
PHYSICAL REVIEW 8 VOLUME 39, NUMBER 18 15 JUNE 1989-II
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An analytical study of the ultrafast-mobility transient of central-valley nonequilibrium carriers in

a highly photoexcited plasma in semiconductors is presented. General expressions for the mobility
of the photoinjected carriers are derived. Numerical results are obtained in the case of low to
moderately high fields in GaAs. We show that the mobility transient has a structure (maxima and

minima) depending on the degree of photoexcitation and electric field intensity. Three different re-

gimes are present, corresponding to (i) structure without overshoot and an Ohmic steady state, (ii)

structure with overshoot and a non-Ohmic steady state, and (iii) normal evolution and an Ohmic
steady state. A brief discussion of the diffusion coefficient is given.

I. INTRODUCTION

Studies of the optical and transport properties of semi-
conductors under high levels of excitation have shown
novel and quite interesting features, evidenced in
ultrafast-laser-spectroscopy experiments. Notable im-
provements in time-resolved laser spectroscopy have
made it a very useful tool to be used with confidence for
the investigation of very rapid mechanisms and effects in
the biological and physical realms. ' These kinds of stud-
ies are of great interest because of the variety of phenom-
ena observed, most of them of relevance in the function-
ing of some semiconductor devices, and also because they
provide an excellent testing ground for theoretical ideas
in the field of many-body systems far from equilibrium.
The question of the infIuence of very fast relaxation pro-
cesses in highly photoexcited plasma in semiconductors
(HEPS) on their optical properties has been the object of
experimental and theoretical study. In the present paper
we consider how relaxation effects in HEPS affect the ul-
trafast mobility of the nonequilibrium carriers. Several
approaches to the hot-carrier quantum transport are
presently available, and numerical methods, such as the
Monte Carlo computational approach, have shown recent
remarkable improvements. However, analytical
methods for studying the nonlinear transport in HEPS
under the action of intense electric fields are also desir-
able to obtain physical insights and for the interpretation
of new phenomena. For that purpose we resort here to
the use of the nonequilibrium statistical operator method
(NSOM). It is a powerful formalism that seems to offer
an elegant and concise way for an analytical treatment in
the theory of irreversible processes, adequate to deal with
a large class of experimental situations. It can be con-
sidered a far-reaching generalization of the Chapman-
Enskog approach in the kinetic theory of gases or of the
Mori-Langevin formalism. The NSOM and its associat-

ed generalized nonlinear quantum transport theory are
reviewed elsewhere. ' The NSOM we use for the study
of nonlinear ultrafast transient transport in HEPS arbi-
trarily away from equilibrium and for any value of the
electric field intensity is that based on Zubarev's ap-
proach, in the so-called NSOM linear theory of relaxa-
tion (LTR). Numerical calculations appropriate for the
case of GaAs are presented. The existence of a novel
feature is demonstrated in the evolution curves of the
drift velocity, termed structured ultrafast transport, viz. ,
maxima —relative or absolute (overshoot) —and minima
that may appear before a steady state is reached. A cri-
terion for the occurrence of this structure, and also
overshoot effects, is derived. It is shown that there exist
three different regimes in the transient transport depend-
ing on the range of values of the electric field intensity.

II. NONLINEAR QUANTUM TRANSPORT IN HEPS

We consider the case of a polar semiconductor de-
scribed by a two-inverted-parabolic-band model, where a
concentration n of electron-hole pairs has been created by
an intense pulse of laser light. These carriers are in a
state strongly departed from equilibrium but in a condi-
tion of internal equilibrium (hot carriers) as a result of the
Coulomb interaction. A constant electric field of inten-
sity e in, say, the x direction is applied, accelerating the
carriers which, at the same time, transfer energy and
momentum to the phonon field. The sample is in contact
with a thermal reservoir at temperature To, and the pho-
nons are warmed up in scattering events involving
Frohlich, deformation potential, and piezoelectric in-
teractions with the carriers.

To deal with the irreversible thermodynamic evolution
and transport properties of this system we resort, as indi-
cated in the Introduction, to the NSOM in Zubarev's ap-
proach. We recall that the NSOM requires, as a first
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step, the choice of a basic set of variables to describe the
macrostate of the nonequilibrium system. ' ' For the
present case we select the eight dynamical quantities P,
j =1,2, . . . , 8, consisting of the carriers, longitudinal-
optical (LO), transverse-optical (TO), and acoustic (AC)
phonon Hamiltonians (H„HLo, HTo, and HAC, respec-
tively); the number operators for electrons, N„and for
holes, Nh', and the linear momenta (their components in
the direction of the electric field) of electrons, P„and of
holes, PI, . The nonequilibrium macroscopic variables,
i.e., the average values of these eight dynamical quantities
over the nonequilibrium ensemble, Q.(t)=Tr[P p(t)],
are —after dividing by the volume of the system —the
densities of the corresponding energies, E,(t), ELo(t),
ETO(t), EAO(t), the density of pairs, n (r) (equal to the
density of the electrons and of the holes), and the density
of the linear momenta, ir, (t) and iri, (t). Further, there
are eight intensive nonequilibrium variables F (t), ther-
modynamically conjugated to the Q (t), that are defined
as the four reciprocal quasitemperatures /3, (t) = 1/
kT,"(r), /3LO(t)=1/kTTO(t), /3TO(i)=1/kTTO(t),
/3Ac(t) =1/kTAc(t); two are associated to quasichemical
potentials, —P, (t)p, (t) and /3, (t)p, i, (—t), and, finally,
two are associated to drift velocities, —/3, (t)U, (t) and
—P, (t)uh(t). Further analysis of this choice and its limi-
tations is presented in the last section.

The total Hamiltonian H of the HEPS is separated in
the form H =Ho+H'+H„where Ho contains the ener-
gy operators of each individual subsystem, i.e.,
Ho =H, +H„~+HT~+HAc, and the interactions be-
tween them and with the external reservoirs are included
in H, i.e., it is composed of the interaction energies of
carriers with the phonon field, anharmonic interaction
between phonons, and the interaction with the thermal
reservoir (responsible for heat diffusion out of the sam-
ple). Finally, the interaction of the carriers with the elec-
tric field is

H, = —eel(x, . —xh ),
J

where x, ~h~. is the coordinate of the jth electron (hole).
For the given choice of the basic set of dynamical vari-

ables we find [P,HO]=0 and [P,Pk]=0, and the
Coulomb interaction between carriers, contained in H„ is
treated in the random-phase approximation, i.e., the car-
riers are considered as a two-component Landau Fermi
Quid. Coulomb interaction is only called forth indirectly
to ensure the internal thermalization of carriers at any

time. The conduction and (heavy-hole) valence Bloch
bands are taken in the effective-mass approximation, and
we use Einstein models for the optical phonons (with
dispersionless frequencies coLo and coTo) and a Debye
model for acoustic phonons [coAO(q) =sq, with triple de-
generacy; s is the velocity of sound].

Applying Zubarev's NSOM nonlinear quantum trans-
port theory in the NSOM linear theory of relaxa-
tion, " ' ' we obtain for the evolution equations of the
basic set of macrovariables Qi ( t),

1 d&Hc~t) "
&P.I» —g E'. „(r), (2a)

maU a, g, i

1 d&H«lr&
Q Ea, Lo(r) ELo,AN(r) ~

a, i

1 d&HTolr&
XEa,To(r) ETo,AN(i)
a, l

(2b)

(2c)

= g E~ Ac(t)+ELO AN(t)
a, i

+ETO AN(t) —EAC d;f(t) (2d)

1 d&P, ~r)

V dt

1 d&P, lr&

dt

=nee —g i'r', „(t),

=nee g ir'„„(—t),

(2e)

(2

where we took the modulus of the linear momentum in
the direction of the electric field. The two equations for
the average number of electrons and holes are not con-
sidered since, for our purposes here, they are constant be-
cause recombination effects are relevant in a near-
nanosecond time scale while our interest is in the time
scale of a few picoseconds. In these equations V is the
volume of the system, and a=e or h for electrons or
holes.

In Eq. (2a) the first term on the right-hand side ac-
counts for the energy transfer from the electric field to
the carriers system, which is the only new term in this
equation in comparison with that obtained with a similar
derivation in studies of relaxation effects in HEPS. ' This
latter reference also contains an explicit expression for
the rate of change of the LO-phonon's energy to the car-
riers' system. Similar expressions are valid for the two
others (TO and AC), namely

E' (i)= +fico „~M' „(q)~ Iv „( )fk (t)[1 fk+ (i)]-
k, q

—[1+v „(t)]f„q (t)[1—f„(t)]]5(E„+ —E„—fico „), (3)

where the index g is LO, TO, or AC, and the upper index
i refers to the different types of interactions, PD, PZ, and
FR for deformation potential, piezoelectric, and Frohlich
interactions, respectively. In Eq. (3)

v „(t)= 1/[exp[/3„(t)fico ]q—1] (4)

are the instantaneous distribution functions for q-type
phonons with co „the corresponding frequency dispersion



VAI.DER N. FREIRE, AUREA R. VASCONCEI I OS„AND ROBERTG I.UZZI 39

relations, and

f„(i)= [4ir i)i'n /(2irm )
~ ]P,~ (t)

XexpI —P, (t)[i)ik —m v (r)] /2m I (5)

are the carrier distribution functions; at the high excita-
tion levels being considered we can use the above instan-
taneous Maxwell-Boltzmann distribution, which contains
a shift term in the exponential due to the presence of the
electric field. Further, the right-hand sides of Eqs.
(2b) —(2d), besides the contribution of Eq. (3), contain the
rates of energy transfer due to anharmonic processes,
E~ AN(t), and in Eq. (2d) the term EAC d f(t) du'e to heat
diffusion; all of them are taken in a relaxation-time ap-
proximation, viz. ,

ELO(TO) AN(r) —g A&q LO(TO)
q

vq, LQ(To)(r) vq, Lo(To)(r&~Ac)
X

+LO(TO)

EAc, d f(r) X &a)q, AC
q

where

vq, Ac(r) vq, Ac(I B )

+AC

vq, Ac(&B ) = 1/[exp(pBR&q, Ac) —1]

/3B is the reciprocal temperature of the reservoir, and rAC
is a phenomenological relaxation time which depends on
the diffusion coefFicient and the dimensions of the surface
of the active volume of the crystal. '

Finally, in Eqs. (2e) and (Zf) the first term on the right-
hand side is a drift force due to the action of the electric
field. The second term contributes to the rate of varia-
tion of the momentum as a result of collisions with pho-
nons, and is given by

where

vq, Lo(To)(r ~Ac) 1/texP[)(lAc(r)~(vq, Lo(TO)] 11

and ~LQ(TQ) is a phenomenological relaxation time, to be
evaluated from Raman scattering linewidths. ' The same
term with a change of signal appears in Eq. (12d), and

ir „(r)= gfiq, lM' „(q)l'Iv, „(r)f~ (r)[1 f„+, (r)]-
k, q

—[1+vq q(t)]fi, +q ~(t)[1—fk ~(t)]ID(ei +q ~
—

ek ~
—Aa)q q)

+ g &q, lM' „(q)l'I [vq „(t)+1]f„(t)[1—f„q (t)]
k, q

—
vq „(t)fk q ~(t)[1—fk (t)]I5(sk q

—ek +A'a)q „), (10)

where q, is the modulus of the component of q in the
direction of the electric field.

FinaHy, performing in the complete set of equations of
I

I

evolution the integrations in reciprocal space (summation
over k and q) involved in all the collision operators, we
obtain

E «(r)=APDAc(r)exp[ —x (i)]IM(3, —,',x (r))+[3y (r) —13c(r)/pAC(r)]M(2, —,',x (r))

(3m'~ /2)y'~ (t—)M( ,', '„x (r))—ir'~y—~—(t)exp[x (r)]
—

—,'y (t)[1—3&2y (t)]M(l, T3, x (t))I,

E Ac(t)= A Ac(t)exp[ —x (t)]IM(2, i,x (t))+[y (t) p, (t)/pAC—(t)]M(1,—,',x (t))—n' y'~ (t)exp[x (t)]I, (12)

where

A Ac ( t) =OAcn

, Ac ( r ) ~Ac n

2'/2m '"E'
CK 1(X

p 3/2( )3/2g4

21/2 3/2 2~2a PZ

~~a„z ~
A pro

(13)

(14)

x (t)=Pc(t)—,'m v (t),
y (t)=Pc(r) —,'m s

(isa)

(15b)

E& is the deformation potential coupling constant Hpz the piezoelectric potential coupling constant, eo the static
dielectric constant, p the density of the material, OAc=3 is the degeneracy of the acoustic modes, and M(a, b, x) are
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Kummer functions also

E~ „o(t)= A" «(t)exp[ —z«(t) —x (t)]

[2 zLo(t)x (t)]'xT %
0 (21 +1) 21 1

X t [1+vLo(t)]exp[ —zLo(t)]I (I +—,
'

) U(l + —,', 1'+2;2zLo(t) )

—v«(t)exp[zLo(t) ]I (1'+1+ ,' ) U—(l'+1+—,', 1'+2;2zLo(t) )j,
«(t)= A Lo(t)exp[ —z«(t) —x (t)]

[2 zLo(t}x (t)]
X X 1, I [1+v«(t) ]exp[ —z«(t)]1 ( —,

'
) U(-', ,1+3;2zLo(t) )

1=0

—v«(t}exp[z«(t)]1 (1 +—,'}U(l + —,', 1+3;2z«(t)) j,
where

v«(t) =1/Iexp[f!«(t)~~Lo] —1j,
23/2

Lo(t)=g«n (fg~«) Pc (t),

I'"D'
Lo(t) =9 n (/to«) Pc/ (t),

(16)

(18)

(20)

z„o(t)=Pc(t)htu«/2 . (21)

Eo is the Frohlich field, the DLQ~ are the LO-phonon deformation potential interaction coupling constants, gLQ= ]. is
the degeneracy of LO phonons, I (a) are gamma functions, U(a, b, z) are coniiuent hypergeometric functions, '4

E TQ the same as E „Q with the exchange LO~TO

and OTQ=Z
The difterent contributions to the equations of evolution for the linear momentum are

Ac(t)=B Ac(t)u (t)exp[ —x (t)]I [1 6yAc —(t))M(3, —,',x (t))

+2m' yAc ~(t)[PAc(t)/Pc(t)]' M( —',, —'„x (t))+

Ac(t)=B Ac(t)u (t)exp[ —xc(t)]t[1—2yAc (t)]M(2, S/2;x (t))+yA/c (t)[pAc(t)/pc(t)]exp[xc(t)]j,
where

23/2m 5/2E2 P
—1/2(t)

PD ma la CB.,Ac(t}=~Acn
fi s p pAc&t&

2i/2tn 3/2e2H2 p)/2( )BPZ ( ) g
a Pz

3vrA s' '
13 (t)

yAc, (t)=~Ac(t),™s

Also,

«( t ) B~ Lo ( t )x '
( t )exp[ —2zLo ( t ) —x ( t ) ]

00

x tz
( 1+1)! (21)!

(22)

(24)

(25)

(26)

(27)

X I (1+—,')I [1+vLo(t)]U( —1+32;2z«(t))+ «(vt)U(l+ —,', 1+2;2zLo(t))j

+ g, I [1+vLo(t)]I (I'+ —,')U(l'+ —,', 1+1;2zLo(t))

—vLo(t)I (1+1'——,
'

) U(l +1' ——,', 1+1;2zLo(t) ) j (28)
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Lo(t)= B ro(t)x ' (t)exp[ —x (t)]

1+ v(t) +exp[ —2zro(t)] 1—
vLQ(t)

v(t)
vr.o(t)

oo 23I

(2l + 1)!
2 '

r
6zr.o(t)

(2l)! 2l +1[x (t)zLQ(t)]' U( —'„l +4;2zro(t))

v(t) +exp[ —2zLQ(t)] 1—
vLQ(t)

v(t)
vLQ(t)

oo 23I

(2l +1)!
231

[x (t)zLQ(t)]'
2l !

X U( —', , l +2;2z„o(t))+ 1 — U( —', , l+3;2z„o(t))3
2l+1 (29)

where

B"Lo(t) =OLon
eE0

fttuLopc( t) ~ (30)

moderately high electric fields assuming that the carrier
energy of drift is smaller than or, at most, comparable to
the thermal energy, i.e.,

p, (t)m u (t)/2~1 . (35)
2 ~2

PD ~ aE10aB r Q(t) —OLon
22m-A4s 2p

X (ficoLQ) vLQ(t)pc(t), (31)

In these conditions, the series in Eqs. (11), (2), (16),
(17), and (22) can be rearranged in the form of a dom-
inant term plus corrections. We retain only the main
terms to obtain

v( t) = 1/I exP [Pc( t)rrr'coro] —1 (32)

To, the same as 7i. Lo with the exchange LOTTO .

and finally,

8"To, the same as ~ Lo with the exchange LOTTO,

(33)

pc(t)
Ea,Ac(t)=~a, Ac(t) 1—

AC t

pc(t)E",Ac(t) = ~",Ac(t)
AC

4A'coLO
E LQ( t) = n 8„oeEo

7TPl a

1/2

1—
v(t)

(36)

(37)

So far we have obtained a complete derivation of the
equations that govern the evolution of the basic set of
variables that describe the macrostate of the photoinject-
ed HEPS in a constant electric field. They are valid for
any intensity of the electric field strength but relaxation
eff'ects due to collision with phonons have been treated in
the NSOM linear theory of relaxation. The collision
operators are expressed in terms of series of Kummer and
conAuent hypergeometric functions, and thus are rather
dificult to manipulate numerically. To simplify these ex-
pressions we restrict the calculations to the case of low to

XZLQ (t)exp[ —zro(t)]KO(zLQ(t) )

2&l a AQ)Io

3g4 2

Xz LQ (t)exp[ —zLQ(t))Kr (zLQ(t) ),

vr.o(t)1—
v(t).

E', r.o(t) =n ~LQD r.o,

E To(t), the same as E LQ(t)

(38)

(39)

with the exchange LOTTO (40)

for the terms associated with relaxation of energy (we
used also that pAchsq &(1), and for the terms associated
with momentum relaxation we find

Ac(t)=B Ac(t)u (t),

ir Ac(t)=B Ac(t)u (t),

~"Lo(t)=OLonm y (t)u (t),

(41)

(42)

(43)
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Lo(t)= 8Lon
2

—1/2~ 3/2E2
(A'co«) v«(t)P~~ (t)exp[z«(t)]u (t)

3m fis p

X 1+ +exp[ —2zio(t)] 1—v(t) v(t)
vro t vLo t

Ã2(zLo(t) )

v( t)
vLo(t)

—exp[ —2z„o(t)] 1— v(t)
vi.o(t)

Ir. i(zr.o(t}}

ir To(t)=same as ir Lo(t) exchanging LOTTO,

where

(45)

y (t)= y~ ~ (t)exp[zLo(t)]vLo(t) . 1+ +exp[ —2z„o(t)] 1—v(t) v(t)
vLO vr Q

Kr (z«(t) )

v(t)
vLo(t)

—exp[ —2zi o ( t) ]
v(t)

vio(t)
Ir.'0(z«(t }} (46)

with

v(t) =1/I exp[13&(t)fico«] —1I,
yw=(2 eEO /3)( 1/2n. m rricor o)' (48)

E,(t)=pe~ J~ (t),
ka

(49a)

and E„(z)are Bessel functions of second order. '

Simple mathematical manipulations allow us to put Eq.
(44) in the form given by Conwell9 with the instantaneous
values of T, (t) and Tio(t).

Next, we assume that the Frohlich interaction predom-
inates over all other carrier-phonon interactions, and,
since in the very early stages of relaxation after finaliza-
tion of the laser pulse there is practically no heating of A

phonons, we take TAc equal to the reservoir temperature.
Hence, the original set of six generalized transport equa-
tions reduce to four equations once those for the AC and
TO phonons' rate of energy variation are dropped.

The left-hand sides of Eqs. (2) are expressed in terms of
the intensive variables, i.e., quasitemperatures and drift
velocities, using the relations

du~(t)
=(e/m )e —y (t)u (t) .

dt
(50c)

u (t)=(e/m )er (t), (51}

where

~.(t)=e &"I'dt'e+"
0

g (t) = f dt'y (t'),
(52a)

Equation (50c) is a Newton-Langevin-type equation
with y (t) playing the role of the reciprocal of an instan-
taneous momentum relaxation time. Equations (50c) and
(50d) are of the same form as Eqs. (42) in Ref. 5, but y in
the latter depends on a supercorrelation function [Eq.
(43) in Ref. 5], a functional with a highly complicated
dependence of all the nonequilibrium variables, including
the drift velocities. DifFerently, y (t) of Eqs. (50c) and
(50d), calculated in the NSOM linear theory of relaxa-
tion, is dependent only on T, (t) and TLo(t), but is in-

dependent of u (t). Thus, Eqs. (50c) and (50d) are first-
order linear differential equations for each drift velocity,
possessing the solutions

E„(t)=g 8„fuoq „vq „(t),
q

1
&,
I' it & =nm u —(t),

(49b)

(49c)

and we have taken the initial condition u (0)=0.
Defining the currents I~(t) =neu (t) and using Eq. (51)

we obtain a Drude-type conductivity

and then
cr (t)=(ne /m )r (t), (53)

dPC(t)
dt

g(t) u (t)
~."", (t)

n

—E:D«(t)—E."R«(t), (50a)

(50b)

dP«(t) 2V„))
I 1 —cosh[Pi o(t)rrrco«] I(e~«)'

X g Ea Lo(t) ELO, AN(t}
a

QUa
=(e/m )e[1—y(t„)r(t„)]=0,

X

(54)

i.e., whenever there occurs during the transient period a

with an instantaneous transport relaxation time depend-
ing on time through the quasitemperatures T, (t) and
T„o(t), and then varying in time with the irreversible
evolution of the macrostate of the system.

Using Eqs. (51) and (52) straightforwardly proves that
the drift velocity mould have extrernal points at, say, a
time t where
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crossover of the evolution curves for the momentum re-
laxation time and transport relaxation time. Such an ex-
tremum is a maximum or a minimum if the second time
derivative at t,

V~ d'Ya= —(e/m~)er (t„)
dt dt

y ') for a quasitemperature T;"=2BO, with a negative
slope (or alternatively dy '/dt, )0) for T, )T;" and a
positive slope (or dy 'IdT, &0) for T, & T;". It can also
be seen that d y /d TLo is smooth, and thus the condition
for the possible occurrence of a structured transient is
fulfilled.

Next we apply these results to a specific case to obtain
numerical solutions.

=v (t )y(t )
7 0!

dt
(55)

III. STRUCTURED MOBILITY IN GaAs

is negative or positive, respectively. Further,

dy
di

'By dT By dTLo+
BT dt T„BTLo dt t„

(56)

and, since the last term is expected to be much smaller
than the first, ' neglecting it we find that on cooling
(dT, /dt &0) a maximum occurs if By 'IT, )0, and a
minimum for By '/T, &0. Once r(t) begins at zero and
increases, the first extremum, if it occurs, is a maximum,
and thus a transient with structure (a maximum and a
minimum) should follow if on cooling y

' passes through
a minimum. It ought to be emphasized that this charac-
teristic of the mobility transient remains valid for the
quite general case of any intensity of the electric field
strength and large relaxation effects, as shown in Ref. 5.
We recall that the expression for y(t) given by Eq. (46) is
valid for low to moderately high fields and the NSOM
linear theory of relaxation. Also, we call attention to the
fact that the maximum is an overshoot if the momentum
relaxation time at t is larger than y

' at the stationary
state.

We have drawn in Fig. 1 the curves showing the depen-
dence of the reciprocal of the momentum relaxation time
on the carriers' quasi-temperature for several values of
the LO-phonons' quasitemperature. In it Bo=iricoo/k is
the Einstein temperature, and y is normalized in terms
of the y 0 of Eq. (48). The existence of a maximum of y
can be seen (minimum of the momentum relaxation time

10 I6k V/cm

~2 k V/cm

UJ
CL

I-
~IO
LLI
CL

QJ

(f)

C3

9.5k V/cm

9.3kv/cm

Consider a sample of GaAs illuminated by an intense
pulse of laser light. To fix initial conditions, we take as
an example the case of the experiment of Shank et al. '

which we previously used to study relaxation phenomena
in HEPS. ' A very short laser pulse of 0.25 psec pro-
duces a density of photoinjected carriers n =2X10'
cm, having an excess kinetic energy of roughly 2.4 eV,
and in contact with a thermal reservoir at 300 K. Im-
mediately after the pulse, the initial quasitemperature of
carriers is, roughly, 6700 K, and TLo -303 K, TTz -303
K TAC To =300 K. We have also used relaxation
times for anharmonic processes of 10 psec and a heat
diffusion relaxation time of 1 nsec.

The coupled set of difFerential equations, Eqs. (50), is
solved using standard computational techniques. Our re-
sults are displayed in the accompanying figures. Figure 2

X

Z
W o

E a
Z4J ~

I 5
X

~ Z
I.Oo+

g W
X
'ct

~~ ut O.5

07

CL
Ld

CL
~IO 9k V/~m

8~ v/cm

6k v/cm

2 kv/cm

7 l4 2I
4
c /co

CARRIE R QUA S I T EMPERATURE

0

I

IO
I

l5
I

20
FIG. 1. Dependence of the reciprocal of the momentum re-

laxation time with the carrier quasitemperature for several
values of the LO-phonon quasitemperature. The normalization
factors are indicated in the main text.

TIME (psec)
FIG. 2. Evolution of the carrier quasitemperature for several

values of the electric field intensity.



j3 27139 NJECTED POLAMOM LITYY IN PHOTOIULTRAFAST

+e +h FRFR +EhLO22 +ne E

n LO-phonons
'

n of the - sh evolut o

ll alues of
olution

re obtaine
Figure 4 s

ost identica
1 axis musof th rti aat the scale o

o ntum re-
hl 15)

e
a ac

t maxima

(in-

1 confirms

is decreasing
'

p

th 1 d 11 depends onresult only ep

(57)
me

——9 k V/cm

~ 10k V/cm

— 8 k V/cm

—16 k V/cm

O
O

I

O

310
6 k V/cm

—2k V/cm

I

)0
I

20 30

n uasitemperaturetion of the LG-phonon qua
"ld --. ,sev es of the electric eseveral values o

uasitempera-he carriers q
' era-

ld I'""b
kV/c the

veral va ues o
carriers cood that for

n For 4 e
d the steady

e
eady state in less t an

5
r ace, an

re

stea

ws
r delay tmesrang g

sec. ~ 9.4 kV/cm thhe siea y w

h

h felding aat a value oft e

)2k V/cm

t2

E

D

O
LIJ
O

LL

0
C)

lO k V/cm

O
CL
I—

LLI

9 k V/c~
8k Vlcm

6k V/cm

— ot v/cm

2 k V/cm

l i II I iI i i iI I i I I I I

la

TlME (pseud)

lit for severan drift velocityEv
' f the electron rEvolution o nFIG. 4.

f the electric evalues o

nonequilibrium con-f the initial nonequi i nbi gi dp
FThe general formditions. T e

increase along a sma i
16

i . 6 i.e.,

the steep i
for a time.

Figs. 5 and
en known

own by ih result

rriers

Combina i

h 1

@54kV/cm), witour case ES

lute maximum

111

t te follow g

(9.4 kV/ ),s (4Se

i
' eof theic increas

the station

1111C

in
ehavior,

'

ue, an arn towards its sta io

o 1 condi-
1

of the initiald h ff
' '

11

structure
n drift ve ocif the electron

f the initia c
shows the ev

and di6'e e
increasingP re (i.e., i

it fo ows
ctured mob' '

yr trans
ow gy

with in

t f t tat high energyleading, a
pronounce oincreasing y1 more p



13 272 VALDER N. FREIRE, AUREA R. VASCONCELLOS, AND ROBERTO LUZZI 39

1.2-
20

1.0-

0.8 I

12 kV/crn

I

15

V)

Co I5
Q

1.2-

O
lO—

REGIME (SEE TEXT

I

I

I
(i i)

1.0- b k V/crn

0

1.2-

1.0-

0.8 /

6k V/crn

I

10

O
5

f

I

I

I

I

I

I

I I s I g

lO l2

FIELD INTENSITY (k V l c m )

0.8 I I

P k V/crn

10

TIME (psec}

15

FICz. 6. Dependence of the drift velocity in the steady state
on the electric field intensity.

FIG. 5. Evolution of the momentum and transport relaxation
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transient of D(t) is washed out, but a very pronounced
diffusion overshoot is present.

IV. DISCUSSION AND CONCLUSIONS

D (t)=[kT, (t)/m ]r (t) . (58)

Because of the rapid decay of the carriers' quasitempera-
ture in the early stages of relaxation, the structure in the

suit of the fact that the minimum of y
' is at about 26o,

i.e., -920 K in GaAs; then, for T, (0)=700 K the carrier
system evolves without y

' passing through such a
minimum and no structure can be produced. The subse-
quent values of T, (0) correspond to initial values of y
that allow it to pass through its minimum while the car-
riers cool down and structure appears. With increasing
values of T, (0), the initial value of y when on the posi-
tive slope side of the curve y

' versus T, keeps increas-
ing. Since the stationary value of the drift velocity is the
same in all cases (independent of the initial conditions
and being fixed only by the value of e), for certain values
of T, (0) the maximum becomes an overshoot, displaying
an ever-increasing height with increasing T, (0).

Finally, we note that the existence of an instantaneous
transport relaxation time allows us to write an instan-
taneous Einstein relation linking it to an instantaneous
difFusion coe%cient,

We have presented an analytical study of the ultrafast-
mobility transient of far-from-equilibrium carriers in
HEPS. For that purpose we resorted to the powerful
nonlinear quantum transport theory derived from the
nonequilibrium statistical operator method (NSOM) in
Zubarev's approach. A coupled set of nonlinear integro-
differential generalized transport equations for a basic set
of nonequilibrium thermodynamic variables, deemed ap-
propriate for the description of the macroscopic state of
the HEPS, was derived. It ought to be recalled that the
choice of the basic set of variables for the description of
the macroscopic state of the system is one of the funda-
mental difhculties associated with nonequilibrium ther-
modynamics' and statistical mechanics, and therefore
with any approach to the NSOM. ' In the case of HEPS
one would need, in principle, to use the whole set of dis-
tribution functions for carriers and for phonons, fg(t).
and v„(t), taking as initial conditions the equilibrium
ones for the latter and for the former the distributions
peaked in energy space around the values compatible
with energy conservation in the process of the vertical in-
terband transition produced on absorption of one laser
photon. As already noted in Sec. II, for the levels of con-
centration of photoinjected carriers we are considering
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to its value in the steady state) for an electric field of 6 kV/cm,
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ized by the initial carrier quasitemperatures.

(say 10' cm and higher), these carriers attain a condi-
tion near internal thermalization in, roughly, the 100-fsec
time scale after application of the exciting laser pulse.
Hence, as done in the present work, after a delay time of
0.5 psec it is acceptable to work with a contracted
description of the carriers' macroscopic state in terms of
a quasitemperature, quasichemical potentials, and drift
velocities, in an instantaneous Fermi-Dirac distribution
[under high levels of excitation it goes over the expres-
sion of Eq. (15)]. Differently, the phonons do not attain a
very rapid internal thermalization that allows us to de-
scribe their macroscopic state in terms of solely a quasi-
ternperature and an instantaneous Planckian distribution,
as that of Eq. (4). The phonon populations grow in time
from their initial equilibrium values, while the different
modes are excited by energy transfer from the carrier sys-
tem, in a way that favors a certain off-center region of
Brillouin zone, with internal thermalization (resulting
from the interplay of electron-phonon interaction and
anharmonic effects) expected to follow in the 10-psec

time scale. ' As a result we observed a slower cooling
down of the carriers as compared with the one obtained
using a unique quasi-temperature for all modes in each
phonon branch. Consequently, the treatment we gave to
the phonons in previous sections —the use of an average
population characterized by T„*(t)—overestimates the
decrease of T,'(t) in the earlier picoseconds. As noted,
the behavior of the transient mobility strongly depends
on the evolution of the carriers' quasitemperature [cf. Eq.
(56)], and thus the prediction concerning the structured
evolution remains valid. A more precise calculation car-
rying the details of the evolution of the state of the pho-
non modes is expected to only produce numerical
modifications basically —due to the slower rate of change
of the carriers' quasitemperature —the appearance of the
extrema at later delay times than those predicted by our
theory.

These extrema, a maximum and a minimum, in the
ultrafast-mobility transient of photoinjected carriers in
the central valley of polar semiconductors are shown to
appear at delay times during the irreversible evolution of
the HEPS when there occurs a crossover of the evolution
curves of the momentum relaxation time and transport
relaxation time. The latter, given by Eq. (51), is a func-
tional of the former involving memory effects, i.e., it de-
pends on the previous history of evolution of the HEPS
that determines y '(t) All .the time dependence of the
mobility (or equivalently the drift velocity) is contained in
the transport relaxation time and, therefore, is governed
by its evolution.

The momentum relaxation time has a minimum value
for a macrostate of the HEPS between conditions of high
and low excitation levels. This is so because in the first
case the population of the carrier states in energy space is
very low [small I3, in Eq. (5)], and the amplitude of the
phonon fields does not increase appreciably (cf. Fig. 2).
At low levels of excitation (low carrier quasitempera-
tures~& conservation of energy and momentum largely
reduce the number of electron states available for the
scattering events. Hence, the minimum of y is in be-
tween: according to our calculation for a carrier's quasi-
temperature T,'" of nearly twice the LO-phonon's Ein-
stein temperature. The existence of the structured mobil-
ity is totally dependent on this behavior of the momen-
tum relaxation time. As already noted in previous sec-
tions, and corroborated by Fig. 6, for a maximum and a
minimum of the drift velocity to appear, one must start
with a sufficiently photoexcited HEPS (initial T, larger
than T,'"), followed by a cooling of the carrier system un-

til values of T, are smaller than T,".
With increasing field intensities, T, decreases with a

slower pace and its value at the steady state, T,", is larger
and larger, accompanied by a mobility smaller and srnall-
er, with the result that the value of y,, ' approximates its
minimum value. On the other hand, the height of the
maximum of ~ is weakly altered since it depends ex-
clusively on the evolution of y

' towards its minimum
value. With increasing values of the electric field intensi-
ty and decreasing values of y, , ' (=r„), Joule heating
effects become strong and overcome the process of energy
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relaxation to the lattice [cf. Eq. (57)]. Consequently, T,"
in the neighborhood of T,'" ( -2eo or, roughly, 1000 K in
GaAs attained at -9 kV/cm) is strongly dependent on
the electric field intensity, and so is y.. . leading to a
non-Ohmic dependence of the drift velocity. Then, the
regime with overshoot is strongly correlated with the re-
gion of values of electric field intensity for which the sta-
tionary mobility is non-Ohmic as confirmed by inspection
of curves 4 and 6.

Summarizing, for a sufficiently intense electric field the
carrier system keeps heating up (or starts to cool down
and next heats up) so that the momentum relaxation time
does not attain its minimum and structured mobility is
excluded (In Fig. 5 the case for 12 kV/cm). Hence, there
exist a maximum value of the field above which the mo-
bility only presents normal evolution. This regime fol-
lows, on increasing field strength, from another one
where structured mobility is present and the maximum is
an overshoot (In Fig. 5, the cases for 6, 8, and 9 kV/cm).
The height of the overshoot diminishes with decreasing
field intensity and there is a lower limit of this intensity
below which this maximum is no longer an overshoot (In
Fig. 5 the case for 2 kV/cm). Further, as shown by Fig. 7
and the ensuing discussion in Sec. II, there is a lower lev-
el of photon laser energy for the phenomenon to occur,
viz. , the one that allows excess kinetic energy of the car-
riers to be high enough for the macroscopic state of the
system to allow, at the start, for the momentum relaxa-
tion time to decrease with decreasing temperature.

Experimental observations of ultrafast mobility in
HEPS are scarce, and the existing few are not detailed
enough. ' ' It may be mentioned that there is a certain

qualitative and semiquantitative agreement with
Hammond's measurements ' in that he reports an inferi-
or and superior limit of the field intensity for an
overshoot to be observed. Also, it must be stressed that
we have studied the dependence of the mobility of none-
quilibrium carriers in HEPS in a single valley. However,
the band structure of direct-gap polar semiconductors
displays multiple valleys, and therefore intervalley
scattering of carriers needs to be considered. It could
lead to additional structure at sufficiently high levels of
excitation as a result of the transference of carriers to
higher energy valleys where they have larger effective
masses, but this effect seems to be smoothed out by car-
rier collisions.

Concerning Zubarev's method used in this work, as
noted we applied it to the study of relaxation effects on
optical properties of HEPS * ' its seemingly first ap-
plication to the study of transport properties in solid-
state systems is due to Kalashnikov, more recently it
was discussed in this connection by Ferry et al. , and
Liu et al. applied it to the study of the steady state of
high-field electron transport in multivalley semiconduc-
tors.
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