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The electronic and vibrational structures of normal and compressed SiO, glasses are studied using
realistic continuous-random-network models with periodic boundaries. The electronic structure is

calculated by the first-principles orthogonalized linear combination of atomic orbitals (OLCAO)
method and the results are presented for density of states, band gaps, eft'ective charges, and localiza-
tion of wave functions as a function of density. The vibrational density of states, infrared absorp-
tion, and Raman spectra for these models are also calculated with use of a Keating-type potential
and the bond-polarizability approximation. The results are, generally, in good agreement with ex-
periments on both normal and "densified" a-SiO~. In particular, the two Raman lines at 495 and
606 cm ' are reproduced by our calculation in direct contrast to the paracrystalline theory of SiO,
glass. Inspection of eigenvectors in conjunction with a detailed analysis of the bonding patterns of
participating atoms indicate that specific Si—0—Si angles (close to those found in threefold or
fourfold rings) are responsible for these modes.

I. INTRODUCTION

Over the years certain physical problems have proven
too difficult or unwieldy to be solved by analytical means.
One such problem is the structure of amorphous solids in
general and silicate glasses in particular. Experimental
methods such as x-ray diffraction, which yield exact
atomic positions for crystals, can give only average atom-
ic distances and angles for the glass phase. Also, theoret-
ical techniques for determining the electronic and vibra-
tional structures are hampered by the lack of realistic
models. One way to resolve this problem associated with
going from ambiguous experimental data to specific
atomic arrangements is to reverse the approach. Physical
observables can be calculated from the specific atomic po-
sitions of a realistic model structure and checked against
experimental measurements. If two models give the same
similar calculated results for one type of experiment (x-
ray scattering, for example), then the calculated results
for other experiments (like Raman scattering) can be used
to distinguish which model is closer to the real system.
The debate over how to explain the experimental scatter-
ing data in the amorphous SiO~ (a-SiOz) system has been
brewing for the past 50 years. Recently the interpreta-
tion of infrared Raman scattering has further enhanced
interest in this system. Also, the unusual properties of a-
SiOz under pressure (such as bond-angle changes and
densification) have been the subject of renewed experi-
mental investigation. The illumination of these questions
was the principal motivation behind the present study.

In 1936 Warren, Krutter, and Morningstar' used x-ray
scattering to determine the local atomic-bonding patterns

in silicate glasses. They used similarities between the
basic atomic structures of the crystalline and amorphous
phases to interpret the radial distribution functions
(RDF) obtained from the scattering data. In this way,
they were able to assign peaks in the RDF curves at 1.62,
2.65, and 3.2 A to the mean Si-O, O-O, and Si-Si dis-
tances, respectively. The atomic structures seemed to be
based on the Si04 tetrahedra found in most silicate crys-
tals. In this type of system, each Si atom is bonded to
four 0 atoms, and each 0 atom bonds to two Si atoms
from different tetrahedra in a continuous fashion. This
type of arrangement, where the units are linked in a non-
periodic fashion, is called a continuous random network
(CRN) and was proposed in 1932 by Zachariasen as the
long-range structure for a-Si02. The CRN theory was
criticized by some as being incapable of describing the
glass formation from the melt. Although the scattering
experiment of Warren et al. ' did not explicitly prove the
validity of the CRN theory, they were in agreement with
Zachariasen's predictions. Through the years, various
researchers have studied the a-Si02 system through
scattering experiments and the CRN theory gradually
became accepted. Recently the argument has erupted
again, based on some observed features in the Raman
spectra in a-SiOz. Certain peaks in the Raman shifts for
a-SiOz were interpreted by Phillips as indicative of the
presence of a paracrystalline atomic structure. That is,
the atomic structure of a-SiOz is supposed to be

0

represented by large ( ) 60 A diameter) crystalline clus-
ters of /3-cristoballite separated by material of higher de-
fect concentration. The Raman peaks are supposed to be
due to nonbridging oxygen (NBO) sites at the surface of
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the cluster. The CRN position has been defended by
Qaleener ' who has stated that the Raman peaks can be
accounted for by specific ring structures in the CRN.
Another aspect of the a-Si02 system that is not well un-
derstood is the behavior at high pressure. Like most ma-
terials, when a-Si02 is compressed there is a volume
change and a corresponding increase in the mass density.
If this compression is less than a certain threshold, then
the density drops back to its precompressed value. How-
ever, if the glass is pressurized beyond the threshold, the
density will remain at the elevated value even when the
pressure is released. These increased densities are per-
manent and indicate that irreversible structural changes
have taken place in the glass at the microscopic level. ''
Such glass is said to be "densified. " The threshold at
which a-Si02 becomes densified is approximately 90—100
kbar at room temperature' ' but can be lower if the
compression is done at an elevated temperature. The
maximum densification for the a-Si02 is usually thought
to be 15—16% (Refs. 15 and 16) but Devine and Amdt'
have reported densification as high as 24% at high tem-
perature.

The work reported here consists of three parts. The
first part describes the development of realistic models
for normal and compressed a-SiOz. This was accorn-
plished using a Keating-type potential in the relaxation of
a numerical model. The second part consists of calcula-
tions of the electronic structures of these models using
the first-principles orthogonalized linear combination of
atomic orbitals (LCAO) method. The last part is the cal-
culation of the vibrational spectra of the normal and
compressed a-Si02 models. Both the infrared and Rarnan
spectra are calculated using the same models and the re-
sults are evaluated and discussed with respect to the
CRN and paracrystalline theories. We believe this to be
the first systematic calculation of both the electronic and
vibrational structures of the a-Si02 system as a function
of density. Section II outlines the methods used in the
calculations and in Sec. III the results are discussed. Fi-
nally, Sec. IV summarizes the main points that are
presented in this work.

II. METHODS OF CALCULATION

A. Model construction

The models for the Si02 glass were derived by one of
us, Ching, ' from an amorphous Si model originally con-
structed by Guttrnan. ' All of the models discussed in
this work have 162 atoms positioned in a cubic cell with
periodic boundary conditions. Within the cell, the atom-
ic configuration mimics the CRN bonding pattern as
closely as possible within the limitations given. At this
point, it ~~ay be advisable to defend the use of a periodic
cell to model a glass system. In the silicate glass system
many of the physical properties are mainly due to the lo-
cal atomic environment and not the long-range periodici-
ty. The model we used is much larger than the crystal-
line Si02 unit cell so the effect of the quasiperiodicity is
negligible. Furthermore, the use of a periodic model
avoids the spurious surface effects that are always present

in a cluster-type caiculation. In previous studies we have
used similar models of silicate glasses with excellent re-

it
The models were relaxed to a potential minimum as

determined by a Keating-type potential. The equations
used for calculating the potentials are given in Eqs.
(1)-(3):

v=g v,'+ y vo.
I n

Here, V&
' is the potential of the 1th Si atom and V„ is the

potential of the nth 0 atom. These potentials are defined
by

vsi 3 y ( ~r ~2 d2)2
I I

+ —,
' g (rl;. r&;

—d;d; cosP)
l l

(2)

v =='y
I

8, , dd, ' (3)

The first term in Eqs. (2) and (3) is the bond-stretching
potential summed over the nearest-neighbor (NN) atoms
with which the atoms are covalently bonded. For Si the
sum is over the four NN oxygen atoms. The constant, d, ,
is the "ideal" Si—0 bond length. To be consistent with
amorphous experimental results we chose d, to be 1.62 A.
The second term in Eq. (2) is the 0—Si—0 bond-
bending potential. The ideal angle, P, for tetrahedral
bonding is 109.4'. The second term in Eq. (3) is the Si—
0—Si bond-bending potential and the ideal angle is 0. In
these calculations 0 was chosen to be 147.0, similar to
the corresponding angle in a-Si02. The constants a, p, ,
and p~ determine the relative strengths of the diff'erent
potential terms. The values a = l.0, p& =0.08, and
p2=p, /3 were used in this work. These parameters are
close to those used by Ching in an earlier calculation of
a-Si02 and were chosen to give optimal results for the
normal density model. Generally speaking, the potential
given by Eq. (1) tends to preserve the integrity of an ap-
proximate Si04 tetrahedral coordination by allowing a
wide distribution of bridging angles 0.

The compressed a-SiOz models were constructed im a
slightly different manner. Because the ideal Si—0 bond
distance in the compressed glass was not exactly known,
the relaxation program allowed it to change. First the
cell length parameters were reduced to achieve the
desired increase in density and the model was relaxed us-
ing d =1.62 A. Then the mean Si—0 distance in the
model was calculated and this value was used as d in a
new relaxation calculation. This process was repeated
until convergence was obtained. Models representing
density increases of 5%, 10%, 15%, and 20% were con-
structed and used in the electronic and vibrational stud-
ies.
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B. Electronic-structure calculations

yloc y (
n )2 (4)

Here p,
" is the orbital charge i of atom u for the nth

eigenvector. If the wave function is completely localized
on one orbital of one atom, then 2 is equal to 1. If the
wave function is completely delocalized (spread evenly
over the entire model), then, / is equal to 1 divided by the
total number of orbitals in the model. For this work this
means that, ', (,l( 1. In 1958 Anderson, using a sim-

ple one-band model, argued that for disordered solids of
infinite extent, the states near the band edges should be
highly localized while the states near the center of the
band should be delocalized. Although his paper dealt
with the total wave function in a fluctuating potential,
the results of our finite calculations on a real system show
similar patterns and can be similarly interperted.

The electronic calculations were performed using the
orbital-charge self-consistent orthogonalized linear com-
bination of atomic orbitals (OLCAO) method. This
method is ideal for this work because of its accuracy and
efficiency. The OLCAO method reduces the dimension
of the secular equations substantially which is important
for large systems. ' This method has been well docu-
mented in the literature and we will not repeat the treat-
ment here. ' The quantities calculated include the
electronic density of states (DOS), the partial density of
states (PDOS), the effective valence charges (using the
Mulliken method ), and the localization index (LI).
The LI is a measure of the extent to which the one-
electron wave function is spread among the atoms in the
model, and is a very important quantity relevant to amor-
phous materials. The LI 2'„' is calculated from the one-
electron eigenvectors of the system according to

mass matrix. If the xk are orthogonal then MIk is a diag-
onal matrix. The KIk term is

Note that the KIk terms are evaluated at the equilibrium
xk positions. If we represent the vector x as

det

Kf1 —co Mf1
2

Kff —co Mff
2

=0. (10)

This is solved for co„co2, . . . , ~f. If the system is in equi-
librium at a potential energy minimum then the co, values
are greater than zero.

It is sometimes convenient to define a new vector, y:

k =Mk x1/2

Now,

—XJ' 2k

k

(12)

(13)

where

8'= Kkl

M 1/2M 1/2
k I

(14)

This makes the eigenvalue problem equivalent to solving

then the Lagrange equations are solved by setting the fol-
lowing determinant to zero:

2 2K11 —co M11 . . K1f co M1f

C. Vibrational-structure calculations g ( Wk(
—a(, 6k()a('=0, k =1,2, . . . ,f .

I
(15)

The basic vibrational calculations to find the eigenval-
ues and normal modes of the models were accomplished
using classical harmonic-oscillator techniques.

Bell et al. ' have made a systematic effort over the
years to apply the methods of vibrational analysis to the
peculiarities of Si02. Their work proved invaluable in
studying the vibrational effects in the present models.
The starting point in the vibrational calculations are the
Lagrange equations and the eigenvalue problem is set up
as follows.

The Lagrange equation is

d M, aL
d Qq

+~a,' =1. (16)

The simplest quantity to examine, as in the electronic cal-
culations, is the vibrational density of states (VDOS).
These curves are generated by plotting the number of vi-
brational states per energy unit. This can be done using
only the vibrational eigenstate energies. If one wants to
look at the actual movement of atoms in the solid, this re-
quires the eigenvectors. The atomic movement in real
space is given by the vectors xk ..

This yields co,- values which are used to get the ratios of
the aI'. Then these must be normalized so that

where L = T —V. T is kinetic energy and V is potential
energy. These are given by

ling

T

3'k = X akim (17)

T= —,
' g M,kx, xk,

k I

(6)
x =M '~ ga'e (18)

g +(kX(Xk
A:, I

The xk are generalized coordinates and the MIk is the

The Keating potentials of Eqs. (1)—(3) were used in the
potential energy matrix elements. It was found that the
values for the weighting constants which gave the best
positions for the vibrational peaks with respect to the ex-
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Bu
u =u'+y

BXJ p Jp at equilibrium

Xp+. (19)

where u is the Cartesian component of u and x p is the
displacement of atom j in the p direction. Taking the
linear term, the interaction matrix can be represented as

Bu
(E'~u E) 0: J QF g x,j3 g~ dr,

C)X .
p

(20)

where 1(tz and pz are vibrational eigenstates. The dipole
derivative strength of the ith eigenstate is

0.'

ua = g QjajpM
j,p Xjp

(21)

where Q and M, are the calculated effective charge and
mass of atom j, and a 'p is the ith normalized eigenvector
in direction P of atom j. The electromagnetic energy ab-
sorbed in the solid, I, is proportional to '

I ( co ) ~ g g ( co; ) i
u'

~
(22)

perimental data were as follows: a = 371 N/m,
p, =0.14a, and $3=0.06a. The methods for transform-
ing the normal modes into infrared and Raman spectra
were also given by Bell and Dean et al.

Once the eigenvalue problem of finding the natural fre-
quencies and the normal modes has been solved, the
quantum-mechanical mechanism of electromagnetic ab-
sorption and scattering must be evaluated with regards to
the vibrational motion. The derivation of this interaction
can be found in the work of Bell" or in the reference
texts which deal with vibrational spectroscopy . For
infrared light, the absorption interaction potential is u,
the intrinsic dipole moment of the system. The u can be
expanded to show the dependence of the atomic displace-
ments as

Here, g (co, ) is the vibrational density of states for the sys-
tem.

The calculations for the Raman spectra of the Si02 sys-
tem are slightly more complex. Here the interaction po-
tential is p, the induced dipole moment of the system. '

We have

p =pa E (23)

Here p is the Cartesian component of the dipole mo-
ment in the o. direction, o. ~ is the polarizability tensor,
and E ~ is the electric field. The a ~ can be expanded as

j,p

so the polarizability tensor for the ith eigenstate is

(24)

CT0

a~~ = g aj'pMj
j,p X p

(2&)

which is similar to Eq. (21) for the infrared method. At
this point Bell introduced the bond polarizability approx-
imation, which relates the atomic displacements to the
polarizability tensor. The atomic movements are reduced
to the vector R& which joins atom i with all the atoms it
bonds to. That is,

Ri,, =rg&+(x, xk ) (26)

a (RI, ) = [ A (R„& )1+y(R~, )(Ri&Rg& —
—, 1)] (27)

describes the polarizability tensor with the mean polari-
zability A(R& ) and anisotropy y(R& ). Expanding a
in a Taylor series and keeping the linear term yields '

where rk is the equilibrium vector from k to j and x& is
the movement of atom k. Now let R& be the unit vector
of R& and 1 be the unit dyadic. Then

pa' x,&= g [ A'(r„, )[(x,—ki, ).ri,. ]1+@'(r~,)[(x, —x~) ri, ][(ri,rij) ——', 1]
j p k, j

+ri j 'y(r&j )[(xj —xi,. )r&j+ri j(xj —
xi, )

—2(xj —
x& ) ri j(rl jr&j )]I. o o ', (28)

I~~(co) cc g g(co, )(7y, +45A, )/co, . (29)

where 3 ' and y' are the derivatives of 3 and y at the
equilibrium positions. The parallel and perpendicular
Raman scattering intensities are

In the present work we have used the following parame-
ters in the Raman calculations: 0,"=0.9, @=0.3, and
y'=0. These were determined to give the best fit to the
experimental data.

III. RESULTS
Ii(co) ~ g g(co, )(6y, )/co, , (30)

A. Atomic structure

A, =
—,
' (a'„+a&2+ a33)

y, =
—,'[(a'1& —azz) +(a&3—a33) +(a33 a'») ]

+3[(a'„)'+(a'„)'+(a'„)'] .

(31)

(32)

in which co, is the eigenfrequency and the 3 and y are
the invariants of the polarizability tensor:

The structural information on our compressed a-SiO2
models is given in Table I. It appears that the only
significant change that occurs as the models are
compressed and relaxed is that the mean Si—O—Si an-
gles get smaller. It is interesting that the mean Si—0
bond does not change while the Si—O—Si angle does.
This means that the compression mechanism for denser
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TABLE I. Compressed SiO2 models.

Density
increase

(%%uo) mean STD

Si—0 bond
(A)

0—Si—O
angle (deg)

mean STD

Si—Q—Si
angle (deg)

mean STD
Density
(g/cm )

0
5

10
15
20

1.62
1.62
1.62
1.62
1.62

0.016
0.007
0.006
0.006
0.005

109.4
109.4
109.4
109.4
109.4

4.8
4.3
3.9
3.6
3.4

147.4
143.1

139.2
136.4
133.7

14.7
15.0
14.4
14.6
14.2

2.20
2.31
2.42
2.53
2.64

SI

Sl-Sl
(e)

(c)
(b)

I

2

F( (E)

FICx. 1. Calculated RDF for compressed a-SiO& models. (a)
normal density, (b) 5% density increase, (c) 10% density in-
crease, (d) 15% density increase, (e) 20% density increase.

packing in the compressed models is a folding of the Si04
units about their shared corners, and not a distortion of
the basic tetrahedral unit. The same type of folding
mechanism has been reported for the low-temperature
crystalline phase (a-quartz) of SiO&. The radial-
distribution-function (RDF) curves for the five models
are plotted in Fig. 1. All of the curves for R (3.5 A are
very similar except that the Si—Si peak broadens and
shifts from 3.14 A in the normal density model to 3.00 A
in the model with 20%%uo increased density. This is indica-
tive of the decrease in the mean Si—O—Si angle with
compression. For R )3.5 A, the RDF varies in a rather
complicated manner, suggesting a considerable change in
the intermediate range order for the compressed a-SiO2
models. The RDF peak positions for the five models as
well as relevant experimental results' '' are listed in
Table II ~ The available experimental results in this range
of densities are almost exactly the same as those of our
models. It is obvious that the folding of the Si04 units
seen in the models is representative of what is really hap-
pening in the a-Si02 system, at least up to a density in-
crease of 16%. A point should be made at this point
about the experimental results listed for the increased
density SiOz glass. Due to experimental difficulties, all of
the reported results are based on densified samples. That
is, the samples were densified first and then the experi-
mental measurements were performed at zero applied
pressure. However, the glass models used in our calcula-
tions were not densified, only compressed, and the atomic

positions relaxed. Despite these differences there is a
strong correlation between the experimental and modeled
atomic structures.

The atomic structure of this system has also been
modeled using the molecular-dynamics (MD) method.
Garofalini has had good results in modeling silicate
glass systems. However, in the modeling of a 15-kbar
pressure applied to a-Si02, he found no change in the
RDF curve and no change in Si—O—Si bond angles. An
applied pressure of 15 kbar is roughly equivalent to the
pressure necessary for a 5% density increase in a-SiOz
(see Table III), and for this pressure we found that the
mean Si—O—Si angle had been reduced by 4.3. Al-
though no experimental work on a-Si02 has been done at
this density, the corresponding angle in n quartz de-
creases by 2.8' under 14.6 kbar of applied pressure.
Another group, Woodcock et al. , has also attempted to
model pressurized a-SiO2. They were able to densify the
a-Si02 model by bringing the model volume down and
then back up. However, the RDF was found to be un-
realistically distorted.

B. Electronic structure

The electronic structures for the five a-Si02 models
were calculated by the first-principles OLCAO method as
described earlier. The calculated band gaps for the five
models are listed in Table IV. As the density increases,
the band gap gets smaller, starting at 8.47 eV for the un-
compressed model and dropping to 8.13 eV for the 20%
increased density model. Verification of the band-gap
variation as well as other results of the electronic-
structure calculations for the compressed models is
difficult because of the scarcity of relevant experimental
work in the literature. Most of the existing experimental
results concern the infrared or Raman spectra of a-SiOz.
There is one ultraviolt:t absorption plot in an article by
Mackenzie" from which the band gaps can be roughly
estimated. Although the exact gap is hard to determine
because of the extended nature of the absorption edge,
the results clearly show the gap of the densified sample to
be smaller than that of the normal-density sample in
agreement with our calculation.

The total electronic DOS for the normal and
compressed models are presented in Fig. 2. The features
of the normal-density model, Fig. 2(a), consist of three
major bands. The two bands at energies less than 0 eV
are the valence bands (VB). The lower VB (at —17.4 eV)
is primarily due to O 2s orbitals while the upper VB (peak
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TABLE II. Calculated and experimental results for compressed Si02 glass.

This work
McMillan'

This work

This work

This work
McMillan'
Devine

This work

Density
change

(%)

10

15
16
16

20

Si—0
peak
(A)

1.62
1.62

1.62

1.62

1.62
1.62

1.62

0—0
peak
(A)

2.65
2.64

2.64

2.64

2.64
2.64

2.64

Si—Si
peak
(A)

3.14
3.07

3.10

3.07

3.02
3.02

3.00

0—Si—0
angle
(deg)

109.4

109.4

109.4

109.4

109.4

Si—0—Si
angle
(deg)

147.4
142.0

143.1

139.2

136.4
137.0
138.0

133.7

'Reference 16.
Reference 17.

position —1.5 eV) is from the 0 2p orbitals. The band
with positive energy (peak at 16.1 eV) is the conduction
band (CB) and is due to Si 3s and Si 3p terms. Note that
the 0 2p VB has two components. The main peak at
—l. 5 eV is associated with the 0 lone pair orbitals (non-
bonding). The smaller peak at —5.0 eV is due to 0—Si
bonding orbitals. All of the peaks found in the un-
compressed model DOS are reproduced in the curves of
the compressed models. However, there are some subtle
differences in the location and width of the peaks. As the
compression increases, the bands get wider with a con-
comitant reduction in band gaps. The nonbonding orbit-
al peaks remain constant at —1.5 eV. The CB and 0 2s
peaks move away from the top of the VB (taken to be the
Fermi energy), as the density is increased. The 0 2p VB
bonding peak moves closer to the Fermi energy (and
closer to the nonbonding peak) with increasing compres-
sion. Two interesting observations merit comments here.
First, the three main DOS bands shown in Fig. 2 are get-
ting wider even though the standard deviations of the
bond lengths and bond angles in the model get smaller
with increasing density. This means that the electronic
orbital energies are being spread by the compaction pro-
cess, even though the local atomic bonding configurations
are not. The second point is that the compression ap-
pears to merge the bonding and nonbinding states. This
may be related to the decrease in the mean Si—0—Si an-
gles. The mean Si—0—Si angle for the normal density
model is 147.4' and it reduces to 133.7 for the model

with 20% increased density. This squeezing of the bond-
ing orbitals results in increased overlap of the wave func-
tions. This changes the charge-density distribution in
this region and thus shifts the energy levels.

Also affected by the density changes in the models is
the calculated effective atomic valence charges which are
listed in Table IV. The Si atoms acquire more charge and
the 0 atoms less charge as the density increases. This,
too, may be caused by the redistribution of valence
charges in response to the changes in the Si—0—Si mean
angles.

The results of the localization index for the models are
plotted in Fig. 3. If we look at Fig. 3(a) for the normal-
density model, the LI behavior of the 0 2s and the CB
bands is exactly as predicted by Anderson. The states
at the band edges are highly localized while those in the
center are relatively delocalized. However, the 0 2p
band (the middle band) does not appear to follow this
rule. Actually the 0 2p band is made up of two bands
corresponding to bonding and nonbonding orbitals which
slightly overlap. The peak near the center of the 0 2p
band is the consequence of the overlap of two localized
band edges. When the LI of the compressed models are
examined, two changes are noticed. First, the peak at the
center of the 0 2p band decreases. This supports our ear-
lier contention that the bonding and nonbonding bands
tend to merge during compression. Second, the top of
the CB becomes more localized with increasing density.
The CB in these models is mostly due to the Si orbitals so

TABLE III. Estimated pressures for compressed Si02 glass
models (Ref. 13).

TABLE IV. Calculated band gaps and valence charges for
compressed glass models.

Density
change

(%)

0
5

10
15
20

Density
(g/cm')

2.20
2.31
2.42
2.53
2.64

Pressure
(kbar)

0
13.5
28.3
46.3

?

Pressure
(GPa)

0
1.35
2.83
4.63

Density
change

(%)

0
5

10
15
20

Band gap
(eV)

8.47
8.46
8.42
8.30
8.13

Qs

0.93
0.95
0.97
0.98
0.99

7.54
7.53
7.52
7.51
7.50
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C. Vibrational structure
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in the position of the 500-, 800-, and 1000-cm ' bands
with increasing pressure. From this, it would appear that
the movement of the 1000-cm ' band depends on wheth-
er the sample is irreversibly changed (densified) or simply
compressed. However, the results of Hemley et al. on
the Raman spectra of compressed samples seem to con-
tradict this conclusion, at least for this pressure range.
This will be discussed in more detail later. It is clear that
although the absolute peak positions of our calculations
are not in perfect agreement with experiment, they are
quite close and the trend of the movement of the peak po-
sitions with density changes is in good agreement with
experimental measurement.

The Raman spectra are a sensitive tool for studying the
atomic structure of a-SiOz. However, the Raman spectra
alone cannot be used to determine the atomic bonding
patterns for this system. Recently, it has been used as the
main evidence in the controversy over the long-range
structure of a-SiOz. Phillips has asserted that certain
peaks in the Raman spectra at 495 and 606 cm ' are evi-
dence that the continuous-random-network (CRN)
theory of silicate glass is incorrect. He formulated a
paracrystalline theory which states that the a-SiOz struc-

0

ture is actually large ( ) 30 A diameter) clusters of crys-
talline f3-cristoballite separated by unspecified material
with higher defect concentrations than the clusters.
Within this structure there exist two types of NBO sites.
The first type, called D, , gives rise to the structure at 495
cm ' and occurs at the cluster surface. The second type,
Dz, is a point defect and is responsible for the structure
at 606 cm '. The presence of the D

&
and Dz peaks in the

parallel Raman spectra of a-SiOz is taken by Phillips as
strong evidence in support of the paracrystal model. On
the other hand, Galeener ' supports the CRN model
and contends that the D, and Dz Raman peaks can be
explained by the vibration associated with four-fold and
three-fold ring structures that may exist in the glass net-
work. These are atoms connected in rings by covalent
bonding containing four or three Si atoms, respectively.
The Raman spectra of normal and densified a-SiOz have
been interpreted in support of both theories in the past
several years' '' ' and it was hoped that our calculations
on the normal and compressed models would help to
resolve this controversy.

The Raman spectra were calculated using the bond po-
larizability approximation discussed by Bell. ' The cal-
culated Raman spectra for the normal-density a-SiOz
model are plotted together with the experimental work of
McMillan et al. ' in Figs. 8 and 9. Figure 8 is for the
perpendicular Raman spectra and, like the VDOS and in-
frared absorption, it consists of three major bands. In the
calculated spectra they occur at 453, 800, and 1232
cm '. For the two lower-energy bands, the calculated
curve is very close in peak position and peak shape to the
experimental curve. Even the shoulder at 110 cm ' is
present and well placed. However, the calculated band at
1232 cm ' is not positioned correctly with respect to the
experimental curve and it fails to yield the double peaks
seen by McMillan. ' In their calculations on a smaller
(12 SiO4 units) normal-density model, Bell et al. were
able to produce the twin peaks found in the experimental

CO
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FIG. 8. Calculated and experimental perpendicular Raman
spectra for a-SiO~. Solid line, experimental results of McMillan
et al. (Ref. 16j; dashed line, calculated results.
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FICx. 9. Calculated and experimental parallel Raman spectra
for a-SiOz. Solid line, experimental results of McMillan et al.
(Ref. 16); dashed line, calculated results.

results at 1100—1200 cm '. But, the peak position of the
middle (800 cm ') band in their results is misplaced with
respect to the experimental work. Again, this probably
reflects some imperfections in the short-ranged Keating-
type potential used. Figure 9 shows the calculated paral-
lel Raman spectra for our normal-density model and the
experimental results of McMillan. ' The peaks marked
D, and Dz on the experimental curve are the "defect
peaks" discussed by Phillips. The spectra calculated for
the normal-density a-SiOz model fits the low and middle
bands rather well. As before, the top band is not accu-
rately reproduced by the model. The lower-energy calcu-
lated band has some extraneous features at 182 and 291
cm ' but overall it reproduces the shape and position of
the experimental results. The most interesting point
about the lower band is that is reproduces the D, and Dz
peaks found in the experimental results without NBO
sites in the model. This would seem to nullify much of
the evidence for the paracrystalline theory. Phillips has
discounted similar Raman calculations by Bell and
Hibbins-Butler due to the extra features in the low-
energy band (peaks at 100 and 310 cm '), and also be-
cause the best agreement in their calculations came from
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TABLE V. Model ring statistics. The numbers in parentheses indicate the percentage difference the
values in the D, and D2 columns are from the mean numbers of ring types bonded to the Si or 0 atoms
found in the total model.

Threefold

Fourfold

Fivefold

Sixfold

Sevenfold

Si mean
0 mean
Si mean
0 mean
Si mean
0 mean
Si mean
0 mean
Si mean
0 mean

Model

0
0
0
0

2.87
1.44
5.22
2.61
5.96
2.98

Di

0
0
0
0
4.00'(39%)
1.62(12%)
6.00'(15%)
2.46( —6% )

6.00'(1%)
2.92( —

2%%uo )

0
0
0
0
3.10(8%)
1.63(13%)
4.95( —5% )

2.79(7%%uo)

6.15(3%)
2.79( —6% )

'Contains only one Si atom.

including the surface atoms in their model as free. These
free-surface atoms are efFectively NBO sites. In our cal-
culations, where none of the a-Si02 models have NBO
atoms and the free surface has been circumvented by the
periodic boundaries, the D& and Dz features still appear.
In the normal-density a-SiOz calculations, the D, and D2
peaks occur at 477 and 561 cm ', respectively.

Demonstrating that the defect peaks can be repro-
duced without the presence of NBO sites may weaken the
paracrystalline theory, but it does not, in itself, support
the ring theory. According to Galeener, ' the D& peak
is due to planar fourfold rings and the D2 peak is from
threefold rings. Our model does not contain any three-
fold or fourfold rings since such structures generally re-
sult in large bond-length and bond-angle distortions. The
ring statistics for the a-Si02 model used in the present
calculations are given in Table V. This table lists the
mean number of five-, six-, and sevenfold rings that are
attached to the Si and O atoms in the model. Also listed
are the ring statistics of the atoms participating in the D

&

and D2 peaks as analyzed by inspection of the eigenvec-
tor components of these modes. It should be noted that
the normal and compressed models have the same ring
statistics because, in our study, the compression process
does not change the topology of the model, only the
bond lengths and angles. The most obvious point in
Table V is that there are no three- or fourfold rings in the
models. This means that the D& and Dz peaks in the cal-
culated Raman spectrum are not strictly due to the ring
configurations as suggested by Galeener. The numbers in
the second and third columns in Table V list the mean
number of rings (as well as the percent difference from
the entire model average) attached to Si and 0 atoms par-
ticipating in the three eigenstates closest to the D, and
D2 peaks. Note that the atoms participating in the D&

peak had only one Si atom while the atoms for D2 were
mixed. This means that the Si ring statistics for the D,
peak should not be taken too seriously. However, by in-
spection of the O statistics for both peaks one concludes
that the D, peak in the models is due to fivefold rings and
the D2 is from five- and sixfold rings. This does not mean
that Galeener's approach is without support. Table VI
shows the ring structures associated with the D& and D2

TABLE VI. Raman peaks.

Di
(495 cm ')

D2
(606 cm ')

Phillips

Galeener

Uncompressed
model

(this work)

NBO

fourfold
rings

(160.5')

fivefold
rings

(148.8 )

NBO

threefold
rings

(130.5')

five- and sixfold
rings

(137.8 )

peaks in the Galeener theory and the expected mean
Si—0—Si angles. Also listed in this table are the mean
Si—0—Si angles of the 0 atoms participating in the D,
and Dz peaks in our a-SiOz model. The mean angle for
D, is 160.5 for the fourfold rings in Galeener's theory
and 148.8 for the atoms (mostly fivefold) in our un-

compressed glass model. Similarly, the mean angle asso-
ciated with D2 is 130.5' for Galeener's threefold rings and
137.8 in our uncompressed model. So, even though our
uncompressed model had no three- or fourfold rings, the
Si—0—Si angles are close to those predicted by
Galeener. It would appear then that Galeener's theory
should be generalized to account for the Si—0—Si angles
instead of ring size. Larger ring sizes, that is, rings with
more members, can approach the bridging angles found
in Galeener's three- and fourfold rings by bending out of
plane. Of course, in a real a-Si02 system, the presence of
isolated threefold or fourfold rings cannot be ruled out.

The behavior of the total Raman spectra with increas-
ing density is shown in Fig. 10. The low- and middle-
energy bands shift to higher wave numbers and the high-
energy band shifts to lower wave numbers. The lower
band also becomes much sharper with increasing density.
These band shifts have been reported for densified sam-
ples by McMillan et al. ' Until recently all experimental
Raman spectra on compressed a-SiOz were performed on
densified samples, that is, with no applied pressure at the
time of measurement. Hemley et a/. have obtained Ra-
man results for a-SiOz under pressure by the diamond-
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IV. CONCLUSIONS

From the results presented in the previous sections, it
appears that the compressed models obtained from our
calculations simulate the densified glass reasonably well.
The primary change in the a-Si02 system with increasing
density is that the mean Si—Si distance gets smaller.
This was seen as a reduction in the mean Si—0—Si an-
gles for the compressed models. Given that the Si—0
bond lengths stayed essentially constant, the compaction
mechanism must be a folding of the undistorted Si04
tetrahedra similar to that reported for a-quartz. The
success of the compressed models in reproducing most of
the experimental results indicates that Keating-type po-
tentials can be used to simulate covalent networks under

FIG. 10. Calculated total Raman spectra for compressed a-
SiO, models. (a) normal density, (b) 5% density increase, (c)
10% density increase, (d) 15% density increase, (e) 20%%uo density
increase.

anvil technique. In going from 0.1 MPa to 8 GPa, the
low-energy band went from a broad maximum at 440
cm ' and the D

&
peak at 492 cm ' to a very sharp, nar-

row peak at 530 cm ', the 800-cm ' band shifted to 850
cm ', and the small peak at 1060 cm ' shifted to 1052
cm '. Here the movement of the high-energy band is in
the opposite direction to that found by Velde and Couty
for pressurized ir absorption. The Hemley group states
that the changes in their sample were reversible up to ap-
proximately 9 GPa. These conflicting results introduce
some uncertainty into the behavior of the high-energy
band under pressure. The changes in the Raman spectra
in going from our uncompressed model to the 20%
increased-density model are very similar in magnitude
and direction to those found by Hemley. It is not possi-
ble to estimate the effective pressure on our 20%%uo model
very closely from Table III, but it is safe to say that it is
over 6 GPa. The lower band has a large feature near 440
cm ' and the D

&
peak at 477 cm '

~ These merge into a
single sharp peak at 512 cm ' as the density is increased
by 20%%uo as seen in Fig. 10. At the same time the 800
cm ' band shifts to 851 cm ' and the peak at 1232 cm
moves to 1200 cm '. Galeener and Sen and Thorpe
have published calculations which show that these band
shifts can be correlated to decreases in the mean Si—
0—Si angles with increased density. In our models the
mean angles are 147.4' for normal density and 133.7' for
a 20% density increase. Hemley attributes the increas-
ing sharpness of the 440-cm band with increasing pres-
sure to a decrease in the Si—O—Si angle distribution.
However, as can be seen in Table I, the standard devia-
tion of the Si—0—Si angles remains fairly constant at
approximately 15 . The behavior of the D, and D2 peaks
in Fig. 10 is interesting. Both features move to positions
of higher wave numbers as the density increases. This
can be explained by the same mechanism that shifts the
other bands, the decrease in mean Si—0—Si angle with
increasing density. It appears that similar movement
occurs for the D

&
peak of Hemley's pressurized a-Si02 re-

sults but the D2 peak does not show a corresponding
shift.

pressure.
The calculations on the electronic structures of the

compressed a-Si02 have shown that increasing the densi-
ty of the material changes the band gaps and efT'ective

valence charges only slightly. However, the shape of the
O 2p VB band is eff'ected by the compression in a way
that causes the bonding and nonbonding bands to over-
lap. This point is vividly demonstrated by the LI plots.

The vibrational-structure calculations presented the
most stringent test for the compressed model structures.
However, it provided an opportunity to repeat the Bell
and Dean calculations with models having periodic boun-
daries and variable density. In general, the results were
as good or better than the previous work. In particular,
the calculated results for the VDOS and infrared absorp-
tion were quite good with respect to the densified sam-
ples. However, the movement of the high-energy peak in
the ir with increasing density was opposite that obtained
by Velde and Couty.

The results for the Raman spectra are mixed. The
agreement with experiment is good for the low- and
middle-energy bands but the top band does not reproduce
the published data well. However, contained in the low-
and middle-energy curves are some important results.
The D, and D2 peaks in the Raman spectra were repro-
duced without NBO atoms in a CRN model. This is in
contradiction to the paracrystalline theory of Phillips.
The peaks were also formed without the three- and four-
fold rings postulated by the Galeener. Inspection of the
eigenvectors of the modes responsible for the D, and D2
peaks and the correlation to the topological characteris-
tics of the a-SiOz model indicate that the distribution of
the Si—0—Si bridging angles, rather than the ring statis-
tics, may be the relevant factor.

Overall, the calculated properties of the compressed a-
Si02 models were very close to the experimental results.
The places where the models failed, such as the high-
energy vibrational bands, can be used to improve the vi-
brational potentials and to construct more realistic mod-
els in the future. It is anticipated that, using the ap-
proach outlined in this paper, other important and in-
teresting work such as the study of defects and impurities
in glasses may be undertaken in the near future.
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