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Much interest is devoted to the study of the electronic structure of defects in bulk and near sur-
faces and interfaces, with the tight-binding method. Recent progress in this field, namely the con-
cepts of "adspace and subspace, " allow a better description of the defects. However, the nonortho-
gonality of the atomic-orbital basis can no longer be neglected; the overlap matrix has to be con-
sidered on the same footing as the Hamiltonian matrix. This is even more crucial in reactive sys-
tems, where the overlap and Hamiltonian matrices vary in time, according to the positions of con-
stituent ions. Different representations of specific variance may be built up for an operator; some
are more adequate for a given physical property. The recursion method is one of the most powerful
methods for computing a finite number of matrix elements of the Green's operator, as continued
fractions. We discuss its relationship to variance and we propose a new accurate method for gen-
erating the continued fraction which avoids any explicit or implicit usage of the inverse overlap ma-
trix in the molecular case. It provides a new way for doing "quantum-chemistry" calculations even
for reactive or diffusive systems. It extends, in principle, to infinite systems, irrespective of the di-
mension of space. However, numerical problems associated with truncation and convergence
remain open in the application made to a nitrogen overlayer adsorbed on chromium.

I. INTRQDUCTIQN

The tight-binding method recently gained the favor of
almost all physicists, either as an ab initio or as an empir-
ical parametrized model. Bulk band structures and also
much more complex systems have been studied; we refer
to Ref. 1 for a recent review of the subject. Intense ac-
tivity has been devoted recently to the study of defects in
semiconductors, even near surfaces and interfaces. '

Our research group contributed also to this problem in
the metallic case, for the surface segregation of impuri-
ties. It has been intensively used by others for chem-
isorption. The concepts of "adspace and subspace"
developed with slight variants by several authors are
very fruitful, because they allow the treatment of the elec-
tronic structure of defects chemically very different to the
host. This goal is achieved by an augmented flexible basis
set, which allows description on the same footing, the ini-
tial system ("pure medium") and the final one ("per-
turbed medium") within the quantum-mechanics
diffusion theory. However, the price to be paid is that
the overlap matrix S becomes as essential as the Hamil-
tonian matrix H in the formalism; the atomic orbitals can
no longer be considered orthogonal. The different repre-
sentations of a one-electron operator in a nonorthogonal
basis, namely the covariant, mixed, and contravariant
ones have been clearly analyzed in Ref. 9 for the Green's
operator (it is in fact valid for any one-electron operator).
In Refs. 9 and 10, the phase-shift description for an iso-
lated impurity in an infinite medium (with or without sur-
faces and interfaces) has been extended for the variations
of the local densities of states when overlap is present. A

similar description has been proposed for the chemisorp-
tion problem.

Another useful technique in the tight-binding method
is the recursion method developed initially by Heine,
Haydock, and Kelly (HHK) in a series of papers and re-
views. " ' It allows computation of a specific matrix
element of the Green's operator. It is particularly well
adapted to system for which the other approaches fail, ei-
ther due to the size of the system (molecular calculations
when the size of the system grows too much) or to the
lack of symmetry (in the case of amorphous systems for
instance). Even if HHK examined the nonorthogonal
case in Refs. 14 and 17, they did not discuss the variance
aspects; their algorithm suffers also from a major
shortcoming, i.e., the cutoff in the spatial extension of the
inverse overlap matrix; this degrades considerably the
usefulness and accuracy of their algorithm.

In a recent contribution, Ballentine and Kollar' made
the variance aspects for the Green's functions more pre-
cise, but they made no significant progress toward the
major problem with the inverse of the overlap matrix
quoted above. The aim of the present work is to recall
some variance aspects for the recursion algorithm, to
propose and to test an algorithm which avoids the expli-
cit or implicit use of the inverse overlap matrix S ' in the
recursion method. Therefore, it realizes the goal aimed
for by many authors. For a given numerical accuracy
S ' and also S 'H have a much greater spatial extension
than S and H; these two have th|: same extension, and
they are usually limited to first or second neighbors. ' A
physical application of the method is devoted to a study
of a chromium-nitrogen molecule and to the adsorption
of nitrogen on a chromium (001) surface. Other applica-
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II. TIGHT-BINDING, IMPURITIES, VARIANCE,
AND PHASE SHIFTS

In this section, for the sake of completeness, we recall
briefly the tight-binding method with overlap and some
recent results for phase shifts of defects in infinite sys-
tems. One of the most popular simplified tight-binding
models is the extended Debye-Hiickel method (EHM),
which is widely used by quantum chemists, and also by
physicists for the adsorption and other impurity prob-
lems for surfaces and interfaces. ' Even if our method is
not restricted at all to EHM, we find it convenient to test
in that particular case the new method which we propose.
The recursion method may be applied to finite or infinite
systems. The finite case is interesting: it allows exact cal-
culations and verifications to be made by the traditional
eigenvalue techniques and it allows us to bridge from
finite to infinite systems. Thus, the recursion method that
we implemented here provides an alternative to
quantum-chemistry calculations specially for large or
infinite systems. This section, even if it is self-contained,
assumes a preliminary knowledge of the various variance
representations of an operator, induced by the nonortho-
gonality of the basis. ' We denote by 3 an abstract
operator A in Hilbert space and by A its matrix repre-
sentations; the positions of the indices, or an explicit
mention, specify its variance. Equations (5), (7), and (23)
can be taken as the generic definitions of covariant, con-
travariant, and mixed representations of an operator. It
is easy to check that multiplying by S lowers an index
and multiplying by S ' raises an index.

The eigenstates ~n & of a system are built as a linear
combination of atomic orbitals (LCAO)

~

a &; this is a
shorthand notation for a spin orbital located at A, , of sym-
rnetry m and spin o'.

~a&=~Amo &,

~n &=+~a&C„. (2)

C„are the expansion coefficients in the LCAO basis.
One is led to the eigenvalue problem

tion to amorphous systems, to segregation problems, and
to diffusion and catalysis are still in progress.

Our work shows that recursion is a viable alternative
for quantum-chemistry calculations. The new develop-
ments we present here allow even the consideration of
infinite systems. It also constitutes progress in solid-state
and surface physics, since we hope to be able to tackle
simply and efficiently unsolved problems like heterogene-
ous catalysis, period effects in the electronic structure of
alloys (Ni-Pd for instance), etc.

C„ is the column vector of complex coefficients defined in
(2).

The eigenstates ~n & are orthonormal:

&n'~n & =5„.„.
By using Eqs. (2) and (4), this is equivalent to

& n'~ n &
=gc„S

pc(=�(c"„,
Sc„)=5„„.

a, p

(6a)

(6b)

In the finite case, from the set of eigenvalues E„and
eigenvectors C„of (3), we easily build the contravariant
matrix of the Green's operator

6(z)=(z —~) '=ala&G ~(z)&pl
a, p

(7)

we are led to the spectral expression of the contravariant
matrix of 6:

G ~(z)=QC„(z E„) 'C—g" .

The Mulliken population (net charge) P ~ [Refs. 6(c) and
20] is related to the integral of this element up to the
chemical potential

P ~= ——Im J
"

G ~(E+iO)dE, (10)

and the electronic charge distribution

p(r)=eg&P~r&P ~&r~a& .
a, p

These relations have been already established by Grimley
and Pisanj 6(b)&6(c)

Their G is indeed the contravariant matrix of Green's
operator, which coincides also with the inverse matrix of
(z S—H ), in the matrix sense. In the case where the over-
lap matrix is not unity, the phase-shift derivation for iso-
lated impurities, either substitutional or interstitial, is re-
ported in Refs. 9 and 10 and applied in the case of metals.
For metals, the general law of conservation of the elec-
tronic charge between the initial and the final state leads
to the Friedel sum rule ' ' since the chemical potential
is conserved (to order I/N) for an isolated impurity in an
infinite system. Thus, the value of the phase shift at Fer-
mi energy is prescribed. The variation of the density of
states at energy E, b, n (E), is related to the derivative of
the complex phase shift Z:

With the definition (2) of Ref. 10 and the spectral repre-
sentation of operator 6,

C=y~n &(z E„) '&n—~,

(E„S—H)C„=O .

S is the covariant overlap matrix

S,&=&a l~b & =&a~b &, (4)
with

—1 dbn(E)= lim Im Z(z)
z~E+iO dz

Z (z) =ln det[1+ (z b,S—b,H)G'(z)] .

(12)

which is Hermitian, positive-definite. H is the covariant
Hermitian Hamiltonian matrix The matrix within square brackets in Eq. (13) is evaluated

in the nonorthogonal basis; b,S and hH are the covariant
difference of the overlap and Hamiltonian matrices be-
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X(z'ASM w. —b, HM. „). (14)

A denotes the set of orbitals of the adatom, M those of
the metallic host. The superscript 1 refers to an inter-
mediate state which incorporates the modification of the
overlap and Hamiltonian in the uncoupled subspaces A
and M separately.

In Grimley's result, z' coincides with z in formula (14):
This is due to the assumption of overcompleteness of the
adatom basis with respect to that of the host basis. The
self-energy is a second-degree polynomial in z', with ma-
trix coem. cients; with evident notation,

tween the final and initial states. 6' is the contravariant
representation of the Green's operator of the initial state.
In the case of localized defects, b S and hH are of limited
spatial range, and we need to evaluate the corresponding
matrix elements of Cx'.

In the interstitial or adsorbate case, we recover from
Eqs. (12) and (13) the results obtained by Grimley6('i in
the case with overlap. The self-energy operator of ada-
tom A is

,(z, z')= g (z'b, S~M —b,H„M)G' (z)
M, M'

considerably the numerical accuracy as can be verified for
the example of Appendix B. In fact, this cutoff is often
hidden by considering effective contravariant Hamiltoni-
an matrices

H' =THT, (19)

&u le(z)lu (20)

where T is an approximate truncated inverse overlap ma-
trix. The range of interactions in direct space for the
effective Hamiltonian (19) is also greatly enhanced: with
S and H ranging to first neighbors and T restricted to
first neighbors also, H' will extend up to third neighbors.
Therefore the number of levels attainable in the contin-
ued fraction by the recursion method will be small, ir-
respective of the approximation involved in the cutoff of
T.

The biorthogonal method reexplored by Ballentine and
Kollar' suffers from the same drawback: an ad ho@

short-ranged S 'H (mixed representation) makes loose
the intrinsic Hermiticity of the problem. The natural
extension of the usual recursion method for an initial
state

l uo ) allows the computation of the matrix element:

b(z, z')=(z') Ass(z) z'[bs~(z)+6~—s(z)]+A~~(z) .

(15)

with the operator C(z) defined in (7). The tight-binding
system of Eqs. (3) is equivalent to the Schrodinger equa-
tion in Dirac's notations:

The evaluation of various terms in Eq. (15) can be done
by recursion: with the states Hln & =z„ln & .

lv, )=laa&, a+A,
the self-energies can be computed as

Ags —( uo l(z uM ) uo )

am= &vo (z ~m) 'lvo& .

(16)

(17)

(18a)

(18b)

(18c)

~l~& =ylP&H~. .
P

(22)

is the matrix element of 8 in the mixed representa-
tion, it verifies

The action of the Hamiltonian operator 8-on an atomic
state la) is

III. THE RECURSION METHOD

H~. =y(S-')»H, .
r

(23)

In this section and in Appendix A, we show that the
abstract recursion scheme is unique, even though it may
take multiform aspects in various contexts. Only the
minimal information necessary for the comprehension of
our work is given. The recursion method allows us to de-
scribe any matrix element of the Green's operator as a
continued fraction. " ' The Cambridge group
developed also the recursion method in the case of non-
trivial overlap for the covariant matrix elements of the
Green's operator (implicitly); they did not discuss the
variance properties. In the preceding section, it appears
that other representations (contravariant, mixed) are
sometimes mandatory (for total densities of states or net
charges, for instance). A shortcoming of the recursion
method exposed in Ref. 14 is that a cutoff must be intro-
duced in the spatial range of the inverse of the overlap
matrix S ', in order to keep the recursion method tract-
able in infinite systems. But this approximation degrades

~luo & =b„+flu. +i &+a. Iu. &+b. Iu. -i & . (24)

a„,b„are real coeKcients determined by orthogonaliza-
tion and normalization. The lu„) are also LCAO's (usu-

ally, not eigenstates)

lu„& =+la &u„. (25)

In the restricted orthonormal subset ( l u„) ),

(u„.lu„) =(ut, su„)=5„„,
the Hamiltonian becomes tridiagonal:

(26)

The usual recursion method extends formally to the
nonorthogonal case with overlap: one builds a denumer-
able set of orthonormal states ( l u„), n =0, 1,2, . . . ) from
an initial vector

l uo ) (and the assumption l u, ) =0) by
a two-term recursion:
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0 0

0a,
0 b2 a2 b3

00

0

(27)

0 . 0 b„ , a„ 1 b„
0 I ~ 0 0 0 b„ a„

go(z) is approximated by the (0,0) element of the inverse
matrix of (z —H) [Eq. (27)] as

P, (z)
go(z) =Adj(z —H)oo/det(z —H) =

Po(z)
(28)

gi, (z)=(z —ai —b~+ig~+i) ', P =0, 1, . . . . (29b)

In Appendix A, we outline the recursion method for gen-
erating a set of orthogonal states and for obtaining the as-
sociated coefficients (a, b). We recursively apply a Her-
mitian operator A upon an initial state

I uo &.

The notion of variance has no precise meaning in the
recursion algorithm, since the set of states (

I u„& ) is
orthonormal. The variance is induced by the choice of
the initial state; it is naturally covariant if one chooses for
the initial state a specific atomic orbital

I uo &
= la &. go(z)

converges toward the covariant matrix element Cx (z) as
n grows. We have verified numerically in the finite case
that for the exact versions of the recursion algorithm (in-
cluding our new version), Cx (z) built by recursion coin-
cides with the covariant matrix element built from the
spectral representation [cf. Eq. (9)],

Cx (z) = g S G ' '(z)S (30)

%"e can also compute directly with the recursion method
a contravariant matrix element G (z): it is sufficient to
choose as the initial state

lu, & =pip&(s-')~
p

(31)

(loosely speaking, S '
I a & ).

The mixed-representation matrix elements and/or OA-

diagonal ones may be obtained by the biorthogonal ex-
pans1OIl, ' oI Rs a sUID of cont1nued fractions by a trick
reported by Heine for instance,

a .(z)=&u, lulu, &

with

lu, &=la&,

(32a)

and
I uo & is as in (31).

The flexibility of the choice of initial state has been

We refer to Eqs. (38) and (39) for the definition and prop-
erties of the P„polynomials. This leads to a continued-
fraction expansion:

go(z) = [z —ao —b,g, (z) ]

with

& =&Ia&1.q&PI =&Ia&&al . (33)

It should not be confused with the identity operator,
which is

I"=ala&(S-') «Pl .
a, P

Moreover, the result of operating S or S ' onto these
states is particularly simple, since they are linear com-
binations of S"luo&. But we have found pathological

used in many circumstances "' ' for computing adsor-
bate self-energies, optical properties, etc.

We test all exact recursion methods presented in Ap-
pendix A, as well as our new method for the Hamiltoni-
an, and compared them to the approximate ones, on a
chain, in order to test the variance properties (Appendix
B). We exhausted the levels for the continued fraction
[on this example, the number of levels is equal (or lower
in the case of a proper subspace) to the number of atoms
in the chain]. Thus the space spanned by (lu„&) is
equivalent to the initial space of atomic orbitals la & for
evaluating the corresponding element of the Green's
function. As an exercise, the variance properties and re-
cursion may be verified on a diatomic H2 molecule de-
scribed in LCAO formalism with overlap. Then, the ei-
genvalue problem (2) can be solved by hand and the re-
sults can be substituted in the spectral representation of
G [Eq. (9)]. Another way is to use any recursion algo-
rithm of Appendix A, for various initial states luo &. The
choice of an eigenstate ('X or 'X„) as

I uo & is particular-
ly instructive: the continued fraction has only one level;
ao is the corresponding eigenvalue and b, vanishes (up to
numerical rounding errors).

Now we discuss our new method (two-stage recursion),
which avoids any implicit or explicit use of S ' within it.
It is well known that the recursion method extracts a
finite or denumerable set of orthonormal states ( luo & )

which spans the hull of (8"
I uo & ) and which tridiagonal-

izes the Hamiltonian. Our proposal is to disentangle the
generation of the auxiliary orthonormal basis from the
Hamiltonian operator M, which introduces long-ranged
S within the algorithm. We therefore build this or-
thogonal basis with the aid of an auxiliary operator A
having the same symmetry as P. The contravariant or
the mixed representation of operator A has to be as short
ranged as possible. We operate 2 onto the initial state
luo& and we generate a space, which is the hull of
(2 "luo&). For this purpose (first step) we apply the re-
cursion method: we build a set of orthonormal states
I uo & which tridiagonalizes the auxiliary operator A with
the initial state uo&. The metric for the coefficients of
the expansion in the LCAO basis remains always S. This
is a particularly efticient way to extract a subset of or-
thogonal Lowdin states out of the whole tight-binding
manifold. The choice of the auxiliary operator A, the
contravariant representation of which is the identity I
matrix, is often adequate. The corresponding mixed rep-
resentation of the auxiliary operator is S. This operator
is
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cases where the preceding simple choice of the auxiliary
operator is insufficient.

(i) In the case of atoms with degenerate orbitals, the
generated manifold is not always orthogonal. Sometimes
a reorthogonalization with the Gram and Schmidt algo-
rithm overcomes this dimiculty.

(ii) A more tricky case is the following: the dimension
of the manifold generated by using A of Eq. (33) is lower
than that obtained with the one-step recursion using
operator 8. In this ease steps 2 and 3 of our method lead
only to approximate results, since the projected Hamil-
tonian is incomplete. Again, we overcome this difficulty
by choosing another auxiliary operator A having as a
contravariant representation any of H, (SH+HS), THT,
and SHS. All these are more or less short ranged and
give an orthogonal basis set with the same dimension ob-
tained with the exact Hamiltonian operator 8. Such
operators exist, for instance, an operator A such that H
is its contravariant representation is

(35)
a,P

One should forget once the variance attached to the posi-
tion of the indices of H and just consider it as a usual ma-
trix. The covariant matrix of A would be SHS. We refer
to the examples of the next section for the illustration of
this discussion.

In the second step, we build the Harniltonian matrix,
which is the projection of the 8 operator onto the ortho-
normal basis we just generated:

(u„(P~u ) =(u„,Hu~), O~n ~p . (36)

Only covariant matrix elements of 8 are needed in this
step. In this restricted subspace, overlap disappears; it
becomes unity [cf. Eq. (26)]. We note that the whole set
of vector ~u„) had to be stored for this purpose, and not
the two last vectors only (as is usually done in the recur-
sion method).

In the third step, we solve the pseudo-one-dimensional
chain problem for the Hamiltonian in the orthonormal
basis ( ~u„) ) and this independently of the dimension of
the initial space. Direct eigenvalue algorithms (now
tractable in this space with reduced dimension) or again
the usual recursion method, may be used to solve this
step, with the Hamiltonian projected onto the

~ u„)
states. We discuss the case of recursion. We build a set
of orthonormal

~ v„) states

(37)

Since
~ u0) is identical with ~va ), we expect from varia-

tional arguments that the continued fraction built from
the latter chain problem eonverges toward (uD~8(z) ~u0)
[Eq. (20)]. This is indeed the case. We checked that our
method which a priori is only approximate, since derived
from variational arguments, is also exact for finite clus-
ters, if the maximal number of levels attained is the same
as that obtained with the Hamiltonian A' with any one-
step exact recursion. The main advantage of our method
is that the range of interactions can be maintained short

ranged in the initial LCAO space (only covariant H
and/or S are used); S ' is never needed, within the algo-
rithm itself. It may be needed only for building contra-
variant initial states. The Hamiltonian matrix built ac-
cording to (36) and used in the second step becomes long
ranged, but in a pseudo-one-dimensional chain space
only, irrespective of the dimension of the initial space and
thus tractable. It extends naturally to infinite systems.
We do not discuss here the problem of termination of the
continued fraction in the infinite case, since this has been
widely discussed elsewhere. ' ' ' In the next section
we compare our method to others in the case of a set of
physical problems.

It is also worth mentioning that the approximations of
truncation of the Hamiltonian developed by other au-
thors as implementation of the recursion may be used as
the first stage of the generation of an orthonormal basis
in ours. This is, however, seldom the optimal auxiliary
operator.

We discuss now briefly the work of Ballentine and Kol-
lar. ' This work has the same aim as ours, i.e., to treat
systems where overlap cannot be neglected. They intro-
duce a two-side recursion over the mixed representation
of the Hamiltonian (S 'H).

Since they truncate this matrix, they violate the intrin-
sic Hermiticity of the physical problem (this leads to neg-
ative densities of states). We checked that this algorithm
with untruncated interactions gives the same results as
ours when treated accurately. Special care has to taken
with the two-sided recursion; namely, to balance the
norms of the two starting vectors ~u0) and (v0~ is man-
datory, otherwise, the stability is rapidly lost, the ~u„)
and (v„~ having individual norms that grow and shrink
in a complementary way with increasing n, such that
( v„~u„)=1. This numerical instability may also lead to
negative b„.

The main defect of the work of Ballentine and Kollar'
is that they do not really solve the problem of the recur-
sion in nonorthogonal bases, since they introduce an ad
hoc short-ranged Hamiltonian in the mixed representa-
tion, following the arguments given by others. ' We
checked that S 'H built from covariant short-ranged
overlap and Hamiltonian are never short ranged. An ar-
bitrarily truncated mixed Hamiltonian makes loose the
intrinsic Hermiticity of operator 8, and thus causes un-
physical negative densities of states. We recall that our
method works quite exactly in that case since we have no
such approximation to do at this level.

We recall now some conditions of validity of our
method and associated features.

(1) The auxiliary operator A operating onto the state
~ up ) has to be of the right symmetry for our problem
with the shortest interactions possible in its contravariant
or mixed representation and has to generate the right
manifold of states with the right dimensionality, which
span the same space as that created by using the Hamil-
tonian operator 8 in the exact one-step recursion. The
generated states A "~ua) and thus ~u„) (combinations of
the preceding) must be linearly independent. In the trivi-
al case of unit overlap, one recovers the usual recursion
method.
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(2) For the maximal number of levels (in the case where
it is finite), the recursion method provides a subset of ex-
act eigenvalues, but the degenerate eigenvalues appear
once only.

We define the P„(A,) polynomials as the determinant of
the matrix A,I—H, with the first n columns and rows can-
celed out [cf. Eqs. (28) and (29)]; the sequence of polyno-
mials (Lanczos spectral method )

P„+]=1, P„+2=0,
P (A, )=(A, —a )P +,(A. ) —b P +2(A, ),

(38)

q =n, n —1, . . . , 0 (39)

gp(z) = Pi (z) /Pp (z)

as well as the spectral representation

CO;

gp(z) =g
l

(40)

(41a)

with

ro; =P, (A, ;)/Ppr(A, ; ) . (41b)

The derivatives P„'(k) may also be obtained by a re-
currence relation (involving also P„+,) obtained by deriv-
ing (39). We observed a numerical instability in the am-
plitude of the coefficients co, in (41b), while the ratios be-
tween the ~, remain preserved. Therefore we developed
a more stable computation of these coefficients combining
formal calculus with the evaluation of eigenvalues by
Sturm's method.

(3) The set of eigenvalues generated is usually only a
subset of the whole manifold. The set of eigenvalues and
weights is, however, complete for the initial chosen state

~ up ). It gives an accurate Green's-function matrix ele-
ment ( up ~

C(z)
~ up ) which is exact in the finite case for

the maximal number of levels of continued fractions and
converges with n in the case of truncation or infinite case.
Owing to the discrete structure of the spectrum and
weights, this convergence has to be studied on the asymp-
totic values, i.e., the moments.

IV. APPLICATION TO THE CHROMIUM-NITROGEN
SYSTEM

In this section, we study the N-Cr system. We chose
this system because of our earlier experience with it.
We perform extended Hiickel calculations without self-
consistency (it is not the purpose of the present work) and
we compare our new spectral method to the more tradi-
tional ones, namely direct diagonalization or recursion
methods using the full inverse overlap matrix, in the case

is a Sturm sequence and thus the roots of P„(A, ) are
separated. The downward recursion with respect to the
index q is particularly well suited to our problem because
in one pass we obtain (a) all polynomials P (A, ) needed for
evaluating a subset of the spectrum of H (the roots A, , of
Pp(k) =0 may be obtained from the corresponding Sturm
sequence [P~(A, )] ) and (b) the expression of gp(z) [Eqs.
(28) and (29)] as a rational fraction

of finite molecules. As an illustration of the infinite-
dimensional case, we compare the calculation of Green's
functions in the case of an overlayer of nitrogen on
chromium (1X1) N-Cr (001) to the k~~ calculation of a
similar system. ' The parameters of the calculation are
reported in Table I. We present only the local covariant
Green s functions on nitrogen. Therefore, the initial
states ~up) are ~N 2a), a=s,px, p~,p, .

In the case of the molecule NCr, the total dimension of
the tight-binding manifold is 13 (four N orbitals, nine Cr
orbitals). We compute the Green's functions either by
direct diagonalization, or by the one-step recursion
method using the exact Hamiltonian operator; the corn-
putation schemes of Appendix A and the biorthogonal
version of Ref. 18 with the full inverse of the overlap ma-
trix have been used. Then we verified our new method.
We stop the recursion as soon as b„coefficients become
close to zero (this value is seldom exactly reached, due to
rounding errors). In this way we obtain a finite number
of levels, n, and a finite subspace of dimension n, spanned
by n orthonormal vectors generated by the recursion.
Going beyond the level for which b„vanishes approxi-
mately would be merely to restart the recursion with a
new random initial vector, the noise of rounding errors.
Let us discuss in more detail the case of the N 2s orbital
( ~up ) = ~N 2s )). The exact versions of the one-step re-
cursion algorithms furnish five levels and independent
vectors, whereas our three-step recursion using as auxili-
ary matrices I, S, or S, etc. as contravariant representa-
tions of auxiliary operator A furnishes only four indepen-
dent vectors. (This is one of the tricky cases mentioned
earlier. ) Working with this incomplete subspace would
lead to approximate results for the projected Hamiltonian
and the recursion coefficients. But using the matrix H as
a contravariant representation of the auxiliary operator
A, or any one mentioned in the preceding section, which
are more adequate in the present case, we recover a basis
of the right dimensionality and we recover exact
coefficients for the continued-fraction coefficients of the
equivalent chain problem, while keeping the interactions
short ranged in direct space. We analyze according to

Orbitals

N 2s
N 2p

Cr 4s
Cr 4p

Cr 3d

Energy
(eV)

—26
—13.4
—8.66
—5.24

—11.20

1

1

0.505 79
0.674 72

(A )

1.95
1.95

1.70
1.70
4.95
1.80

TABLE I. Extended Hiickel parametrization of the system
NCr. A wave function reads g(r)= Yi (r)g,.a;r"exp( g;r). —
This wave function has still to be normalized. bcc chromium

0
lattice parameter is 2.88 A. In the molecular calculation, the

0
chromium-nitrogen distance is 1.95 A. In the adsorption prob-
lem, the nitrogen atoms sit in the fourfold position, 0.51 (1.95) A
above the first (second) chromium plane. The Hamiltonian is
built using the Helmholtz-Wolfsberg formula with %=1.75
(Ref. 21).
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Eqs. (38)—(43) this continued fraction. Using either the
Sturm method on the family of polynomials P (x) or the
direct diagonalization of the tridiagonal representation of8 in terms of the recursion coefficients (29), we show that
the eigenvalues obtained belong to the full spectrum of 8.
Moreover, only those associated with eigenvectors having
a nonvanishing Projection onto ~uo) aPPear. According
to our discussion in Sec. III, degenerate eigenvalues ap-
pear only once. The corresponding weight co; involves
the projection onto

~ uo ) of the whole degenerate eigen-
space associated with the degenerate eigenvalue. These
weights coincide with those obtained from the spectral
representation

Goo =Q Soy G r Sso
y, 5

~ =XSo,CFC' Sso .
y, 5

(42)

(43)

The results are represented in Table II and in Fig. 1.
This detailed example shows the following.
(1) Any exact one-step recursion involving the Hamil-

tonian operator is an exact alternative to diagonalization
for obtaining the spectral properties of the Green's-
function matrix elements, for the maximal number of lev-
els (if upper bound, like in the finite molecular systems).

(2) Our method (three-step recursion) avoiding the
difficulty of long-ranged S ' provides also exact results in
the molecular case, for an adequate auxiliary operator.
But the choice of the auxiliary operator for generating
the basis is inductive and requires some imagination.
Our method extends naturally to infinite systems, allow-
ing us to tackle problems with chemisorption, reaction
paths, heterogeneous catalysis, di6'usion barriers, etc. A
molecule of finite dimensionality may be used to check
the adequacy of the auxiliary operator 2 to generate the
basis.

I.et us discuss now the infinite-dimensional case, an
overstructure of nitrogen on a (001) chromium surface,
treated in the extended Hiickel model by our new recur-

sion method. We assume that the nitrogen atoms sit in
the hollow fourfold sites, above the chromium atoms of
the second plane, at the same distance as in the bimolecu-
lar system studied above. For the local covariant Green's
function, we create the cluster organized into shells
around the seed, the nitrogen site.

The various overlap and Hamiltonian matrices needed
for all environments are generated and stored. Since the
interactions between atoms extend to second neighbors,
we used the overlap as an auxiliary matrix in order to
build the orthonormal basis in our recursion method.
With another choice, the cluster would grow too fast in
direct space. Contrary to the molecular case, where it is
possible to exhaust the set of states generated from an ini-
tial vector, this number of states is usually infinite denu-
merable, and one has to truncate at a finite rank. The
geometrical cluster skeleton of the basis function mani-
fold must consist at least of n shells dressed over the ini-
tial seed in the case of the I matrix used as a contravari-
ant representation of the auxiliary operator, 2n shells in
the case of the H matrix used in a similar sense, in order
to hope to attain n exact coefficients in the continued
fraction.

The seed is the set of sites on which the initial wave
function has nonvanishing components. We check the
orthonormality of the generated basis. We build the pro-
jected Harniltonian and we solve the pseudo-one-
dimensional chain problem, again by recursion. We re-
port the corresponding densities of state (spectral
weights) in Table III and in Fig. 2 for the nitrogen atom
orbitals.

The approximation involved here, with the recursion
method with overlap applied to an infinite system, is of
the same nature as in the usual recursion method,
without overlap. Firstly, the number of shells of the clus-
ter, the number of generated basis vectors with aid of the
auxiliary matrix, and the number of levels generated with
the one-dimensional chain have to be consistent. The
projection of the Hamiltonian onto this truncated basis
will also involve an approximation. But this approxima-

TABLE II. Recursion coeScients and related spectral data for the NCr molecule. We report the re-
sults for the covariant matrix elements of 0 on nitrogen. The matrix H has been used as contravariant
representation of the auxiliary operator A. p and p~ orbitals are degenerate and furnish identical re-
sults.

N 2s

N2p, N2p~

N 2p,

bn +1

4.488 24
5.080 62
3.036 92
1.181 49
0.000 00

1.008 67
2.961 64
0.00000

2.695 37
8.067 97
8.639 43
2.790 99
0.000 00

an

—26.000 00
9.911 53

—9.634 73
—10.534 99
—10.582 12

—13.400 00
—8.694 67
—7.259 17

—13.400 00
8 ~ 346 27

—12.061 56
—20.206 78
—9.518 23

—26.577 02
13~ 847 34

—10.612 94
—7.484 21
11.681 21

—13.681 02
—10.789 50
—4.883 33

—26.577 02
—13.847 34
—10.612 94
—7.484 21
11.681 21

0.982 15
0.002 37
0.000 60
0.001 68
0.013 20

0.91397
0.080 57
0.005 46

0.000 71
0.937 78
0.039 96
0.011 64
0.009 91
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tion is also involved in the usual recursion method
(without overlap). We did not extrapolate the recursion
coefficients here.

Pettifor-Beer's extrapolation, ' ' " linear predictor

methods, and Turchi et al. 's method adequate in the
case of semiconductors may be used. There remains a
difficulty: in the three-dimensional case, we encounter
still a numerical stability problem, our results giving an

(0) —1.0 (a) —1,0

CO
CO
lD

0.6 o
CO
C:
lD

0.4-

—0.8

C/l
CO
CD

0.6 o
CO

QJ

0.4

—0.2 —0.2

30 20 10
Energy (eV)

' 0.0
30 20 10

Energy {eV)

0.0

(b) —1.0 (b) -1.0

—0.8
CA
CO
CD

0.6 o
EO

tD

0.4

—0.8

CO
CD

0.6 o
CO

tD

0.4

—0.2 —0 ~ 2

30 20 10
Energy (eV)

0.0 30
I l

20 10
Energy (eV)

0.0

(c) —1.0

—0.8
CA
CO

-0.6 o
VJ

tD

-0.4

—0.8
CO
CA
QP

0.6 ~
CO

tD

0.4

—0.2 —0.2

30 20
li
10

Energy (eV)

' 0.0
3Q

, I I

20 10
Energy (eV)

0.0

FIG. 1. Density of states (spectral weights) on the N atom or-
bitals in a NCr molecule. (a) s orbital. (b) p,p~ orbitals. (c) p,
orbital.

FIG. 2. Density of states (spectral weights) on a N atom in a
N(1 X 1)-Cr(001) overstructure. (a) s orbital. (b) p, p~ orbitals.
(c) p, orbital.
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TABLE III. Recursion coef5cients and associated spectral data for the N atom of N(1X1)-Cr(001)
overstructure. The identity matrix has been used as contravariant representation of the auxiliary
operator. Six levels of continued fraction and seven shells have been used in the calculation for deriv-
ing the diagonal Green s-function covariant matrix elements on a nitrogen atom.

N 2s

N 2p„, N2p~

N 2p,

7.696 78
33.546 14
3.550 48
1.769 20
0.591 70
0.000 00

3.028 35
14.17943
3.99070
2.899 50
0.782 88
0.00000

2.256 93
52.060 31
2.675 75
2.664 29
0.392 05
0.000 00

—26.0000
70.246 80
21.346 70

—12.367 82
—14.135 88
—12.366 91

—13.40000
9.355 19
7.673 42

—13.137 30
—15.153 66
—13.01842

—13.40000
74.633 98
24.985 52

—14.582 21
—14.460 23
—13.210 25

—26.808 77
—15.462 32
—12.448 46
—11.551 80

5.246 70
87.747 54

—17.637 78
—14.105 89
—13.109 81
—11.690 98
—4.19673
23.06041

—17.505 65
—13.717 10
—13.263 95
—12.19329
—6.885 77
107.532 56

0.983 32
0.000 47
0.000 24
0.000 67
0.011 66
0.003 63

0.003 39
0.864 40
0.042 51
0.041 55
0.044 55
0.003 60

0.002 38
0.872 46
0.047 92
0.047 42
0.029 56
0.00025

g[zS klan) H
(klan ~+ ~(klan z)=5 ~.

r
(44)

An alternative evaluation is provided by the spectral
method (9). We recall that usually among covariant,
mixed, and contravariant representations I and 8 are
both short ranged in direct space for the covariant one
only. The indices a, P, y refer here to an atom in a given
plane parallel to the surface. A &(k~~) refers to a bidi-
mensional Fourier transform of A & parallel to the sur-
face. One obtains the covariant representation in (k~~),
with the aid of (37). One has to integrate over an irreduc-
ible part of the bidirnensional Brillouin zone by analytic
methods or sampling over special points. This
represents a much larger amount of work, which is re-
stricted to plane geometry only.

V. CONCLUSION

In this paper we showed that the exact recursion
methods in the nonorthogonal basis, taking properly into
account the overlap matrix, are an exact alternative to
quantum-chemistry calculations using diag onalization.
Furthermore, the new approach we present here, which
distentangles the generation of the recursion basis from
the operator A' itself, overcomes the diSculty of the

eigenvalue expelled to high energy, with a very low
weight as the number of levels is increased. We do not
run into this difticulty with infinite one-dimensional
chains.

The power of the recursion method is that it can be, in
principle, applied to any geometry in real space, even to
amorphous systems. Let us briefly compare the calcula-
tion of a system similar to ours by the k~~ method. ' The
contravariant components of the Green's function are the
solution of the system

long-ranged S '. It represents a major contribution to
the recursion method. Combined with other results like
the adspace-subspace concepts, it allows us to treat the
physics and chemistry of a lot of systems of interest that
were not easily tractable earlier. Our variant of the re™
cursion method may be used for quantum chemistry of
finite molecular systems as well as, in principle, for
infinite-sized ones. The "impurity approach, " which al-
lows us to study modifications of the electronic structure
in duced by localized defects in an infinite system, needs
only a finite amount of work to be done. The application
to surfaces and interfaces, even for nonequilibrium situa-
tions (diffusion, reactions, and catalysis) is particularly
promising.

Our method represents also an original contribution in
linear algebra and numerical analysis, for spectral
analysis and local inverses of finite and infinite systems
which may be useful in other areas, such as the finite-
element method. However, the problem of numerical sta-
bility and convergence, associated with the truncation in
the three-dimensional case, has to be further studied.
Other applications of this work to contravariant, mixed,
and biorthogonal (nonsymmetric) cases will be presented
elsewhere.
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APPENDIX A: THE RECURSION ALGORITHM
IN A NONORTHOGONAL BASIS

A u„)=b„+,lu„+, &+a„lu„&+b„lu„

We recall that

(Al)

We detail the recursion schemes for a Hermitic opera-
tor A acting recursively on an initial state

l uo ):

Store u„=u„ if needed.
(5) Build the next vector A

l u, ) =gii A
l p )u ~

&la) A &uP; thus

ug
—g A pu~

p

(6) Orthogonalization coefficient a„

lu„&=+ a&u„, (A2) a„=&u, Au, )=&u, lu~)=gu, &alp)up=(ut, su~) .
a, p

(A3)

Starting from an initial state luo), the construction of
states lu„) and coefficients (a„,b„) proceeds as follows.

It is not necessary to compute b„by orthogonalization.
It has still been obtained in the normalization processing
of the current vector.

(7) Orthogonalize
l u& ) to preceding vectors

1. Algorithm lu~ ) = lu~ ) —a„u, ) b„ lu —)

(1) Initialize: thus

n =0 (current level),

lu, ) = luo) (current vector),

) =0 (preceding vector),

l u& ) =0 ( following vector ),

lu„) =0 (working vector) .

(2) Normalize lu, ):

b„=&u, lu, & =gu, &alP)ug=gu, S &u~ .
a, p a,p

We define

lu„) =Slu, ) =+la)S puP .

Thus

u~ =QS~pu
p

u =Su, .

Therefore,

b„=(u„u ) .

(3) Stop if b„ is too small, or if the maximal number of
preassigned levels is attained.

(4) Normalize the current vector, and the working vec-
tor (if needed):

lu, ) = lu, ) Ib„, thus u, =u, ib„,

lu ) = lu ) jb„, thus u =u Ib„.

u& =u& —a„u, —b„u

(8) Increment n, rotate the indices p~c~f, loop to
step (2).

End of algorithm.
The preceding scheme shows explicitly how to build

the coefficients u„of the vector
l u„), if the mixed repre-

sentation of 3 is known.
For the other variances, it is the same algorithm which

is valid; one just takes into account the relationship be-
tween the matrices of a same operator in the various rep-
resentations. The diFerent cases, where a specified repre-
sentation of A is known, are summarized in Table IV.

2. Our scheme

We recall that it is a three-step calculation.
Step 1. Use the recursion scheme for an adequate aux-

iliary operator, the contravariant or mixed representation
of which is short ranged, in order to build an orthonor-
mal basis set ( l u„) ). The (a, b) coefficients are of little in-
terest, but for controlling the linear independence of the
basis.

Step 2. Project the Harniltonian onto the basis just
generated

H„., =flu„)H„&u l,
n, m

with H„=&u„l, 8u ) =(u, Hu ). We recall that the
overlap is the unit matrix in this representation. We thus
obtain a one-dimensional chain problem, irrespective of
the dimension of the initial space.

Step 3. Variant 1: diagonalize the projected Hamil-
tonian. Variant 2: use the ordinary recursion method to
tridiagonalize H „j, with initial state (1,0, 0, ...). The
coefficients (a, b) obtained in this step are those of the
continued-fraction representation of & uo l

C(z) l uo ).
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TABLE IV. Computation schemes of the recursion method. A is a Hermitian operator. If A is the
Hamiltonian operator, we recover the one-step recursion method. Furthermore, if S=I, all schemes
turn into the traditional recursion without overlap. Only steps 5,6,5 are specialized, according to the
representation of A.

Covariant A Mixed A

u =up
uf =0
up =0
u, =up
n=0

Contravariant A

2 u~ =Sue
b2

3 If the maximal preassigned number of levels is attained, or b„ is close of vanishing, stop.

uc ucbn
Store it if required.
u =u /b„

5 uf —Acovuc
6 a„=(u~„uf)
5' uf =S 'uf

uf Amixeduc

a„=(u~,uf )

Acontrauf
a„=(uf,uf)

uf =uf —a„u, —b„u

Rotate the indices p~c~f, increment n Loop to 2.
Loop to 2.

APPENDIX B: AN ILLUSTRATION OF THE ALGORITHMS OF APPENDIX A

A chain of five identical atoms with s orbitals

1 03 0 0 0
0.3 1 0.3 0 0

S= 0 0.3 1 0.3 0
0 0 0.3 1 0.3

0 0 0 03 1

S

1.11109
—0.370 31
0. 122 39

—0.040 64
0.012 19

—0.370 31
1.234 38

—0.410 96
0. 135 48

—0.040 64

0. 122 39
—0.410 96
1.246 57

—0.410 596
1.234 38

—0.040 64
0. 135 48

—0.410596
—0.410 596

1.234 28

0.012 219
—0.040 64
0. 122 39

—0.370 31
1.11109

S~PPt

—0.3

0
0
0

—0.3

—0.3

0
0

0
—0.3

—0.3

0

0
0

—0.3

—0.3

0
0

—0.3

—0.6
—0.6 —1

0
—0.6

0
0

0
0

0
0
0

—0.6
0
0

—0.6
0

—0.6 0
—0.6

—0.6 —1

uo = (1,0,0,0,0).
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Exact Approximate

TABLE V. Continued-fraction coeScients for the example of
Appendix B.

TABLE VI. Energy levels and weights associated with Table
V (exact). The same results are obtained by the spectral method
[Eqs. (9), (42), and (43)],

b. +]

0.333 08
0.459 01
0.365 65
0.154 86
0

—1
—0.501 50
—0.504 58
—0.841 95
—1.214 44

bn +1

0.275 18
0.326 15
0.177 41
0.078 77
0

—0.836 20
—0.408 42
—0.294 02
—0.635 13
—0.990 21

Eigenvalue

—1.341 93
—1.230 76
—1
—0.571 42
—0.081 66

%'eight

0.126 63
0.325 00
0.333 33
0.175 00
0.040 03

In Table V the results are reported for the continued
fraction of ( u o ~

G (z)
~
u o ) [Eqs. (20), and (28)—(30)] ob-

tained by exact versions of the recursion method (Appen-
dix A and Ballentine s biorthogonality) and with approxi-
mate S ' (S, '„„).Note that I has been used as matrix

of the contravariant representation of the auxiliary
operator in our three-step method, which also gives exact
results. In Table VI we report the spectral decomposi-
tion of go(z) corresponding to the coefficients of Table V.
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