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The speckle statistics of light elastically scattered from a randomly rough metal grating are calcu-
lated in the limit of partially developed speckle. Specifically, the intensity correlation function of
the diffusely scattered light is determined. A multiple-scattering formulation which takes into ac-
count the dielectric properties of the metal is used. The calculation proceeds as a diagrammatic ex-
pansion in powers of the surface-roughness profile function. Results are presented for several sets of
values of the parameters characterizing the Gaussian random surface roughness. For a fixed surface
roughness, the dependence of features in the speckle pattern on the complex dielectric constant of
the metal is studied by artificially changing the value of the imaginary part of the dielectric constant
for a fixed value of the real part. The intensity correlation function of the diffusely scattered light
from two beams of different frequencies which are simultaneously incident on the same rough sur-
face is also calculated.

I. INTRODUCTION

Recently there has been renewed interest' in optical
speckle due to its close relationship to the study of
universal conductance Auctuations in mesoscopic elec-
tron systems and backseat tering effects associated
with Anderson-localization phenomena. ' These phe-
nomena all arise due to the phase coherence of wavelike
excitation s propagating in a disordered medium.
Shapiro, ' and Stephen and Cwilich have recently used
this fact to apply mathematical techniques developed for
the study of mesoscopic electron systems and Anderson
localization to calculate the intensity correlation function
for light interacting with a disordered bulk medium.
This correlation function allows from the determination
of speckle size, the intensity fluctuations in the speckle
pattern, and the frequency dependence of the pattern in
terms of the statistical properties of the disordered medi-
um.

In this paper we shall undertake a calculation similar
to those of Shapiro, ' and Stephen and Cwilich, but now
for the intensity correlation function of light elastically
scattered from a randomly rough metal surface.
Specifically, we shall calculate the intensity correlation
function for the diffuse component of light scattered from
a randomly rough metallic grating. Previous work on
speckle, which treats the surface statistics, considers sur-
faces which are either perfectly conducting' ' or take
the phase shifts of the scattered waves to be proportional
to the surface profile function. ' In this work we shall
improve upon these by correctly treating the interaction
of light with the metallic surface, described by a complex
dielectric constant. The calculation shall employ a

unitarity- and reciprocity-preserving formulation for the
scattering of light from rough surfaces which has recently
been developed by Brown et a/. , ' which is based on
the Rayleigh hypothesis. ' This last restriction will
limit us to the consideration of only partially developed
speckle patterns.

As the work of Brown et al. ' has already been ap-
plied by us, within the context of Anderson localization, "
to the consideration of the scattering of light from ran-
domly rough metal gratings, we shall quote a number of
results from our paper, Ref. 11, below. Along with these,
a brief discussion of the formulation of the light-
scattering problem will be given, but the reader is re-
ferred to Ref. 11 for the detailed derivation of the formu-
las taken over from it.

II. THE INTENSITY CORRELATION FUNCTIONS

(g(x& )g(x', ) ) =o exp
fx, —x', /'

a 2 (lb)

where the angular brackets denote an average over the
ensemble of realizations of g(x&). In Eq. (lb) o is the
root-mean-square deviation of the surface from the plane
x 3 0 and a is the transverse correlation length, which is
a measure of the average distance between successive
peaks and valleys on the rough surface. The region

We consider a grating whose profile is given by
x3 =g(x, ), where the profile function g(x, ) is assumed to
be a Gaussianly distributed random variable with the
properties

(la)
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x3 )g(x, ) is a vacuum, while the region x3 (g(x, ) is
filled by an isotropic dielectric medium characterized by
the complex dielectric constant e(co) =e)(co)+i @2{co),
with ei(co)( —1, e2(co)&0, and ez(co) «le, (co)l at the
frequency m of the incident light.

The light in our system is taken to be p polarized, and
the plane of incidence is the (x,x3) plane. The magnetic
field vector thus has the form H(x, t)
=(0, Hz(x „x3Ico), 0}exp( i cot

—), and the amplitude
H2(x „x3 I co ) in the region x 3 & g(x ) ) can be written as

H,'(x„x,lco)=e

G()(p) = ie(co}
E(co)ao(p, co)+a(p, co)

(6)

where to leading order in g(x, )

V(plk)= g(p —k)[e(co)pk —a(k, co)a(p, co)], (8)
[e(co)]'

is the surface-polariton Green's function for a planar sur-
face. The scattering matrix, T(plk), in Eq. (4) is the solu-
tion of the equation

T(pfk)= V(plk)+ f V(plq)GO(q)T(qlk),dg

+ p R(p lk)e ', (2) with
2~

where k =(co/c )sin8;, with 8; the angle of incidence mea-
sured from the normal to the mean surface,

(3a)

(3b)

where

2iG()(—p ) T(p I
k )G()(k)a()(k), (4)

and ao(k, co) is always real. Note that Eq. (2) invokes the
Rayleigh hypothesis, ' ' ' and that the first term on the
right-hand side of Eq. (2) describes an incident beam of
frequency m which is scattering from the grating surface.

By an application of Green's theorem and the extinc-
tion theorem to the above described grating problem, an
integral equation for the scattering amplitude R (plk) is
obtained whose solution can be written in the form"

R (p I k) =2qr5(p —k )R ( k)

g(p) = fdx, g(x) )exp( ipx—i ) .

In terms of the T matrix in Eq. (7) we can also write
the surface-polariton Green's function, G(plk), for a
rough surface as

G (pl k) =2~5(p k)GO(k)+ Go(p) T(p lk )G()(k) . (10)

This Green's function will be very useful in the work
presented below, as we shall see that the intensity of
diffusely scattered light and the intensity correlation
function of diffusely scattered light can be written in
terms of configurationally averaged products of these
functions. These configurationally averaged products of
surface-polariton Green's functions can then be treated
using standard diagrammatic techniques for the study of
excitations in disordered media.

The time-averaged intensity or energy density in an
electromagnetic plane wave whose magnetic field is
H2(x„x3lco) is given by

e(co )ao(p, co ) a(p, co)—
R()(p) =

e(co)ao(p, co }+a(p,co)
(5) = 1I(x i,x3 I co) = IHz(x»X3 I

co) I

Sm

is the Fresnel coefficient for the reAection of p-polarized
light from a planar dielectric surface, a(p, co)
=[a(co)(co /c )

—p ]'~, with Re[a(p, co)] &0,
Im[a(p, co ) ])0, and

Using Eq. (11), the intensity correlation function of the
diffusely scattered light, measured on the plane defined by
x3 & [g(x ) )],„,can then be written as

C(x„x'„x,l~)=C„[&l[H, (x„x,l~)]„l'l[H, (x', ,x, l~)]„l'&—&l[H, (x„x,l~)]„l'&& l[H, (x', ,x, l~)]„l'&I,
(12)

where C„=I/64m. , and [H2 (x „x3lco)]„is the scattered portion of the total magnetic field which is given in Eq. (2).
In Eq. (12) we are only interested in the correlation of the diffusely scattered light, so we shall ignore the specular com-
ponent of [H2 (x „x3I co)]„in the evaluation of Eq. (12). If the specular components of H3 (xi,x3 Ico) were retained in
Eq. (12), the resulting correlation function would include contributions from the specular beam and from the interfer-
ence between the specular and diffusely refiected light. From Eqs. (2), (4), and (10) we have

[H2 (x„x3leo)]„=f 12+5(q —k)[Ro(k)+2iGO(k)ao(k)] 2iG(qlk)—ao(k)]e
277

so that upon substitution of Eq. {13)into Eq. (12), we obtain

(13)

c(xi,x'i, x3 leo) =16c„ao(k,co)f f f f [& G(qlk)G*(q'Ik )G{plk)G*(p'Ik ) &
—

& G{qlk)G'{q'Ik) &

i(q —q')x) ((p —p')xI ([ao(q) —ao (q')+a()(p) —a() (p')jx3
(14)
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The subscript D on the square brackets on the right-hand side of Eq. (14) indicates that all terms containing factors of
2rr5(q —k), 2vr5(p —k), etc , .are dropped, as these represent contributions from the specular beam and from interfer-
ence of the specular and diffuse beams.

In a similar manner, we can obtain an expression for the time-averaged diffuse field intensity at x, on the plane
defined by x3 ) [g(x, )],„. We find

r(x„x,~~)=C„'& t[H, (x, ,x, ~~)]„[')

2' 2'

G(k)=
Ci

k —E, —iA„t

for ~k+K, ~
Sb.„„where

ei(~)[ —Ei(ai)]'
C]=

1 —e, (co)
l ]/2

Ei( CO)

K, =—
c e, (co)+ 1

C]
k+X„+Ed,.„ (16)

(18)

(19)~tot ~@+~sp &

e~(co)K»

2e, (co)[e,(co)+1]
2

b.»=2 m.ao C, K,~exp( —a K,„),
Ei CO

(2O)

(21)

where C„=l/8~ and, in the evaluation of Eq. (15), we
again omit the specular terms contained in
[Hz(x i, x3 ~co)]„. The evaluation, then, of the speckle in-
tensity correlation function and the average diffuse inten-
sity is now reduced to the treatment of the four-particle
Green's function contained in the square brackets on the
right-hand side of Eq. (14) and the two-particle Green's
function on the right-hand side of Eq. (15). In the follow-
ing we shall turn to the determination of the average sin-
gle, two- and four-particle Green's functions given above.

The average single-particle Green's function,
( G(q ~k ) ) =2~5(q —k)G (k), is calculated in Eqs.
(17)—(23) of Ref. 11. In the approximation used there
only self.-energy corrections to leading order in
( V(q~p)V(p~k)), where V is given in Eq. (8), were re-
tained. The resulting expression for G(k) is then

and

G(k) =Go(k)

for ~k+K»~ ))b,„,. We notice that the small self-energy
correction 4„t is important only near the poles of the
Green's function. These poles describe the surface polar-
itons propagating along the random interface and, as in
Ref. 11, only self-energy correlations to the imaginary
parts of the poles are retained as these determine the
surface-polariton lifetimes. Corrections to the real parts
cause only small frequency shifts in the polariton disper-
sion curves which, as in Ref. 11, are not of interest to us
in the following.

The two-particle Green's function, (G(q~k)G "(p~k)),
was calculated in Eqs. (24) —(33) of Ref. 11 in the ladder-
diagram approximation. From Eqs. (27), (29), and (30) of
Ref. 11, we find that

(G(q ~k )G'(p~k) ) =(2') 5(q p)F(p~k)—, (23)

(elk)=l o(p, kin, k)+ I '
I'o(p, sly, »IG(s)l' (slk) .

2~

(25)

In Eq. (25) I 0(p, k ~p, k ) comes from the irreducible four-
vertex function in Eqs. (25) and (28) of Ref. 11, and to
lowest order in the interaction is given by [see Eq. (36) of
Ref. 11]

+(pl k) =&(p —k ) I G(k) I'+
I G(p) I"

2m

(24)
[notice that in the second term on the right-hand side we
include a factor of 2m. which was left out of Eq. (29) of
Ref. 11],and

2 2

I o(p, kip, k)=K(p, k)=rr' ao ie(ai)pk —a(p, a~)a(k, co)i exp — (k —p)[e(~)]' (26)

Also, in the evaluation of integrals involving
~
G(s) ~, such as occur in Eq. (25), we make the approximation

mC]
iG(s)i ~ [5(s —K»)+5(s+K»)] .

~tot

This treats the major contributions to such integrals as arising from the poles of the surface polaritons in G (s).
If we substitute Eq. (27) into Eq. (25), we obtain
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r(plk}=K(p, k)+
2~to~ 1 —(~.p/~tot}'

X IK(p, K,p)K(K,p, k)+K(p, —K,p)K( K—,p, k)+ [K(p,K,p)K( K—p, k) +K(p, K,p—)K(K,p, k)]I,
tot

(28)

where Eqs. (22) and (18) of Ref. 11 have been used to
write

I.O

C2
K( —K,p, K,p) .

2
(29)

O 0'.5—
O

The two-particle Green's function is then obtained by
substituting Eq. (28) into Eqs. (23) and (24}. This is the
so-called ladder diagram approximation for the two-
particle Green's function. In nondissipative systems
these ladder terms are responsible for the diffusion poles
which appear in the random system reducible four-vertex
and two-particle Green's functions.

The average intensity of diffusely scattered light at the
plane above the scattering surface given by x3 )g(xi ),„
can now be calculated in the ladder approximation.
From Eqs. (23), (24), and (15) we find

0.0
0.0

I.O

I

5.0
Xi

t0.0

I(xi,x3I~) =4C,'l«k}l'~', (k~}

X f q IG(q)l r(qlk)e
2K

(30)

3 3
0 0.5

X 0
oO

where r(plk) for the ladder diagrams is given in Eq. (28}.
We note that the right-hand side of Eq. (30} is indepen-
dent of x, due to the restoration of translational invari-
ance along the x

&
axis by the surface averaging.

We now turn to the evaluation of the four-particle
Green's function given by

0.0
0.0

I.O

l

1,0 2.0

( G(q Ik)G'(q'lk)G(p lk )G'(p'Ik ) &D . (31)

The evaluation of this term amounts to summing all pos-
sible Feynman diagrams (see Ref. 11) with factors of
IG(k)l entering from the right and factors of
G(q)G (q')G(p)G*(p') leaving the left. Using the same
notation as in Fig. 1 of Ref. 11, Green's functions are
represented by solid lines, and dotted lines represent the
scattering interactions. Here we must be careful to dis-
tinguish between solid lines representing 6 and 6* terms.
This later point was not a problem in the work in Ref. 11
as only one set of 6,6* entered into those calculations.

If we are only interested in the leading-order correla-
tions in Eq. (31), however, then great simplification
occurs, as we can write it as a linear combination of prod-
ucts of the averages of lower-order Green's functions. '

In particular, we have

3 3
o
oX oO

0.0
0.0 5.0

Xi

lO.O

FICx. 1. Plot of C{x„Olcu)/C{0,0lc0) from Eq. (40) vs x,
given in units of A, /2m, where k is the wavelength of the incident
light. Results are presented for light whose wavelength is 4579
A incident on a silver surface with e&(co)= —7.5, e2(~)=0.24
for (a) a =10000, o.=15.18 A; (b) a=1000, o =50 A; (c)
a =500, cr =25 A. Results for e;=0 (dashed line) and 8;=45'
(solid line) are shown on each plot.
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& 6(qlk )6*(q'Ik )6(plk)6*(p'Ik ) &D ——& 6(qlk )6'(q'Ik ) &D & 6(plk)6'(p'Ik ) &D

+ (6(qlk)6*(p'Ik) & & 6(plk)6*(q'Ik) &

+«(qlk)«plk) &,« "(q lk)6*(p lk) & (32)

where terms involving ( G &D =0 or ( 6*&ii =0 do not enter into our consideration of the diffuse scattering. [Note that
if we drop the subscript D on the ( & in Eq. (31), then the approximation in Eq. (32) would be incorrect, as we would
need to consider terms involving (G & and ( G*

& which would represent the interference of the difFuse and specularly
scattered fields. ] The two-particle Green's functions occurring in Eq. (32) of the form ( GG* & have already been deter-
mined above in the ladder approximation, but the forms (GG & and (G*G*& must now be considered.

From the single-particle Green s-function equation given in Eqs. (7)—(10) above, we can easily write the Bethe-
Salpeter equation in the lowest-order ladder-diagram approximation for the two-particle Green s function
( 6(ql k)6(pl@) &. We find

(6(qlk)G(plk)&=2m5(q —k)2ir5(p —k)G (k)+G(q)6(p) f f (V(qlr)V(pls)&(G(rlk)6(slk)&,
2iT 277

with

( V(qlr) V(pls) & =2vr5(q r+—p —s) Vo(q, r Ip, s),
where

(33)

(34a)

e(co) —1
Vo(q, r Ip, s ) =i/ira a.

[e(co )]

2

[e(co)qr —a(q, co )a( r, co ) ][e(co)ps —a(p, co)a(s, co) ]exp — (q —r) (34b)

If we assume that ( 6(ql k)6(pl@) & =2vr5(q +p —2k )6, (q,p, k), then substituting this ansatz into Eq. (34) gives

G, (qp, k)=2+5(p —q)26 (k)+6(q)6(p) f Vo(q, rip, q
—r+p)6, (r, q r+p—,k),

which can be written in the form

Gi(r p+q r, k)=2+5(p+—q
—2r)26 (k)

d+6(r)6(p+q r) f Vo(r, r—'Ip+q rp+q r')G~—(r',p+q —r', k) . —

(35)

(36)

Looking at Eq. (36) we see that for b, „A, «E,~ there is no overlapping of the poles in the product 6(r)6(p +q r) as-
occurs in the product IG(s)l in Eqs. (25) and (27). Consequently, Eqs. (35) and (36) represent series expansions in in-
creasing powers of b, , /(co/c ) « b, , /A„„whereas the expansion in Eq. (25) for ( GG & is in powers of 6,„/b,„,. As a
result of this we need only keep the first interaction term in the ladder sum given in Eqs. (35) and (36). Doing this we
find that

& 6(q lk)6(plk) &D —-2~5(q+p —2k)G(q)G(p) Vo(q, k p, k)6'(k), (37)

where pAq in the above.
Substituting Eqs. (23), (24), and (37) into Eq. (32), and the latter into Eq. (14), we find for the intensity correlation

function

C(x i,x'i, x3 I
co) = 16C„ao(k,co) I 6(k) I

X f IG(q)l r(qlk)e ' ' e

t

2'
The first integral in the large parens in Eq. (38) can be written as

(38)

2 6)/C 277

2 I I

SP
tot

(39)
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where we have used the pole approximation of Eq. (27) in integrating over the regions lql )co/c. In Eq. (39) the integral
over the interval lql (co/c gives the speckle correlations in the diffusely scattered radiation fields, whereas the contribu-
tion from the intervals

I ql )co/c refers to the fields generated by surface polaritons propagating along the random inter-
face. The surface-polariton contributions are found to decay exponentially, with a decay length of [21mao(K, )],as
we move perpendicularly away from the mean surface. The second integral in the large parens of Eq. (38) also has both
radiative and surface-wave-related terms, both of which exhibit an x3 dependence. For complex values of eo the in-
tegral decays exponentially with increasing distance from the surface. The range of q over which the no s are real is
finite, and of length 2'/c. Hence, if the second integral is well defined, then its x3 dependence in the region of real ao
must be that of a decreasing function in x3 which, using an uncertainty-principle argument, must be confined to a re-
gion of order (co/c) ' above the mean surface. Consequently, for x3~ ~ we find that the intensity correlatio'n func-
tion reduces to

C(x, x
&

Ico) =16C„ao(k,co)IG(k)l I IG(q)l r(q lk)e
co/c 2K

(40)

which can be evaluated numerically. It is noted from Eqs. (30) and (40) that for x, =x ',

C(x &,x»x3 Ito) = [I(x&,x3 Ico)] (41)

a result that is obtained in the statistics of many speckle systems. '

Equation (40) has been evaluated by us for the case of light of wavelength 4579 A incident on a rough Ag surface at
angles of incidence of 0 and 45 . The complex dielectric constant of the Ag surface ' was taken to be
e(co) = —7.5+F0 24, wh. ich is the value for bulk Ag. Calculations for three different values of the surface-roughness pa-
rameters a and o are presented in Fig. 1.

In the limit that a ))A, , Eq. (40) can be evaluated analytically, and a comparison with these numerical results can be
made. We find

C(x„x'„x3leo)

4

= 16IG(k) I' C„ao(k)o le(co)k —a (k) I
"expe(co) —1

g ~ OO [e(~o)]'
2(x, —x', )

Q
(42)

which is in excellent agreement with the results in Fig.
1(a). From Eq. (42) the correlation length of the speckle
pattern is seen to depend only on the correlation length
of the surface roughness. The speckle correlation length,
though, in the other two plots for a A, , presented in Fig.
1, agrees less well with that given in Eq. (42), and in this
limit depends in some more complicated way on a and A..

In general, we see in Fig. 1 that for a & A, the intensity
correlation function is reasonably well described by a
Gaussian form such as that in Eq. (42). In this hmit,
then, the shape of the intensity correlation function is in-
dependent of the dielectric properties of the surface and
depends only on its roughness. For a (k, on the other
hand, the intensity correlation function exhibits an un-
derdamped type of behavior with oscillations of wave-
length of the order of half the optical wavelength. This
type of underdamped behavior has been found for bulk
speckle by Shapiro' and by Stephen and Cwilich. The
wavelength of the underdamped intensity correlation
function in the a ((A, limit of Eq. (40) is found to be
mildly sensitive to the value of e2, which describes dissi-
pation in the surface medium. This can be seen in Fig. 2,
where we present results for the intensity correlation

0 0
function for a silver surface with a =500 A, o. =25 A,
A, =4579 A, and for e, = —7.5, @2=0.24, 0.5X(0.24), and
5 X(0.24). It is observed that upon increasing e2 from its
correct value of 0.24, the apparent wavelength of the un-
derdamped correlation function increases slightly.

I.O

3 3
o O5
0X

O.O
O.O 5.0

XI

I O.O

FIG. 2. Plot of C(x„Oleo)/C(0, Oleo) as in Fig. 1(c) but now
for (a) ez(co)=0.24 (solid line); (b) e2(co)=5X(0.24) (dashed
line); (c) e2(co) =0.5X(0.24) (dotted line).

We next turn to the evaluation of the intensity correla-
tion function of diffusely scattered light for two incident
beams of frequencies co and co+Am, where Ace &(co. The
angle of incidence, 8;, of these two beams will be taken
to be the same, and we will be interested in the intensity
correlation function at the point (x„x3) as a function of
the frequency difference b,co. It is given by
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C(x„x316;,~, ~~)=C„I & l[Ifi(x„x31~)]„l l[H2 (x„x3I~+~~]„l
—

& l[~~ (xix3I~)]..l'&& I[HE (xixsl~+~~)]..l'&J, (43)

where specular contributions from I(IIi )„I are to be ignored. We must now explicitly indicate the co dependence of the
incident light and the Green s function for surface polaritons on a rough surface defined in Eqs. (7)—(10). This is easily
done by just appending a subscript to the functions G(plk), G(k), Go(k), V(plk), T(plk), and R (plk) in Eqs. (2),
(7)—(10), and (12)—(16), so these now read G„(plk), G (k), Go„(k), V (plk), T„(plk), and R„(plk), for the frequency co.

The Dyson equation for G„(plk) from Eqs. (7)—(10) is then

G.(plk) =2~5(p —k)Go. (k)+Go.(p) f q V.(plq)G. (qlk) .dq
277

(44)

For an angle of incidence 8, measured from the normal to the mean surface, the components of the wave vector of
the incident beams parallel to the mean surface will be given by k =(co/c )sin6; and k'= [(co+Leo) /c ]sin6;. Using Eq.
(2) for these two incident beams in Eq. (43) above, we find

C(x„xi I6;,co, Aco) =16C„ao(k,co)ao[k', (co+bco)]

&& f "' f "' f "p f "' [&G.(ql )G*(q'lk)G+g (plk')G'+, (p'Ik'»

&G.(q—lk)G„*(q'Ik » & G.+a.(plk')G.*+a.(p'Ik'» ]D

i(q —q')x
&

i(p —p')x
&

i [ao(q, co) —ao (q', co)+0'0(p, ~+&~)—~0 (p', ~+~~)]&3
Xe e e

%e can, again, to leading order terms in the interaction, write the four-particle Green s function as a product of two-
particle Green's functions [see Eq. (32)], so that as x3 ~~, for b,co/co((1, we have from Eq. (45)

C(x„x3I6;,co, bco)= 4C„'i ao(k, co)ao(k', co+bco)

x -"q f "P &G.(qlk)G.*,.(plk')&De" "'e' """""'"""'
277 2iT

(46)

In writing Eq. (46) we have ignored terms of the type of & GG & and &
G*G*

& since, by the use of arguments similar to
those following Eq. (39), these can be shown to decay rapidly with increasing distance from the surface.

To evaluate &G (qlk)G„*+& (plk') & in the ladder-diagram approximation, we use Eq. (44) to write the Bethe-
Salpeter equation. %'e find

where, from Eqs. (1) and (8),

& V (qlr)V*+& (pls)&=2vr5(q r —p+—s)VD +z (q, rip, s),
2 e(co) —1 e(co+ b,co) 1—

Vo +z (q, rip, s)=i/~ao.
[e(co)] [e(co+hco)]

[e(co)qr —a(q, co)a(r, co)]

& G.(qlk)G„'~a„(p lk') & =2m5(q k)2n5(p —k—')G (k)G„*+, (k')

+G (q)G*+a (p) f "f & V (ql )Vr' +(apls)&&G (rlk)G +a (slk')&2' 2&
(47)

(48a)

Q
X [e( co+

waco

)ps —a(p, co+ hco )a(s, co+ b co ) ]*exp — ( q r)—
If we write

&G (qlk)G* (plk')&=(2 )'5(q —k —p+k')F, + (q klp k') (49)

then substituting Eqs. (49) and (48) into Eq. (47) gives

F +z (q, klp, k')=5(p —k')G (k)G'+z (k')

+G (q)G*+g (p) f Vo +g (q, rip k k+r )F ~a (r k lk' k +r k') (50)
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F +c, (r, klk' k—+r, k')=5(r k—)G (k)G„*+a (k')

+6 (r)G +g (k k+r) f Vo +g (r r Ik k+r k k+r )

XF +c, (r', klk' —k+r', k') . (51)

For small frequency shifts waco, such that bco((b.„„wecan take 6 (r)6*+& (k' —k+r)= IG (r)l in Eq. (51). Equa-
tion (51) can then be written as

k'F„+z (r, klk' —k+r, k')=5(r —k)6 (k)G*+z (k')+IG (r)l ' 6 (k)G„*+&„(k'),
277

where

(52)

r(rlk, k')= Vo,...+g.(r, k lk' —k+r, k')+ f V, .(r, r'lr, r')IG. (r) '~(rlk, k'), (53)

and we have taken Vo +z (r, r'Ik' k+r, k'—k+r')—= Vo „(r,r'Ir, r') in the integral on the left-hand side of Eq.
(53). A solution for r(rlk, k ) can easily be obtained from Eq. (53) by using the approximation for IG (r)l given in Eq.
(27). Then using Eqs. (52) and (53) in Eq. (50) gives

F +a (q, klp, k')=l(p —k')6 (k)6*+q (k')+6 (q)G "+~ (p) ' 6 (k)6'+q (k') .r(qlk, k')
2'

From Eq. (49), (6 (qlk)6*+& (plk')) follows.
Substituting Eqs. (49) and (54) into Eq. (46) for the intensity correlation function, we find

dq 2
'[ q, ~ —(zo (q —k+ k', a)+Ace)]x3

C(x„x,le, , ~, a~)= 4C„'"a',(k, ~)f 16.(q)l'~(qlk, k')IG. (k)l e

(54)

(55)

In general, this expression exhibits a complicated dependence on x3 which must be determined numerically, but, in the
limit a ~ ~, Eq. (55) can be evaluated analytically.

In this limit only the first term in Eq. (53) contributes to r(qlk, k ) as all higher-order terms contain factors of—aK /4
e " —+0, so that we have

e(co) —1
r(qlk, k') = &macr

[~(co)]'
2

I c(co)qk —a(q, co)a(k, co) I exp — (q —k)

a= T(q, k, co)exp — (q —k) as a ~~ . (56)

Here we have ignored terms of order b,co in the coefficient multiplying the exponential. Using Eq. (56) in Eq. (55) we
have

C(x „x3 I 6;,co, b,co ) = 4C„' ao( k, co) T( k, k, co)

2
X IG (k)l f exp — (q —k) expIi[ao(q, co) ao(q ——k+0', co+bco)]x3 I (57)

If we now expand ao(q, co) —ao (q —k —k', co+ Aco) in Eq. (57) in powers of bco/co « 1, we find from Eq. (3a)

co/c —
q sine;

ao(q, co) ao(q —k+k', co—+bco)=—,+O((bco/co) ) .
[( / )2q2]1/2

Retaining only the leading-order term in Aco/c, we can expand the coe%cient of Ace/c in powers of q
—k to give

ao(q, co) —ao (q —k+k', co+bco)= —cose, I 1+—,'[(co/c) cos 6, ] '(q —k) I (59)

'2
4 c Ado x3/a

cos 8,
C (x i,x 3 I e;, co, Eco )~ (60)

to terms in (q —k) . Substituting Eq. (59) into Eq. (57), we find that, for b,co/co &(1, a ))A, , and
I(2/cos B;)(b,co/co)(c/co)(x3/a )I (1,

16C„ao(k,co)
IG.(k)l'IT(k, k, ~)l' 1+

~a
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The expression in Eq. (60) was obtained by assuming that
exp[ —(a /4)(q —ic) ] was small for q outside the radia-
tive region (i.e., for ~q~ ) to/c); for this to hold we need in
addition that 1 —sine, ))1,/rra. The dependence on
bco/co observed in Eq. (60) is somewhat different than
that found by Shapiro, ' and Stephen and Cwilich for
speckle in bulk media. Shapiro finds the intensity-
intensity correlation function to depend exponentially on
&b,co/co, whereas Stephen and Cwilich obtain additional
corrections to the work of Shaprio which involve in-
tegrals of Bessel functions whose arguments depend on
+ Aco /co.

III. CGNCI. USIONS

%'e have calculated the speckle statistics of light scat-
tered from a randomly rough metallic surface in the limit
of partially developed speckle. The random surface in
our theory is a grating which is described by Gaussian
random statistics, and we have employed a multiple-
scattering theory which takes into account the dielectric
nature of the randomly rough surface.

Previous work on speckle (Refs. 14—22) has treated the
statistics of light 'eflected by perfectly conducting sur-
faces or has taken the phase of the reAected light to be
proportional to the surface-profile function, and then has
only determined the statistics of the speckle contrast (i.e.,
the variance of the intensity Auctuations in the speckle
pattern). Our work has gone further in that it has deter-
mined the spatial correlations which exist in the speckle
pattern within the context of the more realistic model of
the interaction of light with a rough dielectric surface.
Furthermore, our work gives the same dependence of the
variance of the intensity fluctuations in the speckle pat-

tern on the average intensity of refIected light as in Refs.
14—22, in spite of the inclusion, in our theory, of losses
due to the imaginary part of the dielectric constant.
These Ohmic losses are found to affect the spatial correla-
tions in the speckle pattern, particularly in the a «X
limit in which the wavelength of the underdamped behav-
ior of the correlation function is seen to increase with in-
creasing ez. The new aspect of the present approach is
that it allows for the loss of total intensity of the rejected
light due to the imaginary part of the complex dielectric
constant, and for the changes in the correlation length of
the intensity correlation function due to the surface
profile and the dielectric nature of the surface. Neither of
these two features are treated in the work presented in
Refs. 14—22.

The calculation of the four-particle Green's function,
upon which our results are based, is similar to that done
by Shapiro' for the speckle of light propagating in bulk
random media. Corrections to Shapiro's theory due to
Stephen and Cwilich need not concern us for the silver
surface considered in this paper, as in all cases studied
here A,v/b, „,~0. 14 so that Ohmic losses dominate the
losses due to the roughness-induced conversion of the
surface polaritons into volume waves in the vacuum. The
high-order diffusive corrections studied by Stephen and
Cwilich become important only in the limit b,,„/b,„=l.
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