our
values of (I(t) ), which result from averaging over
different random samples, are small. In consequence, we
may proceed in the usual manner and identify the dom-
inant temperature dependence of (I(t) ) with the
dominant temperature dependence of the conductivity
o (t) of the model. Specifically, we write (I(t) }
=Io(t)exp[ —(to/t)'] and cr(t)=oo(t)exp[ —(to/t)'],
where Io(t) and oo(t) depend weakly on t, and we identi-

fy the exponential parts of (I(t)) and cr(T) as being
equal.

For a chosen DOS, we obtain a particular result for
(I(t) ) and extract the dominant temperature depen-
dence by plotting in(I(t) ) versus t ' for expected values
of s. In this manner, we establish a correspondence be-
tween the DOS, the value of s, and the range of t. For ex-
ample, in our previous investigation, we studied the
case of a Aat DOS with band width Ae. We veri6ed the
well-known results that s =—,

' at low t (t =kT/b, e S0.05)—
while s= 1 at high t (0.07 ~ t & 0.2).

In our present investigation, we examine DOS which
are not Bat. We choose the peaked DOS to have the fol-
lowing form:
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g~ if 0& ~v~

gF 1

(2.1a)

(2.1b)

(2.2a)

(2.2b)

where E=—E/AE, rl is the fraction of the band width for
which the DOS is Qat, 0&g&1, and 0&A, &1; see Fig. 1.
Based on some preliminary runs with trial values of q
and I,, we choose i)= —,'0 and A, =—,'. For convenience, we

choose pp=0, work with symmetrical DOS, and take the
band to be half filled. These choices yield a simple tem-
perature dependence for p, p = —kT ln2, which leads to a
convenient expression for R; . It is clear on physical
grounds that the choice E =

—,
' for the compensation does

not give fundamentally di8'erent results than for other
values of K, as long as EC is not extremely small or ex-
tremely close to unity. The value of gF in Eq. (2.1) is
readily expressed in terms of the number of impurity sites
per unit volume, N, and is given by gF=[(A, +1)/
(A.+i1)]N.

In order to examine the e6'ect of the DOS on the con-
ductivity, we consider a third DOS which differs funda-
mentally from both the Aat DOS and the peaked DOS.
We consider the following DOS:

FIG. 1. The densities of states {DOS) investigated numerical-
ly: (1) the "flat" DOS, {2) the "flat-flat" DOS, (3) the "peaked"
DOS. The value of g(Z) is plotted against the ratio Z of the en-
ergy c to the band width hc of the DOS. Each DOS is symme-
trical about 'E =0; c=0 corresponds to the T=O chemical poten-
tial po. The mathematical forms for these DOS, and the values
of q and y, are given in the text.

which is also shown in Fig. 1. We will find that this
DOS, which we call the "Aat-Rat" DOS, results in a fun-
damentally difFerent form for o (T) than either the fiat or
the peaked DOS.

One of the reasons we choose to study the DOS of Eq.
(2.2) is due to a recent paper by Summerfield, McInnes,
and Butcher, who showed that the Coulomb gap de-
scribed by Efros and Shklovskii (ES) (Ref. 29) begins to
"fill in" at finite temperatures. The DOS of Eq. (2.2) is
the simplest nontrivial DOS which models such filling in
of the Coulomb gap. We choose y =

—,0 and

g~„„„/g;„„„=5.The choice y =
—,
' may be interpreted as

choosing y =b,Es/b, s and b,s =4.6E„where
AEs=e g) /(4mE0a) is a measure of the energy width
of the Efros-Shklovskii Coulomb gap (Ref. 14, p. 237), ~
is the dielectric constant, and e, =e /(4ns~N ' .

) is a
measure of the Coulomb energy between electrons local-
ized around neighboring donor sites.

III. RESULTS AND DISCUSSION

For each of the values of t, and for each of the DOS,
we average 6 samples of 1000 sites each (N= 1000) in cal-
culating (I(r)). We choose the localization length a
sgch that N ' a '=5, a choice motivated by the exper-
imental values 4.8 ~N ' a ' 5 5.4 reported in Ref. 7.

Figure 2 shows 1n(I(t) ) versus t ' for the peaked
DOS. The solid line is a least-squares fit to the curve
ln(I (t) ) =inI~~ (t~~/r)' over t—he interval 0.006 & t
~0.045. We obtain g =0.03, which indicates an excel-
lent fit. Since a finite number of samples provides our re-
sults, we take into account the standard deviations in the
average values (I(t) ) when we determine the slope. Our
result is (t$ )'~ =4.24(16), which leads to t&&=325(50).

Since (I(t)) varies exponentially with t ', an ap-
propriate measure of the scatter in our numerical results
is the standard deviation b, lnI(t) in the values of lnI(t).
For our samples, b, lnI(r) satisfies, for all DOS and for all
values of t, b. lnI(t)/1 (In(t)) &0.1. This shows that we
have enough samples to account for the random fluctua-
tions in the values of the current. .

In Fig. 3 we plot ln(I(t)) versus t ' for the Bat-fiat
DOS. The numerical values fit very well to in(I(t))
=lnI0 —(t0 /t)' for 0.013 & t &0.06 (g =0.04), ith
( t0 f )

' = 1.83(6), which gives t 0
=3.35(22). An at-

tempt to fit the fiat-fiat DOS numerical results to a curve
with s =—' results in a completely unsatisfactory fit; simi-

larly, the peaked-DOS results are unequivocally better fit
to s =—,

' than to s =
—,'.

In our previous paper, we found two types of behav-
ior for 1;he Bat DOS: for 0.015 ~ t ~ 0.07 we fit to
in(I(t) ) =lnI0' —(tf0/t)' (y =0.07), with (t0)'
=6.4(3), or t =1700(300); for 0.07& t &0.2 we fit to
ln(I(t}) =lnI0' —(e, /t) with s, =0.217(8} for the di-
mensionless activation energy. (When s= 1, we will often
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FIG. 2. The average current (I(t)) vs t '~ for the peaked
DOS. For the interval 0.006 ~ t & 0.045, the solid line represents
the best y fit to the numerical values and indicates a slope of
—4.24(16). The dashed curve indicates the best fit to activated
behavior for 0.05 ~ t ~ 0.2. See also Fig. 1 and Table II.

FICJ. 3. The average current (I(t) ) vs t '~2 for the flat-flat
DOS. For the interval 0.013~ t ~ 0.06, the solid line is the best

y fit and gives a slope of —1.83(6). The dashed curve indicates
the best fit to activated behavior for 0.06 ~ t ~ 0.2. See also Fig.
1 and Table II.

write e, instead of to. )

We have also examined our numerical results for the
peaked and Bat-Qat DOS in a higher range of t. For both
DOS we find excellent fits using s= 1. Specifically, we ob-
tain 'E~ =0.108(5) for 0.05 ~ t ~0.2 for the peaked DOS,
and 'K~~0.243(8) for 0.06~ t ~0.2 for the flat-flat DOS.
See Figs. 2 and 3.

Our results for the three distinct DOS are summarized
in Table II. The table reveals that the DOS drastically
affects the temperature dependence of the resultant con-
ductivity. In the "lower range of t,"we find s =

4 for the
Bat and the peaked DOS, but s =

—,
' for the Bat-Bat DOS.

Moreover, though they have a common value of s, the
values of to for the Hat and peaked DOS difFer consider-

ably. In the "higher range of t,"s= 1 for all three DOS,
but the values of to —=E, show marked difference. That
s=l for all three DOS in the upper range of t is not
surprising: the temperature is so high that essentially all
the sites participate in the hopping process, and the hops
are predominantly nearest neighbor.

To ensure clarity, we state explicitly that it has long
been known that the DOS aff'ects the value of s in the
T~O E limit. ' ' In this context, "T~O K" means that
kT is much smaller than the scale of energy over which
the form of the DOS changes in any appreciable way. In
this sense, it is only the result for the lower range of t for
the Bat DOS which falls into the "T~O K" category; the
remaining entries in Table II all correspond to ranges of t

TABLE II. Numerical results for the three DOS of Fig. 1. The results were obtained by fitting the
average current to the expression 1n(I(t)) =1nIO (tp/t) over a t interval t tt . In the 'lower
range of t" (t ~0.045 —0.07), the three DOS show drastically different behavior: s = 4, but with very
di6'erent tp values, for the Hat and peaked DOS, whereas s =—' for the Aat-Hat DOS. In the "higher
range of t" (0.05-0.07 ~ t ~0.2), all three DOS have s=1, but each has a diferent value of tp. See also
.Figs. 2 and 3.

lower

range
of t
higher
range
of t

DOS

Hat

peaked
Aat-Bat

Hat

peaked
Aat-Aat

tmtn

0.015
0.006
0.013
0.07
0.05
0.06

tmax

0.07
0.045
0.06
0.2
0.2
0.2

6.4(3)
4.24(16)
1.83(6)

tp

1700(300)
325(50)

3.35(22)
0.217(8)
0.108{5)
0.243{8)
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TABLE III. A comparison of the theoretical quantities t,
and t0 to the numerical values t „and t0" obtained for the
Oat DOS and the peaked DOS. For t ~ 2t„variable range hop-
ping (VRH), viz. , ln(I(t)) =lnI0 —(t0/t)'~, is expected, with
ta=t0 . Whereas the theoretical and numerical ranges of t
agree for the Oat DOS, the upper limit t,„of the numerical
range of t well exceeds 2t, for the peaked DOS. As discussed
fully in the text, the table reveals that while the Aat DOS result
indicates VRH, the peaked DOS result does not.

DOS

Hat

peaked
0.03
0.007

tmax

0.07
0.045

tvRH
0

2650( 150)
972(55)

t Illlm
0

1700(300)
325(50)

for which kT is comparable to the scale of energy over
which the DOS changes significantly. As such, we are
presenting evidence that the DOS also aff'ects the form of
o ( T) at temperatures which are well above the T~0 K
limit.

Our results indicate that the peaked and the Aat-Oat
DOS exhibit three temperature regimes. As the tempera-
ture is lowered, there occurs first a regime where s=1 for
both DOS (the "higher range of t" in Table II), then a re-
gime where s =

—,
' for the peaked DOS while s =

—,
' for the

fiat-fiat DOS (the "lower range of t" in Table II), and
finally there occurs for both DOS the T~O K VRH re-
gime.

In Table III we compare the s =—' results for the
peaked DOS with the s =—' results for the Oat DOS.
Theoretically, VRH is expected to exist for t (at„where
a ~ 2. ' ' ' We see that, whereas the numerical and
theoretical ranges of t agree for the Aat DOS, the numeri-
ca1 range for the peaked DOS is we11 above the theoreti-
cal range. As such, the s =

—,
' behavior for the peaked

DOS is not low-t VRH. Moreover, the numerical value
of tp for the peaked DOS is considerably smaller than the
low-t VRH value. We note that the tp for the Aat DOS is
also smaller than its corresponding theoretical value;
however, the difference is not nearly so much as for the
peaked DOS, and some difference between the theoretical
and numerical values is expected even for a fIat DOS.
The important point is that the numerical range of t for
s =

4 behavior for the peaked DOS is far too high, and

the value of tp far too small, to be explained as low-t
VRH. This is precisely the experimental behavior report-
ed in Refs. 6 and 7, viz. , high-T, small-Tp s =

4 behavior.
We conclude that the s =

—,
' behavior for the Hat DOS is

in good agreement with theoretical VRH, but that, just as
for the experimental results, the s =—' behavior for
0.006 ~ t ~ 0.045 for the peaked DOS is not.

Next, we present a quantitative comparison between
the high-T, small-Tp, s =—,

' experimental results of Refs. 6
and 7 and the high-t, small-tp, s =—' numerical results of
this work. Specifically, in Table IV we compare the
range of the experimental quantity P" '= ( TD IT)'/ to
the range of the numerical quantity P":(ta/t—)'; in
the table we list both quantities under the same heading,
P"'. The reason we compare P"~' and P" is that, if the
experimental and numerical temperature ranges overlap,
and if the values of Tp and tp agree, then the ranges of
P""' and P" will overlap. Since t=kT/AE, the parame-
ter which connects experimental and numerical results is
Ac..

We see from the table that, while the range of P™
does not match any of the ranges of P" ' for Ref. 7, the
range of P" is in agreement with all three ranges of P"~'
for Ref. 6, though the numerical value 1V' ' a '=5 is
less than the experimental values of nD

' a '. We can
easily calculate the value of Ac required to bring the nu-
merical value of tp and range of t into agreement with the
experimental value of Tp and range of T. For example,
Ac =8 meV means that tp =325 and 0.015 ~ t + 0.034 cor-
respond to Tp=3X10 K and 1.4 K& T 3.2 K, which
are the experimental values for sample 2 of Ref. 6. The
value 8 meV for Ac is quite reasonable in view of the
value cd =8.6 meV for the bare donor binding energy in
InP. Similar results are obtained for samples 1 and 3.
The only differences between the experimental results of
Ref. 6 and the numerical results of this work are
differences between nD

' a ' and N ' a ' as well as
slight differences in the values of K.

We interpret the results of the above quantitative com-
parison as follows. A DOS having a peaked nature, such
as the one given by Eq. (2.1), qualitatiuely accounts for
the high-T, small-Tp s=4 behavior of Refs. 6 and 7.
Moreover, a DOS which has a form close to that of Eq.
(2.1) (with g= —,', and A, =—,') will also account quantita

TABLE IV. Quantitative comparison between experimental and numerical results. The range of the
experimental quantity P"~' —= ( T0/T) ' ~ is compared to the range of the numerical quantityP"—:(ta/t)'~ in the column "Range of P"'." The range of P" (this work) agrees with the three
ranges for P"~' for Ref. 6. Also given in the table are the values of nD '~'a ' and IC.

Ref.

This
work

Sample
—1/3 —1na a

10
9.0
6.4
5.4
4.9
4.8
5

0.62
0.47
0.32
0.64
0.43
0.31

1

Range of P"'

8.7 —11.5
9.9 —12.2

13.3 -15.5
3.52 —5.26
3.51 -5.06
3.51 -4.83
9.2(4)—15.2(6)
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tively for the experimental results of Ref. 6. Since the
values of P" ' for Ref. 7 are quite small, the DOS which
quantitatively reproduces the results of Ref. 7 will differ
somewhat from Eq. (2.1), but will nevertheless have a
peaked character. In short, our numerical results show
that the high-T, small-Tp, s =—,

' experimental results can
be fully explained within the context of the resistor-
network model of hopping conduction, using a peaked
DOS.

Since t «1 for the s =--
—,
' numerical results for the

peaked DOS, it is tempting to try to reproduce these re-
sults analytically using the T~O K simplified form for
the resistor network. Proceeding in the standard—f, (.t)
manner, we obtain o(t)=a0e ', where g, (t) is given
analytically by an implicit equation involving a quantity
n, ( X, q, t ) which is a critical parameter in the associated
percolation problem (see Refs. 12—14 and 30), and which
depends on A, , g, and t. Since n, ( A, , r), t ) is an unknown
function of t for the temperatures of interest, g, (t) may
not be obtained by such a simple analytic approach, and
a numerical solution, such as the one we have obtained, is
required instead.

We turn next to a discussion of the numerical results
for the Aat-Aat DOS. As noted earlier, this DOS models
the finite temperature filling in of the Efros-Shklovskii
Coulomb gap. In the Efros-Shklovskii theory of the
Coulomb gap, the DOS has the form

(3.1a)

(3.lb)

where b, is the energy spread of the Coulomb gap (see
Ref. 14, Chap. 10). This DOS implies a conductivity of
the form

—
(EQ /t)'o.(t)=aae
Q2

t=p,
gFhca

1/3

p ~—I/3& —lg2/3Q

(3.2a)

(3.2b)

where b, =—b, /b. e, AE is again the width of the DOS, and
P, =2.8 (Ref. 14, p. 240). Once again, the conductivity
given by Eq. (3.2) holds only for low-enough t Accord-.
ing to a recent paper by Summerfield, McInnes, and
Butcher, the Coulomb gap fills in at finite temperature,
so the DOS does not vanish at c, =pp. In consequence of
this filling in, the low-temperature form of the conduc-
tivity will have s =—,

' instead of s =
—,'. For the Oat-Oat

DOS of Eq. (2.2), with y= —,', and g,„„,/g;„„„=5,the t,
associated with this s =—,

' VRH is t, =0.0008. ' Thus,
for t &0.002, cr(t) will be given by Eq. (1.1) with s =—,'.
We have found that, for 0.013 & t & 0.06 (viz. , t well above
the range for VRH), o(t) obeys Eq. (1.1) with s =

—,
' and

t0 =3.35(22). Our result indicates that, even if the
Coulomb gap does fill in, provided the DOS has a dip
near pp, the conductivity can still display s =

—,
' behavior

in a temperature range above that for which VRH

occurs; it is only at the very 1owest of temperatures that
the DOS of Eq. (2.2) will lead to s =

—,
' behavior.

If 5 is chosen so that the areas under the DOS of Eqs.
(2.2) and (3.1) are equal, then ta =2.2: the DOS of Eq.
(3.1) leads to s =

—,
' behavior with t0=2.2 in the limit

t~0, while the DOS of Eq. (2.2) gives s =
—,
' behavior

with tp=3.3 in a much higher temperature range. Our
numerical work shows that s =

—,
' behavior with tp of or-

der unity can occur when the DOS is nonzero at pp.

IV. SUMMARY AND CONCI. USIQNS

In this paper, we have reported numerical simulations
of hopping conduction in lightly doped semiconductors.
We have modeled such hopping conduction using a
Miller-Abrahams resistor network. We have used the full
expression for the resistances instead of the simplified
T~0 K asymptotic form usually employed.

Our study centered on how the temperature depen-
dence of the hopping conductivity o ( T) depended on the
DOS. It is well known that the DOS is important in
determining o(T) as T~O K; our results show that the
DOS also plays a crucial role at higher temperatures. We
found two distinct temperature regimes above the T~0
K regime. In the lower of these two regimes, we found
that the parameter s in Eq. (1.1) for cr( T) was unity for a
fiat DOS, whereas s =

—,
' for the peaked DOS of Eq. (2.1),

while s =
—,
' for the Hat-liat DOS of Eq. (2.2). In the

higher of these two regimes, we found s=1 for all three
DOS, but with the activation energy depending on the
DOS in a nontrivial way.

The numerical results for the peaked DOS indicate
that, in addition to VRH behavior, which is expected to
occur as T~O K and for which s =—,', s =

—,
' behavior can

also occur in a temperature range- well above the range
for VRH, and with a value of Tp much smaller than the
value associated with VRH. Our work thereby validates
the claim by SB, viz. , that the high-T, s = ~, small-Tp ex-
perimental results of Refs. 6 and 7 can be explained in the
context of the Miller-Abrahams full resistor-network
model using a peaked DOS.

One important difference between our numerical re-
sults and the analytical results of SB is that SB's results
embodied having kT of order Ac., while we find that this
is not crucial, i.e., that our numerical results can explain
the experimental results while having kT «hv. We em-
phasize that, even though kT &&b,e, our results do not
simply reduce to low-T VRH. Like SB, we find that the
form of the DOS plays a crucial role in explaining the ex-
perimental results.

Our numerical results also reveal that activated behav-
ior (s= 1) can occur at temperatures above the VRH re-
gime for a variety of DOS, not just for a flat DOS. Also,
depending on the band width Ac., a peaked DOS could
give either s=1 or s =—,

' in the temperature range 1

K ~ T & 5 —7 K. A large value of hc, will give s = 4, while
a small Ac. will give s=1. However, s=1 behavior in this
range of T could also occur for a Aat DOS or a Hat-Bat
DOS. It appears that activated hopping conductivity re-
sults whenever kT is of order b, e (viz. , 0.05 &kT/b, E
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S0.2). As such, it would seem that the experimental re-
sults of Refs. 2—5 could be associated with any DOS. On
the other hand, the experimental results of Refs. 6 and 7
are almost certainly due to a peaked DOS, for it is only in
this case that our numerical results reproduce small-To,
s =

—,
' behavior in the temperature range 1 K» T~5—7

K. We note that, in the event of such high-T, small-TO,
s= —,

' behavior, one might expect s=1 behavior at even
higher T. However, if Ac. is large enough, say of order 10
meV in Inp, which is essentially the value we found in
Sec. III, then activation of electrons to the conduction
band would dominate activated hopping for T ~ 5-7 K;
this is precisely the behavior reported in Refs. 6 and 7.

The filling in of the Coulomb gap at finite temperature,
as reported by Summerfield, McInnes, and Butcher, im-
plies VRH at low-enough T. Our numerical simulations
give s =

—,
' at high T for the Oat-Aat DOS. As such, our

work indicates that a Coulomb gap, even if filled in, gives
rise to s =

—,
' behavior, except at the very lowest of tem-

peratures. In light of our numerical results, the lack of
reported s =

—,
' behavior in lightly doped semiconductors

suggests that the Coulomb gap is either much wider or
much narrower than originally predicted by Efros and
Shklovskii. A much wider, filled-in Coulomb gap would
result in VRH occurring at higher temperatures. Howev-
er, since a filled-in Coulomb gap implies a smaller value
of gF, and hence a larger value of To than the To for a
Hat DOS, this could not account for those experimental
results where To is smaller than the To for a fIat DOS.
On the other hand, a narrower gap not only shifts the
s =

—,
' behavior to lower temperatures, but also restores a

regime of temperature, above that for s =
—,
' behavior,

wherein the temperature dependence of cr(T) is deter-
mined by the form of the DOS. As a final point concern-
ing the Coulomb gap, we note that, for doped semicon-
ductors where the doping is heavier than has been con-
sidered in this paper, the experimental trend has also
been toward s =

—,
' behavior and not s =

—,
' behavior. Our

work suggests that this trend is due, not to the filling in of
the Coulomb gap, but more plausibly to a narrowing of
the gap.

In closing, we emphasize the need for further experi-
mental and theoretical work. More experimental work in
lightly doped semiconductors at high T (T-~l K) is re-
quired in order to establish in which cases s=1 behavior
occurs, and in which s = —,

' occurs. Further work at low
T (T 5 1 K) will tell whether VRH always results, as it
does in Ref. 8, or if the Coulomb gap will reveal itself in
some cases. Further theoretical investigations can. help
understand why s =

~] behavior results for the peaked
DOS, whereas s =

—,
' results for the Aat-Aat DOS, or, more

generally, what the connection is between the DOS and
the associated value of s at high T.
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