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We propose an extended jellium model which includes the most important features of the noble

metals. The density of states is modeled by the superposition of a d band and an s-like conduction
band. The redistribution of some of the d electrons into the conduction band as an erat'ect of the s-d

hybridization is taken into account, and the conduction band includes 1.5 electrons per atom. We
show that the occupation number Zd of the d band is. mainly determined by the ratio 8'd/(cF —cd),
where Wd, c,d, and cF are, respectively, the width and the center of the d band and the energy of the
Fermi level. The shift of the d-band center between the bulk metal and the surface plane is related
to the narrowing of the d band of the surface plane, and we deduce an estimate of the d-band contri-
bution to the work function. In the present model the position of the Fermi' level and of the d-band

center are reproduced, and the result for the work function of Cu and Ag is satisfactory.

I. INTRODUCTION

For simple metals, the surface properties which result
from an average along the surface (surface energy, work
function, etc. ) can be calculated in the framework of the
simple jelliumlike model with satisfactory accuracy. '

These models are constructed in the spirit of both the
pure jellium model and simple-metal pseudopotential
theory. Thus two important simplifications are made:
on one hand, the model is one dimensional; on the other
hand, the effect of the ionic lattice is represented by a
weak pseudopotential. Therefore, in this kind of ap-
proach one deals with the problem of an electron gas im-
mersed in an external field. Moreover, owing to the prop-
erties of the density-functional-theory, ' some approxi-
mate treatments based on variational principles ' can be
used. In the case of pure jellium for some of the most im-
portant surface properties (surface energy, work function,
and position of the static image plane), such variational
calculations lead to results very close to the "exact" nu-
merical ones. "

For the noble metals (Cu, Ag and Au) the jelliumlike
models are not sufhcient to obtain reliable results for the
surface properties, in particular for the work function.
Indeed, although the experimental work function of no-
ble metals is not established with certainty, the values
calculated by Lang and Kohn for Cu, Ag, and Au are
undoubtedly too small by about 1 eV. This discrepancy
is not unexpected since in the work of Lang and Kohn
the presence of the d band is totally ignored while this is
one important physical feature of the noble metals. After
the treatment of Lang and Kohn, the work function of
noble metals has been calculated from ah initio
methods. ' ' Until the present time, however, no simple
model which includes the peculiarities of these metals has
been proposed.

In this work we consider a simple one-dimensional
model, constructed in the spirit of the jellium model,
which takes into account, at least qualitatively, the pecu-
liarities of the noble metals. As an application we focus
on the calculation of the work function. To this aim we
start from the first-principles formalism developed by
Moriarity' ' for the bulk metal, in order to examine
what physical features are the most important for the
work function. Particular attention is paid to the density
of states of the bulk metal from which one can de6ne the
occupation numbers Zd and Z, of the d band and the
pure s band in the metal. This is important since it has
been found, from different approaches, ' ' that Z, differs
significantly from the nominal valence of the free atom
for both Cu and Ag (Z, =1.5). We find that the work
function includes two important contributions which can
be calculated separately in a first approximation. The
first one is the work function of an "effective simple met-
al" characterized mainly by Z, . The second contribution
is the potentia1 drop due to the narrowing of the d band
in the surface crystallographic plane. In the present
work the d-band contribution, which is the smallest con-
tribution, is calculated by a very approximate version of
the tight-binding method.

The paper is organized as follows. In Sec. II we exam-
ine the density of states of the bulk metal and we separate
the total density of states into an s-band part and a d-
band part. In Sec. III we next examine the different con-
tributions to the work function and then calculate the d-
band and "effective-simple-metal" contributions. The re-
sults are given and discussed in Sec. IV.

II. DENSITY OF STATES IN THE BULK

In simple metals the electronic states can be separated
into ionic-core states and conduction-band states. This
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separation, the small-core approximation, which is the
starting point of the usual pseudopotential theory, is due
to the fact that the energy levels of the ionic-core states
lie well below the bottom of the conduction band. As a
result the eigenstates corresponding to the free atom
remain good eigenstates for the total Hamiltonian in the
metal. Then, when one deals with simple metals one can
treat these two kinds of electrons separately, and- a large
number of properties can be accounted for by considering
only a nearly-free-electron gas immersed in the ionic lat-
tice, represented by a weak pseudopotential (see, for in-
stance, the works concerning the surface properties of
simple metals. ' ).

In the case of transition and noble metals, such a sepa-
ration is not possible because of the presence of the d
electrons whose energy states coincide with the conduc-
tion band. As a result, besides the inner-core states for
which the small-core approximation is still valid, one has
to consider on an equal footing the d, and the conduc-
tion, electrons. The pseudopotential theory has been ex-
tended to the case of noble metals by Harrison' and ex-
tensively developed by Moriarty, ' ' ' ' leading to the
generalized pseudopotential theory (GPT). However, al-
though a parametrized version of the GPT has been in-
troduced ' in order to make the formalism more tract-
able, the GPT method involves heavy computations even
in the bulk. Thus our aim is not to extend the GPT to
the surface problem, but to construct a simple model for
the calculation of the work function of Cu and Ag. In
this section we use the results of the treatment of Moriar-
ity' ' ' ' for the bulk noble metals in order to get a
simple treatment without losing the most important
physical features for the work function.

The formalism developed by Moriarity is based on a
perturbation scheme where two perturbative operators
are used. The first one is the nonlocal pseudopotential
8',

8'=(1 P, ) V, — (2.1)

where V is the total potential in the metal and P, is the
inner-core-state projection operator,

P, =pl )c( lc. (2.2)

6V= V„,—V, (2.3)

and the second perturbative operator of the formalism is

This pseudopotentiaI is weak for the nearly-free-electron
states, but is strong for the d electrons because of the
I =2 resonance. Then the d states in the metal are ex-
panded in a basis set including both plane waves lk) and
localized, reference d states ld ). These reference d states
are not, in general, those of the free atom but rather those
of closely related "zero-order pseudoatoms, " which are
constructed in order to optimize the expansion. ' Thus
in the pseudoatoms the d states are intermediate between
the d states in the free atom and the actual d states in the
metal. Then one defines the difference 6V between the
potential in the metal V and the potential in the pseudoa-
tom V„

given by

a=5V —(dl5vld) . (2.4)

This operator is effectively weak for the d states since it
only becomes strong well outside the ionic cores where
the d states are small. ' ' The final step in the definition
of the perturbative operators is to isolate the contribution
5V"' of the potential 5V which does not depend on the
ionic structure of the metal. Then the structure-
independent term of the matrix element b, kd =(kid, ld ) is
isolated in the form

g vol +gstruct
kd kd kd (2.5)

and here only 6kd', which is the dominant term, is taken
into account.

In the remainder of this section we focus on the density
of states (DOS) per atom p(e). From the work of Moriar-
ty' ' ' ' we know that p(c, ) can be split into four con-
tributions:

p(E) =po(e)+5p,~(e)+pd(s)+5pd(s) .

The first one is the free-electron density of states

po(s) =(2' n /7r )(E)'

(2.6)

(2.7)

where Qo is the atomic volume and c=O corresponds to
the bottom of the conduction band. The second term in
(2.6) is a small correction due to the pseudopotential IV
acting on plane waves lk). When a local approximation
is used for 8', this term can be integrated in po with sim-

ply a shift, (Ol 8'l0), in the origin of the energies. pd(E)
is the one-ion d state component of p(E). From the
Green-function formalism one finds' ' ' '

Ed =E'„'—(d l5V""ld ), (2.9)

where cd' is the d-state energy in the zero-order pseudoa-
tom and 5V"" is the structure-independent part of 5V. '

I'dd(E) is the d-state self-energy which can be written in
the form, for s near Ed [i.e., replacing 5""+(e—Ed) by
gvol]

2QO
I'dd(E) = ' I (kl~"'ld &(dl&""Ik&

(2m ) E —k /2

(2.10)

The last term in (2.6) is a correction to pd which takes
into account the structural effects of the DOS. Concern-
ing the DOS itself, 6pd is important since it describes the
broadening and the structure of the d band. However,
5pd is oscillatory in nature' ' and thus its average over
occupied states is small.

Now we are mainly interested in the integrated DOS
N(c, ) given by

N(E)= f p(E')de', (2.11)

p„(e)= — Im ln[E —
Eq

—I d~(E)]
10 d

v

where E stands for c+iO+. c.d is the mean, structure-
independent, d-state energy in the metal and is given by



39 CALCULATION OF THE ELECTRONIC %ORK FUNCTION OF. . . 13 195

from which the Fermi level can be de6ned according to

N(sF ) =Z, +Zd, (2.12)

where Z, and Z& are the number of conduction and d
electrons per atom, respectively. In Cu and Ag we have
N (sf ) =11. Z, and Zd can be separated, at least formal-
ly, from the difFerent contributions of the DOS. Thus we
have, by using a local approximation for S'

no
Z, =No(eF) = (2EF) (2.13)

10
ImIln[EF —sd rdd(EF—)]I . (2.14)

When the zeroth-order pseudoatoms are chosen in
such a way that Eqs. (2.12)—(2.14) are satisfied, the
zeroth-order value of Z, is very close to the one obtained
from a (LMTO) determination. '

Notice that (2.14) implies that the states corresponding
to the d electrons behave beyond the Fermi level as the
tail of a resonant d state immersed in a free-electron-like
continuum. This conclusion was already pointed out by
Terakura from a somewhat different perspective. As a
result, the d-band-like DOS is not totally filled (Zd (10)
even for Cu and Ag. Indeed, Moriarty obtained
Zd -9.5) (and hence Z, = 1.5} for both Cu and Ag and a
similar result was obtained by Christensen and Heine'
from a LMTO calculation. It is important to notice that
the shift of the Fermi level due to the s-d coupling' is
properly reproduced by the free-electron formula (2.13)
when the valence is changed from the nominal value
(Z, =l) to the actual value in the metal (Z, =1.5) and
this justifies, a posteriori, the utilization of a local approx-
imation for the -pseudopotential 8'.

Now we examine what the relevant quantities which
determine Z, are. First, from (2.14) we get a more con-
venient expression,

10 I dd(&F }
arctan

'Tr SF Sd ~dd( SF }
(2.15)

where I && and I &'z are, respectively, the real and imagi-
nary parts of I && and can be calculated by transforming
Eq. (2.10). After the results of Moriarty, ' ' we can
check that I z& is quite small when compared to Fp Ey,
which is known from complete ab initio band-structure
calculations. Therefore we can drop I dd in Eq. (2.15).
On the other hand, I && can be written, for c. near c,&, in
the form

I'd'd(s) = —n(2s)'~

X fj 2(V2Er)b, " '(r)R2(r)dr, (2.16}
r

When a nonlocal approximation is used for the pseudopo-
tential W, a one-ion term must be added (see Appendix C
of Ref. 19). As we have already mentioned, 5Nd corre-
sponding to 5pd is small and accordingly we take, from
(2.8),

Zd =Nd(EF)

[see Eq. (14) of Ref. 24], where rR2(r) is the radial part
of the wave function representing the reference (or pseu-
doatom) d state @d

C'd (r) =rR2(r) &2 (r) . (2.17)

As proposed in Refs. 25 and 26, we use the expansion of
the spherical Bessel function j,(kr) for the small values of
k =&2s [jz(kr) =2(kr) /15] and the energy dependence.fr,-, --b -ply tly- tt--

5/2
EI'dd(s) = I dd(sF )

EF
(2.18)

In the case of Cu the form (2.18) reproduces nearly exact-
ly the result of the complete calculation given in Ref. 15
and we expect a similar conclusion for Ag.

At the same time, we know that I d'd(sd) gives the
width of the resonance, ' ' which is related to the width
of the d band. We have the following approximation in
the case of the fcc structure, which is that of Cu and Ag,

1
~d = —'4' I d'd(&d )

r 5 (2 )5/2
(2.19)

where ro is the distance between next-nearest neighbors
at equilibrium. Now from (2.18) and (2.19) we can ex-
pres~ I dd(EF} in terms of Wd and (EF} T"en we use
(2.13) to relate sF to Z, and, accordingly, we see from
(2.15) that Zd is determined only by the ratio
Wd /(eF —sd ) and this is the most important result of this
section. We have

10 4
arctan

2 3 5/3
3m roZ Rd

Qo

(2.20)

(2.21)

where the sum runs over the shells of neighbors including
N; ionic sites, and the ddm (m =0,+1,+2) are the usual
two-center overlap integrals. ' In the following we
shall consider only the 6rst-nearest neighbors. Then the
sum in (2.21) includes only one term and the correspond-
ing N is replaced by the coordination number c.

Fortunately, as we shall see in the next section, since
the d band is partially 611ed Zz (10, Zz appears to be a
central quantity, and since Z& is determined by the ratio
8'd/(EF —sd) the details of the DOS are found to be
unessential for the work function. Moreover, one can
verify that the Fermi level is properly determined by the
free-electron relation (2.13) provided the correct value of
Z, is used. Therefore, the results of the GPT concerning
the density of states suggest splitting the electronic states
in a nearly-free-electron band characterized by Z, and a
partially 611ed d band which can then be treated separate-

On the other hand, Wd can also be related to the struc-
ture of the ionic lattice following the ideas of the tight-
binding approach. We have

Md=4+(N;/5)' [(ddcr) +2(ddt) +2(dd5) ]'i,
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ly in a first approximation.
As we shall see in the next section, for the work func-

tion we do not need to specify the shape of the d-band
DOS and we shall use for Z, (or Zd) and Ed the values
listed in Table I. Therefore our model differs from that of
Wills and Harrison, ' where the rectangular model, intro-
duced by Friedel, is used for the d-band DOS. Indeed,
with the Friedel model one obtains a partially filled d
band only with an unphysical shift of cd towards cF. In
fact, this problem remains even if one uses a more refined
model for the d band if the d band is calculated in the
framework of a pure tight-binding treatment (ignoring
the s-d coupling) as, for instance, the moment
method. ' We emphasize that the equation for Zd ob-
tained by Moriarty results from a complete treatment in-
cluding the s-d coupling which is responsible for the tail
in the d band extending beyond the Fermi level and lead-
ing to Z„(10 (see Ref. 17 for a discussion on this point).

III. %'ORE FUNCTION

where c~ is the Fermi level relative to the mean electro-
static potential in the metal and Ay is the potential drop
between the vacuum and the bulk of the metal, corre-
sponding to z —+ —~. In the following for the electro-
static potentials we shall use the convention y( —~ ) =0.
As we have already mentioned in the preceding section,
the Fermi level can be determined by the free-electron
DOS po(E), provided that the correct value of the valence
in the metal Z, is used, through Eq. (2.13).

Then we have to determine b qv. First of all, we
separate Acp into a contribution due to the conduction
electrons, Ay„and a contribution due to the d electrons,

(3.2)

On the other hand, Ay can be written in the form

g~ —g@(o)+g~(&) (3.3)

where hy' ' is the potential drop obtained by neglecting
the coupling between the conduction electrons and the
reference d states which correspond to the partially filled

TABLE I. Bulk parameters used in the present work. cF..
free-electron Fermi level calculated with Z, . The energies are
in eV.

Cu
Ag

1.5
1.5

r, (a.u. )

0.869
0.85

9.2
7.3

CF Ed

2.5
4.S

The separation of the total density of states into a
nearly-free-electron —band DOS, a reference d-band DOS,
and an oscillatory term which does not contribute
significantly in the integrated DOS suggests a simple
model for the calculation of the work function. The work
function is given by

(3.1)

d band. This coupling is responsible for the term Ay'
Thus we have

(o)+~(o}+~ (a) (3.4)

Acp', ' is the potential drop due to the inhomogeneity of
the semi-infinite nearly-free-electron gas characterized by
the valence Z, . Since cz coincides with the Fermi level of
the same nearly-free-electron gas, this system defines an
effective simple metal (MS) which is obtained by neglect-
ing the partially ulled d band, and ~hose work function is
given by

cy +A+~

The work function of the actual metal is then

+g@(o)+g~(&)

(3.5)

(3.6)

Ay&
' is the potential drop due to the d bands located on

the ionic sites of the semi-infinite lattice. The calculation
of b, y(d ' involves the usual tight-binding (TB)
method. The remaining term is due to the coupling
between the two kinds of electronic states. The calcula-
tion of this term necessitates the knowledge of the total
electronic density n(r) at the same level of approximation
as that used by Moriarty for the calculation of the bulk
total electronic density n (rb).

' ' However, we know
from the work of Moriarty' that if the reference system
used is characterized by Z, = 1.5, the term 6n due to the
s-d coupling is small. We assume that this is also the case
for the inhomogeneous system and we neglect Ac@' ' in
our calculation of the work function. We emphasize that
neglecting Arp( ' does not mean that the s-d coupling is
neglected since this coupling is taken into account
through the value of the valence Z, in the metal.

Therefore we are left with the calculation of the work
function of the effective simple metal and the potential
drop hyd '.

A. d-band contnbutaon.

~(0)year

(c(0)yc)1/2 (3.7)

In order to determine the potential drop Acpd
' we use

the tight-binding approximation, which has been
developed for some surface properties of the transition
metals. ' The quantity which plays a central role is
the local density of states (LDOS) corresponding to the d
band centered on a given ionic site labeled i. Here we
consider only the case of an ideal semi-infinite ionic lat-
tice (without any surface reconstruction or lattice relaxa-
tion) and therefore all the ions of a given lattice plane are
equivalent; accordingly, the LDOS will refer to a given
lattice plane rather than to a given ionic site (the surface
plane will be labeled by i =0).

In the tight-binding approximation the d states and the
two-center overlap integrals dd o. , dd m, and dd 6 are con-
sidered to be the same in the surface plane and in the
bulk. Then by taking into account only the overlap in-
tegrals corresponding to the first-nearest neighbors, an
approximation justified in the case of the fcc structure
which is that of the noble metals, one gets from (2.21)
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z, = d/2—id—, i ~0, (3.8)

where d is the lattice plane spacing. Z& being the occu-
pation number of the bulk LDOS, the charge per surface
unity in the ith plane is

q; = nz—(Z&' Zz—) = —nz5Z&", (3.9)

where nz is the number of ions per unit of surface in the
lattice planes. The electrostatic potential q2&(z) is related

where c' ' and c are the coordination numbers of the ion-
ic sites of the surface plane and of the bulk, respectively.
Since c' ' is smaller than c, the d band of the surface
plane is narrower than in the bulk. This narrowing leads
to a charge transfer between the d bands of neighboring
planes near the surface and this charge transfer is respon-
sible for the potential drop b, y& '. Let y&(r) be the poten-
tial at the point r due to the narrowing of the d band. In
order to determine Ay&

' we only need to consider the
averaged potential (pz(z) = (yz(r) ), along the surface.
Thus we are left with the calculation of the electrostatic
potential created by charged planes located at z =z;. The
jellium edge being located at z =0, we have

to the charges q; by the Poisson equation

q „(z)=4~y[q, e(z —z, )(z —z, )], (3.10)

b8~'=@&(z, )+y, (z,. ) . (3.11)

%e have shown in Sec. II that Z& is determined to a
good approximation by the ratio Wz/(EF —Ez). We as-
sume here that from a simple generalization of Eq. (2.20)
Zz' is determined by the ratio Wz'/(E~ —sz'). Thus the
deviation Z„"=(Zz'—Zz ) is directly related to hyz',

where 6 is the Heaviside step function. The d-band
center c&' of the ith plane is shifted from that of the bulk,
sz, mainly because of the potential yz(r). We consider
here, following the ideas of the tight-binding approxima-
tion, that the spatial extension of the ~d ) states is
sufficiently small for q&z(r) to be considered a constant in
the region where the ~d ) states are nonzero; moreover,
we approximate this constant, yz(r, . ), by its averaged
value on the surface, yz(z;). Secondly, the d-band center
is also shifted because of the potential drop y, (z; ) due to
the conduction-electron gas and we have

(;) 10 4
6Z&' = arctan

225

2 3 5/3
3m roZ, 8~

Oo &F ~d

10 4
arctan

225

3 r Z, () 8'
~( )

F d

(3.12)

(C(i(/C)1/2
5Zq'=(10 —Zq ) 1— (3.13)

where we have used Eq. (3.7). It is easy to check that we
can linearize the arctan functions given 10—Z&=0. 5,
and we have

I

which means that the contribution. qr, (z") in (3.11) is
neglected. In this case we find that 6Z& ' is very small

( —10 ), as one can see from Table II, where we give the
results for both 6Z& ' and Ay& '. Therefore, Aqp&

' is well
approximated by imposing in Eq. (3.13) the condition
6Z'"=0:

d

to which we add the condition of conservation of the to-
tal number of d electrons,

(0) [1 ( (0)/ )1/2](E E ) (3.15)

ynZ("=0 . (3.14)

It is important to consider at this point the case where
10—Z&=0. In this case it is obvious from (3.13) that
whatever the value of b,sz /(EF —sz) the deviation 5Z&'
is zero. Then the potential drop hq&z =(pz(z' '), given by
(3.10), due to the charge transfers between neighboring d,
bands, is zero and the shift Aez) is only due to the con-
duction electrons. This is expected since in this case Z&
cannot be increased from the bulk to the surface plane.
Therefore, the d band does not contribute directly to the
work function, at least in the first approximation, when
10—Z& is zero whatever the value of the shift in the d-
band center Ac.&' when going from the bulk to the sur-
face.

When 10—Zz is nonzero, Eqs. (3.10), (3.11), (3.13), and
(3.14) form a closed set from which we can calculate the
Ac&', and deduce y& '.

However, as a first step we have used a pure tight-
binding description where only the d band is considered,

This result requires two remarks. On one hand, it is
rather surprising to find Ay& proportional to cF —c&.(0)

However, (3.15) concerns only the case where 10—Zz is
not vanishingly small and thus EF —Ez is not large.
Moreover, when two diA'erent metals are characterized by
the same value for Zz and di6'erent values for c.F

—c&, for
instance in Cu and Ag, the width of the d band follows
the value of ~F —t-z and we expect that the importance of
the s-d coupling and of the d band are well estimated by
the value of cF —c.z. On the other hand, when Z& =0, for
instance in Cd or Zn, the present model predicts Ay& '=0
whatever the value of cF—cz.

In fact, (3.15) can be understood in a quite simple way
by considering the modification of the d band when going
from the bulk to the surface plane in two steps. The first
step is the narrowing, according to (3.7), while ez is held
constant; this narrowing leads to an increase of Z&, 6Z&,
proportional to cF—c&. Then the second step is a shift
Aez of c.&' towards c.F in order to decrease Z&

' by an
amount 5Z2. Equation (3.15) corresponds to a complete
cancellation: 6Z& '=6Z, +6Zz =0; then the shift he& is



13 198 V. RUSSIER AND J. P. BADIALI 39

TABLE II. 5Zd ' and Ayd ' {in eV). (a) The contribution y, (z' ') to 4e'd ' is neglected. (b) The con-
tribution y, (z( ') is calculated by using the density profile (3.16) for the conduction electrons.

Ag(111)
Ag(100)
Ag(110}

10'SZ„")
(a)

0.65
1.02
1.85

0.552
0.746
0.931 1.26

(0)
gd
(b)

0.552
0.738
0.624

Cu(111)
Cu(100)
Cu(110)

0.39
0.67
1.34

0.318
0.431
0.538

0.39

0.58

0.318
0.331

—0.227

closely related to Z, and is, therefore, proportional to
cF —cd. Such a scheme assumes that 5Z& '&&1 and this
is precisely what we find by solving Eqs. (3.10), (3.11),
(3.13), and (3.14) self-consistently, in agreement with
Allan's calculations.

The other remark concerning (3.15) is the dependence
of hy& ' on the crystallographic orientation of the surface
plane. From (3.15) one gets Ay& '(111))Ap& '(100)) by~& '(110, which is opposite the dependence of the ex-
perimental work function for all the fcc metals.

We now take into account the extra potential drop
y, (z' ') in EE& ' due to the conduction electrons [see Eq.
(3.11)]. We have solved Eqs. (3.10), (3,11), (3.13), and
(3.14) self-consistently, including the contribution y, (z' ')
calculated with a monotonic density profile for the con-
duction electrons given by Eq. (3.16) of the following sec-
tion. The main result is that the dependence of byd'
with the crystallographic orientation is reduced when
compared to (3.15) (see Table II). Indeed, since we do not
consider the Friedel oscillations in the density profile
(which is justified in the range of density that we deal
with, r, -2.5), we have p, (z' ')) 0, and y, (z' ') is the
larger the less close packed the surface plane. Hence we
get for by'd '= [Ae'd ' —y, (z' ')], a dependence less impor-
tant and even inverted on the crystallographic orientation
of the surface plane. The results are given in Table II.
We find that hyd ' is nearly independent of the orierita-
tion for Ag and takes a similar value for Cu(111) and
Cu(100). The result for Cu(110) is not satisfactory.
Indeed, the (110) face can be considered to be an open
face and, in that case, the treatment for the conduction
electrons that we use for calculating y, (z' ') is certainly
oversimplified. Nevertheless, we think that taking into
account y, (z' ') makes b,pz ' only weakly dependent on
the surface orientation and, moreover, y, (z' ') gives only
a negligible contribution in the case of the (111)face. Ac-
cordingly, for Ayd ' we use the same value for the three
low-index faces, as calculated on the (111)face. Thus we
take Agd '=0.55 eV for Ag and 0.33 eV for Cu. In the
case of Cu(100) a similar result was obtained by
Fujiwara, b,pz'=0. 41 eV, from a LMTO-ASA (ASA
denotes atomic-sphere approximation) calculation.

B. Simple-metal contribution

We are now concerned with the calculation of the
work function of the efT'ective simple metal which is

characterized by the valence Z, . The electron-ion in-
teraction is represented by the well-known Ashcroft pseu-
dopotential, which leads to satisfactory results in the
case of simple metals. For the radius r, of the pseudopo-
tential we use the values calculated by Wills and Harrison
from the minimization of the total energy at the equilibri-
um volume ' (r, =0.869 a.u. for Cu and 0.85 a.u. for Ag).
In the literature the surface properties of simple metals
have been extensively studied and we just present brieAy
our treatment here.

To avoid the difFicult task of solving the Schrodinger
equation, following the method introduced by Smith,
we use trial density profile for the conduction electrons
depending on variational parameters which are deter-
mined by the minimization of the surface energy func-
tional. We choose the density profile introduced by Badi-
ali et al.

no(l —Ae '), z (zo
n(z)= '

p,
/)pate ~ Z CZp

(3.16)

—az 0e

1+a/P '

pzO

1+P/a
1 1

zp ea p

(3.17)

Hence two parameters, say a and p, are independent.
When the metal carries a charge q per unit of surface, the
dependence of A and B on a, P, and zo remains un-
changed while zp is modified and becomes

a p no

The surface energy functional is of the form

o[n]=o'k[n]+o„,[ ]+no„[n]+cr [n]+o i

(3.18)

(3.19)

where the first two terms are, respectively, the kinetic en-
ergy and the exchange-correlation contributions. For the
kinetic energy term, we use a gradient expansion up to

where np is the bulk electronic density. Because of the
electroneutrality of the system and the continuity of both
the density and its first derivative at z =zp, we have the
relations
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second order,

~k ln ~
=~'k"

I:n f+ ~'I,"(n]+~'k"[nl . (3.20)

Bo (q)
Bg q=0

(3.22)

where o(q) is the surface energy of the charged metal.
This expression has the advantage of being of second or-
der in the error (5n) of the density profile n (z), as op-
posed to the expression derived from Koopman's
theorem. This is of great importance in the present cal-
culation since our density profile is not calculated from
the Schrodinger equation and, in particular, it cannot
produce the Friedel oscillations. ' The work function
calculated from (3.22) by using the electronic density
profile (3.16) has been shown to be very close to the com-
plete calculation of Lang and Kohn for the jellium rnod-
el" and to more refined treatments for the simple rnet-
als."

o. 'k
' is the Thomas-Fermi contribution; o'k" and o.

&
' are

the first- and second-order terms given by Smith and by
Ma and Sahni. For the exchange-correlation energy we
use the local-density approximation with the Slater ap-
proximation for the exchange term and the Pines-
Nozieres expansion for the correlation term. o.„is the
electrostatic surface energy of the electrons immersed in
a semi-infinite background of positive charge (jellium)
and o, is the term due to the pseudopotential,

cr~, = f n (z)5V, (z)dz, (3.21)

where 5V„, is the difference between the sum of the
electron-ion pseudopotentials averaged along the surface
and the electrostatic potential of the jellium. o.,&

is the
cleavage term which does not depend on the variation of
the electronic density and thus does not enter in the
minimization.

In order to compute the work function +Ms, we use the
so-called "change-in-self-consistent-field" expression first
derived by Lang and Kohn and later by Monnier
et al. ,

"

IV. RESULTS AND DISCUSSION

Our results for the work function are given and com-
pared to experiments in Table III. We have to mention
that, if the work function of Ag seems to be well estab-
lished, this is not the case of Cu, for which there is a
rather wide dispersion between the different results in the
literature. This is certainly due to the difhculties en-
countered with Cu in order to get well-defined and
cleaned surfaces. Concerning our results, although the
contribution of the d band is roughly estimated, the
agreement with experiment is satisfactory in light of the
simplicity of the model; indeed, the difference with exper-
iment is about 15%%uo for Cu and 5% for Ag. This agree-
ment is comparable to that one obtains for the simple
metals by using the simple jelliumlike models. Hence it is
certainly necessary to consider a more sophisticated
treatment for the conduction electrons, and not only a
more refined treatment for the d band, in order to im-
prove the present results. On the other hand, we do not
reproduce quantitatively the variation of 4 with the crys-
tallographic orientation of the surface plane. Neverthe-
less, due to the effective simple-metal part, the sequence
@(ill))N(100)) @(110) is reproduced. On the other
hand, in order to estimate the importance of the d band
on the value of N, we have calculated N with a pure
simple-metal treatment (denoted @0) by using Z, =1 and
the values of r, given by Lang and Kohn. The compar-
ison of Co with @ and N„, is also given in Table III and
shows that the d band leads to an increase of about 20%%uo

of the work function and that our treatment is a real im-
provement compared to the pure simple-metal treatment.

In the framework of the present model we could calcu-
late the surface energy cr which includes the surface ener-
gy o.Ms of the efFective simple metal (see Sec. III) and a
d-band contribution o.d calculated from the d-band
LDOS. However, in contrast to the case of the work
function the d-band contribution to the surface energy
depends explicitly on the shape of the LDOS. Moreover',
since o d is the difference between the energy of the occu-
pied states of the surface d band and of the bulk d band
(corrected of the electrostatic double counting ' ' ), a

TABLE III. Work function in eV. +Ms is the effective simple-metal contribution; %0 is the pure
simple-metal work function. Experimental work function taken from (a) Ref. 43; (b) Ref. 44; (c) Ref. 45;
(d) Ref. 40; (e) Ref. 42.

+expt

CU(111)
Cu(100)
CU(110)

+MS

3.92
3.80
3.66

4.24
4.12
3.98

3.78
3.66
3.51

(a)

4.63
4.45
4.40

(b)

4.94
4.59
4.48

(c)

4.98
4.83
4.45

Ag(111)
Ag(100)
Ag(110)

3.85
3.74
3.55

4.40
4.29
4.10

3.57
3.46
3.30

4.46
4.22
4.14

(e)

4.49
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very large cancellation is expected. Therefore, ad is very
sensitive to the model used for the d-band LDOS; accord-
ingly, we think that our model is unsuitable for the calcu-
lation of the surface energy of Cu and Ag.

Finally, we emphasize that the present model improves
the electronic description of the metal provided by both
the .simple-metal model of Lang and Kohn' and the
model introduced by Wills and Harrison ' which includes
the d band. Indeed, two important energy positions are
now properly reproduced: the Fermi level relative to the
bottom of the conduction band and the position of the d-
band center. Moreover, when going from the bulk to the
surface plane we reproduce both the narrowing of the d

band and the shift in the d-band center, which are ob-
tained in ab initio —like calculations.
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