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We propose a general scheme, within the density-functional theory, for an accurate computation
of a large class of nonlinear-response coefficients of solids. The scheme is applicable to all kinds of
adiabatic perturbations of the crystal ground state, such as the application of mechanical strains,
static electric fields of any wavelength, or individual atomic displacements, and allows the study of
coefficients which describe anharmonicities or coupling of simultaneously applied disturbances.
Total-energy changes as a function of the perturbation wavelength, as needed to obtain phonon

group velocities, can also be considered. The formalism, which avoids the use of supercells and

large-matrix inversions, contains as a special case the treatment of linear-response coefficients re-

cently suggested by Baroni, Giannozi, and Testa. The central ingredient in our scheme is an

efficient use of the "2n+1" theorem of the perturbation theory, which allows us to obtain the
third-order derivatives of the total energy by using only byproducts of a first-order perturbation cal-
culation.

I. INTRODUCTION

The density-functional approach' underlies many
present theoretical studies of crystalline solids. While
limited to the study of electronic ground states, it has
been successfully applied to the evaluation of the total en-
ergy of even rather complex atomic aggregates, with or
without an applied external field.

The study of response coefficients of solids (or deriva-
tives of total energy) has often been performed, in the
framework of density-functional theory (DFT), through a
brute-force finite-difference method: a small modification
of the atomic coordinates or of the intensity of the ap-
plied field, and iterations of the density toward an accu-
rate self-consistency in the perturbed geometry, allows
one, in principle, to obtain the tiny total-energy
differences needed to assess the value of the response
coefficients. This is not always easily achieved in prac-
tice; the calculation of most phonon frequencies in the
Brillouin zone, for instance, will require the use of prohi-
bitively large supercells, as the small-size supercells carry
information on only a few discretely distributed wave-
lengths.

Another approach aims at performing the derivation
by analytical means; a first derivative of the total energy
can be reached by applying the Hellman-Feynman
theorem' or the stress theorem. ' For computing the
dielectric tensor a density-functional-formalism version
of the analytical Adler-Wiser random-phase approxima-
tion (RPA) formula was written, but this approach shows
the disadvantage of requiring the inversion of large ma-
trices. ' ' The advantages sought in such methods are

usually to escape from restriction on wavelengths, to
avoid the need for supercell construction, and to generate
fewer computational uncertainties. Analytical methods
have, however, to cope with the loss of stability found in
the direct evaluation of the total energy by variational
methods.

Baroni, Gianozzi, and Testa (BGT) recently proposed a
scheme which combines the advantages of both methods,
and used it for assessing phonon frequencies and dielec-
tric constants, ' as well as elastic constants. ' The same
approach should also be efficient on problems involving
piezoelectric tensors, and with sufficient Brillouin-zone
sampling of phonon frequencies, should allow the study
of thermal properties involving vibrational degrees of
freedom: internal energy, entropy, and thermal capacity.
The BGT method is particularly efficient for well-defined
wavelength perturbations, as they can be mapped onto an
unperturbed periodic problem, with the original small
primitive cell.

One byproduct of the BGT method is, for each point in
the Brillouin zone, the set of first derivatives of the eigen-
functions. It has been known for a long time that, in
the case of a one-body problem, the first 2n +1 deriva-
tives of the eigenenergies are directly related to the first n
derivatives of the corresponding eigenfunction. The ex-
tension of this result to a many-body problem is not
straightforward; it has been considered in the Hartree-
Fock scheme, as well as within a general variational for-
mulation, with explicit formulas up to the fifth order.
In what follows, we will prove the corresponding theorem
for DFT, with no local-density approximation and give
explicit general formulas without restriction on order.
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Using. this result, we are able to find expressions for the
third-order nonlinear-response coefficients with a compu-
tational effort virtually identical to that required by the
second-order-coefficients calculation via the BGT
method. Third-order coefficients are related to the fol-
lowing physical properties: phonon-phonon coupling,
the electro-optical eit'ect (nonlinear electrical susceptibili-
ty), nonlinear elasticity, change in the phonon frequencies
with applied stress (Griineisen parameters) or applied
electromagnetic fields (Raman cross section), and photo-
elastic and electrostrictive effects. The thermal proper-
ties obtained at the same perturbation order by integra-
tion over phonon degrees of freedom are phonon-limited
thermal conductivity, thermal expansion, and pyroelectri-
city. ' Another important outcome of this scheme lies
in the possibility of analytic derivation of the second-
order coefficients with respect to the perturbation wave-
length. This allows a closer interpolation of the phonon
spectrum in the whole Brillouin zone or the calculation of
the phonon group velocity.

The fourth- and fifth-order coefficients are obtained
with the second derivatives of each eigenfunction. Their
range of application is also very wide (combination of
strains, static electric fields or phonons of any wave-
length, and derivation with respect to this wavelength:
the Kerr effect, or four-phonon coupling constants, for
example). It is worth noting that recent studies, using
finite difference methods, have already dealt with third or
fourth derivatives of energy.

II. "Zn + 1"THEOREM
IN THE DENSITY-FUNCTIONAL THEORY

The total energy, in the Born-Oppenheimer approxi-
mation, can be split into the nuclei (or ionic) Coulomb
repulsion, and the stabilizing electronic energy. The
derivatives of the Madelung term are easily found by
Ewald summation techniques (see Maradudin et al. )

while the electronic contribution requires more attention.
In the framework of the DFT, the ground. -state elec-

tronic energy is given by

5Ez[n]
E,)= ps + Ez[n] —I n(r)dr

5n r

where EI is the interaction energy and the c are the en-
ergies of the Kohn-Sham orbitals, determined self-
consistently by the Kohn-Sham equations:

5Ez[n]
H =T+v,„,+ (2)

5n r

n(r)= g qz*(r)% (r) . (4)

In Eqs. (1) and (4), the summation on a extends over the
occupied orbitals only. The interaction functional Ez[n]
is usually written as the sum of a Hartree energy and an
exchange-correlation contribution (eventually considered
in the local-density approximation). We now perform
the perturbative development of those quantities and
equations as a function of the small parameter A.:

H=H' '+AH"'+A, H' '+A. H' '+ . (5)
The equation of Schrodinger and normalization condition
Eq. (3) become, at order i,

y (a —s.)(z) l~"-z)
& =o

j=0
f

g &+(z)lq." z'&=O, )WO. (7)
j=0

Before proceeding to the expansion of Eqs. (2) and (4), let
us write and prove the 2n + 1 theorem in our notations
for the one-particle eigenvalue equation: prernultiplying
Eq. (3) by the eigenfunction )Iz, we have the identity

&e.l(a —E.)lq. ) =o, (g)

which translates into the perturbation expansion as

y & q (z)l(a —,)(( —
z

—k) le(") ) =O
j=Ok =0

From this expression we can form triangular tables
similar to the following one, associated with third-order
terms:

()—&
q(3) la(0) s(0)

l

q(0) )

+ & 1i"'la"'—s'"lti'"&+ & y"'la'" —s'"ly'")

+ & 0'"la"' —s"'l0"'&+ & @."'Ia'"—s'."l0'."&+ & 0.'"la'"—e.'0'I@'."&

+ & y(o)la( ) s(3)l@(o))+& @(o)la( ) E( )l@( ) + & @(o)la( ) E( )l@ ) )+ & y o la o 8 o)l@( ) ) (lo)

Equation (6) shows that the sum of the terms on any
horizontal line vanishes, and the complex conjugate of
the same equation gives the same result, for any vertical
line. Moreover, Eq. (7) can be used to perform partial
surnrnations along diagonal lines. We eliminate the two
erst lines as zeros, and, similarly, the two last columns.
c.' ' disappears from the equation, as a result of condition
(7). We finally isolate E' '.

e(3)—
&

1Iz(1)la(2)l(Iz(0) ) + &
@(1)la(1) E(1)le(l) )

+ & q'."la'"le(."&+ & e."'la'"le'.") .

For a non-self-consistent perturbative Hamiltonian,
known at any order, the knowledge of the unperturbed
and first-order eigenfunctions gives us the third-order
eigenenergy. This is the 2n+1 theorem for the case
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H(i) —U(i) +ext

5E n' '+ y un'J'
j=-1

5n(r)
(12)

n = l. Using the same steps with the (2n + 1)th triangu-
lar table easily shows that the first n perturbative eigen-
functions are suIIIicient to produce the first 2n + 1

eigenenergy derivatives. The Appendix states general
formulas valid for any order.

In the many-body case, H" functionally depends on all
n'J' for j ~i which, in turn, come from eigenfunctions of
every order up to and including order i. These wave
functions are found from Eq. (9) which requires
knowledge of the Hamiltonian to order i:

n"(r)= g g (p"' (r)%"' '(r) . (13)

It is not possible to obtain each particular perturbative
one-electron energy to order 2n+1 in the many-body
problem (except for the trivial case of noninteracting par-
ticles) without the resolution of the whole problem at or-
der 2n +1. By contrast, as we shall now prove, an exact
cancellation of terms happens in the total-energy expres-
sion, which restores the 2n +1 theorem for this quantity.
We refer to Appendix A for the all-order formulas, and
establish here the result for the third-order derivative of
total energy.

We first treat the sum of third-order eigenvalues in Eq.
(1), using Eq. (11), and develop the interaction term in
Eq. (12) by Taylor expansion:

(3)—y ( (q/())(u(2) [q/(0) ) + ((1/(()[H()) s())[(l/()) )+ ()I/(0)[u(3) [q/(0) ) + ( q/(0)[u(&) [y()) ) )

5'E, [n"'] 5'E, [n"']
+f, n' '(r)n"'(r')drdr'+ —,

' f ff, „n"'(r)n'"(r')n"'(r")drdr'dr"
5n (r)5n (r') ' 5n (r )5n (r')5n (r" )

5'E, [n'"] 5'E, [n'"]
+f, n' '(r)n' '(r')dr dr'+ f ff, „n'"(r)n' '(r')n' '(r")drdr'dr"

5n(r)5n(r') 5n(r)5n(r')5n(r")
5E[n' ']

+ 1 n"'(r)n"'(r')n"'(r")n' '(r"')dr dr'dr"dr'" .
5n (r)5n (r')5n (r" )5n (r'" )

The procedure is similar for the second part of Eq. (1):
(3)

5EI [n]
EI[n]—f n (r)dr

(14)

52E n (0)

5n r5n r'

5'E n"'

5'E n'" 6E n, ''
+ f f ", n' '(r)n' '(r')dr dr'+ f f f ", „n'"(r)n'2'(r')n'0'(r")dr dr'dr"

5n r5n r'

54E n"'
(15)

We finally obtain

E' '=g (((P"'~u' ' (1/' ')+ ()I/"'~H"' E'"~%""—)+ ()P' '~u', „I q/' ')+ ()P' '~u' '~)I/' ') )

6'E n"'
(16)

an expression which shows no explicit dependence on the
perturbative corrections to the particle density and one-
electron wave functions, except the first-order terms.
This expression will be somewhat simplified if, to begin
with, the potential has no second- or third-order contri-
bution. This is often the case: the external potential aris-
ing from the application of an electric perturbation, for

instance, depends only linearly on the applied electric
field.

The nontrivial cancellation of high-order corrections is
not restricted to the third-order expression. The general
formula can be found in Appendix A. The extension of
Eqs. (16) or (A3) to simultaneous diFerent perturbations
is straightforward, and can be written out in a systematic
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manner, along the same lines as above.
The first-order corrections to the wave function, need-

ed to evaluate the third-order perturbation to the total
energy, are summarized in the following self-consistent
procedure:

s(1)—( ql(0) ~H(1)
~

q)(0)
&

(H"' —'.")
I
q, (1)

&
(H(l) (1))

~

q, (0)
&

R.(q.' lq.' &=o,

n"'(r)= g % '." (r)% '."(r)+%"' (r)%.'"(r),

(17)

(19)

(20)

5E n''
5n r 5n r' (21)

The first iteration usually starts with H'"=U,'„'t), and
Eq. (18) is subsequently solved for all first-order correc-
tions of valence states a, respecting the constraint ex-
pressed by Eq. (19). The first-order charge-density
correction is then computed by Eq. (20) and this allows
us to construct a relaxed first-order Hamiltonian (21).
This Hamiltonian is then reinserted into Eqs. (17) and
(18) and the whole process is repeated until self-
consistency is reached. The special case of a degenerate
unperturbed eigenvalue can be handled using
perturbation-adapted eigenvectors in the usual way:

s(1)g —()p(0)
~

H(1)
~

q)(0)
& (22)

This procedure is no more than a slight generalization
of the technique used by BGT to the case where first-
order corrections on the one-particle eigenvalues are
present. In BGT, this scheme is only exploited to provide
the first- and second-order total-energy corrections, lead-
ing to linear-response coefFicients and various harmonic
force constants. Equation (16) emphasizes the important
result that the same scheme provides full access to third-
order corrections to the total energy, and anharmonic
response functions. The third-order self-consistent com-
putation of the total energy generates a large number of
relevant pieces of information about the system response,
especially if the number of different external perturba-
tions considered is large. The 1+N +N (N + 1)/2
+N(N+1)(N+2)/6 zeroth-, first-, second-, and third-
order perturbation energies arising from N external per-
turbations can all be found by only one zeroth-order and
X independent first-order self-consistent calculations of
the unrelaxed system.

Also, it is quite conceivable to use a similar scheme to
obtain higher-order wave-function corrections to access
still-higher-order hyperpolarizabilities, anharmonicities,
and coupling constants. The formulas needed to achieve
such a generalized scheme have already been obtained in
the present paper: for order i (i.e., order 2i +1 for the to-
tal energy) Eqs. (17)—(21) are simply replaced by (Al), (6),
(9), (13), and (12), respectively, and the total-energy
corrections are obtained through Eq. (A3).

III. INCOMMENSURATE PERIODIC
PKRTURBATIONS

In view of the importance of the problem, we will now
specialize our formalism to the case of a periodic pertur-

u h= g V(r —(a„+R„))—V(r —a„) (23)

with

A „=A.2e (q,j)cos(q a„),
where a„ is the equilibrium position of the atom in cell n

(we simplify the discussion by considering only one atom
per unit cell, as well as a real polarization vector), while
R„ is the displacement of the same atom in the distorted
crystal.

The external local potential depends on the displace-
ment amplitude A, in a nonlinear way, and a systematic
Taylor expansion of the potential with respect to the dis-
placeinent amplitude A, must be explicitly carried out to
comply with the perturbative scheme defined above. The
first-order correction becomes

T

—iq(r —a )
u(h) = g er(q, j)g (r —a„)e " e'q'

r n

+ ger(q, j)g (r —a„)e " e

. r n

In expression (25) the noncommensurate phase factors
e'q' and e 'q' appear as envelopes to specific potentials
which exhibit the same periodicity as the perfect crystal.
For higher-order perturbations, this is still true of the
phase factors e 'q', e 'q', e 'q', e ' ', etc. [see Eq.
(41), for example]. We will now show that, though the
perturbation effectively breaks the perfect-crystal transla-
tional in variance, the computation of the nonlinear-
response coefficients, along the lines described above, can
be mapped onto a periodic problem with the original
small primitive cell.

Let us focus on the third-order total energy for a per-
turbation of the form (23)—(25). The first-order correc-
tions u"'(r), n'"(r), and H"'(r) all have the same gener-
ic form

A (1) A (1) iq.r+ A (1) —iq r (26)q
e qe

where A"' and A "q have the periodicity of the perfect
lattice, and are mutually complex conjugate. The Bloch
functions (leaving out the band index for simplicity) are
written as

~@(0)
&

eik r~ (u )0&

(@"'&=e'"'(e' '(u'" &+e ' '(u"' &)k k, q k, —q

(@'"~=((u'"~e
' '+(u'" ~e' ')ek kq k, —q

(27)

(28)

(29)

When q is different from any reciprocal-lattice vector, the

' bation applied to a perfect crystal. The wavelength of
this perturbation is not necessarily commensurate with
the crystalline lattice structure. To take a well-defined
problem as reference, we consider the perturbation aris-
ing from a static displacement field (frozen phonon) of
wave vector q and polarization vector er(q, j) which
takes the special form
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first-order eigenvalue vanishes and the orthogonality con-
dition (19) is always satisfied. We are thus left with a set
of self-consistent equations which specialize Eqs.
(17)—(21):

(H(o) e(o))~~()) ) — H(1) (g(o) )k+q ~k ~k q q ~k

nq" (r)= g g uk ' (r)u),"(r)+u„"' (r)uk '(r),

(30)

occ bands k

(31)
5E[n' '] '"( ')d '

5n (r)5n (r') (32)

It is easy to verify that all the quantities needed to per-
form the self-consistent procedure defined by the above
equations have the periodicity of the unperturbed lattice.
Following the above scheme, an incommensurate pertur-
bation does not require reference to any supercell calcula-
tions. This is an obvious advantage, already noticed by
BGT, ' over previous approaches of ab initio phonon
spectra.

In its main features, the resolution of the system Eqs.
(30)—(32) is rather similar to that of the usual self-
consistent problem Eqs. (2)—(4). A linear algebra system
Eq. (30) replaces the eigenvalue problem Eq. (3). For
both, modern iterative algorithms will require a number
of Aoating-point operations proportional to the square of
the size of the matrix. ' Recently, special treatments of
pseudopotential Hamiltonians have been proposed to
speed up the resolution of the eigenvalue problem.
Those treatments could also work in the case of Eq. (30).
For each band, this equation must be solved at some k
vectors in the Brillouin zone. Except for high-symmetry

q wave vectors, this Brillouin-zone sampling cannot be
performed only in its irreducible part, as the perturbation
breaks the original symmetry. This drawback arises from
the otherwise advantageous use of a small cell.

The Hartree part of the interaction potential in Eq.
(32) is easily obtained in the reciprocal space, for a
plane-wave basis set, while its LDA exchange-correlation
part is naturally formulated in the real space. A Fourier
transform will provide the relation between the two rep-
resentations. One should be careful with the Perdew-
Zunger parametrization of Ceperley-Alder exchange-
correlation energy, often used for semiconductor calcu-
lations, as it generates a discontinuity at n' )=3/4' in

Eq. (32), and even a 5 function in the third-order expres-
sion that will be needed for the evaluation of phonon-
phonon interaction.

It is well known that forces calculated using the
I

Hellman-Feynman theorem require better convergence
with respect to density self-consistency and numerical
cutoffs than do corresponding total-energy calculations.
We might expect that as higher-order derivatives of the
total energy are considered, the requirements for accura-
cy would become progressively more stringent.

As soon as the convergence of the sytem (30)—(32) is
appropriate, the density and the functions ~u (i,

" ) for each
occupied band are stored, and the whole process can rein-
itialize for another first-order perturbation. After the
treatment of a complete set of perturbations, we are able
to obtain the related second- and third-order perturbative
coef5cients.

IV. PHONON FREQUENCY, GROUP VELOCITY,
AND INTERACTION

This section presents explicit formulas for the electron-
ic part of the dynamical matrix Arr(q), its gradient
V+rr. (q), and the third-order anharmonic coefficients
b (qi,.q2, q3), a basic quantity in the theory of
phonon-interaction. We follow Gurevich ' for the nota-
tions and definitions. The phonon frequency and polar-
ization are derived from

A (q, j)Me&(q, j)= QA~r (q)er. (q,j), (33)

where M is the atom mass, while the phonon group veloc-
ity for the phonon with wave vector q and polarization j
is related to the following quantity:

V&A (q, j)M= g er(q, j)Vq[A&r. (q)]er. (q,j) . (34)

with

1 2 1(g 1 2+@ 2 1)
2 (36)

As we will work with two or three different small param-
eters and perturbations, we must generalize some equa-
tions. We define

~'v~' gl +J +k~
1 2 3

(& +j +»' 8'&(8'k, &"k, 2. , =o, 2.2=o, 2.3=o
'

(3S)

which for only one perturbation, or for identical pertur-
bations, reduces to Eq. (5). For zeroth-order quantities,
we will keep the previously defined notation E' '.

The second-order and third-order expressions for ener-

gy generalize as

g ' '=y((@ '~v ' ~y(o))+(@ '~~(o) —e(o)~q/ 2)

+(%" 'iv ' 'iq" ')+(0" 'iv ' [%' '))+ —' n '(r)n '(r')drdr'0 5E[ '']
a ext a CK CXt Q (37)

and

1 2 3 1(g 1 2 3+/ 2 1 3+@ 1 3 2++ 3 1 2+@ 3 2 1+@ 2 3 1)
—ALA —AkA —ALA

(38)

with
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1 2 3 —y(&q( llu 2 3l)I1(0) &+ &)IP ll~ 2 e 2lql 3&+ &ql(0)l 1 2 3 ill((0) &+ &)I((0)l 1 2 lql 3& )

5'E n"'
+ ,' f—,„n '(r)n '(r')n '(r")dr dr'dr" . (39)

We consider now two different frozen phonons of wave vector qi and q2 and polarization ji and j2. The related
atomic displacements are written

R„=2k(ey(q(, jl )cos(ql 0„—a) )+2A2ey(q2, j2)cos(q2'(2„a2),

where the phase shifts e; can have any value.
At second order Eq. (26) becomes

J~ j~ q~ q2 J~ j& ( —q&+q2). r J&J& i(ql —q2) r j&j2 i(q& —q2).r—Aqqe +3 e +Aq e -q, -q,e

For example, the particular second-order external potential v q (with a; =0') is given byq), q2

J)J2 —i( —q&+q ) ~ (r —a )
2

u 'q'q = gey (q, ,j, ) g ey (qz, j2) g (r —a„)e
y r'

(40}

(41)

(42)

which for ql =qz=q is independent of q. This will be used later to establish Eq. (47).
A, A,

Using the corresponding energy variation E ' ' for ql =qz=q together with Eqs. (1.2) and (1.13}of Gurevich ' gives
the following expression:

y ey(q jl ~y'y(q}ey (q j2)= ~""(q)+~'"'( —q»
1 Y

where

(43)

NA ' '(q)=
k, occ bands

(&~k, q lu, ' ll k
' &+ &~k, q IHk+q ek I~k q &+ & ~k" lu-', ',, l~(k" &+ & ~(ko) lu, l2 k2q &)

5'E n"'
nr5nr' (44)

N is the number of unit cells in the whole crystal. The first-order quantities correspond to the external potential given
by Eqs. (23)—(25), the second-order quantity to Eq. (42) (zero phase shift). With three first-order calculations, one for
each orthogonal polarization, we get the nine matrix element of the dynamical matrix for a particular vector q. .

The combination of this last result, Eq. (44), with Eqs. (30)—(32) gives a much simpler expression:

N g ey(q jl ~y'y(q)ey (q j2)=Re f —,'uq'(r)n 'q(r)+ —,'uq'(r)n 'q(r)+2v 'q'q(r)n(, ) dr
Y&X

(45)

This expression requires only the first-order densities, and not the set of first-order wave functions. A similar expres-
sion, for nonlocal pseudopotentials, was used by BGT in their work on optical phonons and dielectric constants. '

Nevertheless, the way to get the simplest expression for the group velocity starts from Eqs. (43) and (44}. We apply
the gradient operator to each side of this equation: the term containing the second-order potential vanishes, then we
use identities similar to

6'E n(0'
1(e (ur' )(~v '~uz'1+(V (ur' )(EI'„+ —er'(~ur' )= —

(V (u„' ) f, u '(r')e 'e" ''dr ur'), (46)

and finally sum the terms containing either the gradient of first-order potential or the gradient of first-order wave func-
tions:

& g e, (q j()~ [~yy(q)]ey(q j2} g [&~k,ql~ (Hk'+q)12 k, q&+&2 k', —ql~ (Hk —q)ll k, —q&l
& Y k, occ bands

+ f V' [u ' (r)]n„'(r)+V [u ' (r)]n '(r)dr

5'E n"'
5n r5n r' (47)
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Neither gradients of first-order wave functions nor gra-
dients of wave functions appear in this expression. We
obtain the remarkable result that gradients of phonon fre-
quencies can be found from the self-consistent first-order
calculations needed to obtain those frequencies. For a lo-
cal potential Hamiltonian, the gradient of the Hamiltoni-
an reduces to the gradient of its kinetic part, which is di-
agonal in the reciprocal space. The exchange-correlation
part of the interaction term, in the local-density approxi-
mation, vanishes and the Hartree part of the same term
also diagonalizes in the reciprocal space. It is thus very
easy to include this expression in a computer program
which already solves the first-order self-consistent prob-
lem.

Besides providing the phonon group velocities, this for-
mula can also be used to improve the efficiency of inter-

polation schemes for the frequency spectrum in the Bril-
louin zone.

To establish the expression for the third-order anhar-
monic coefficient, we must start from the following per-
turbation:

R„=2k,,er(q„j, )cos(q& a„—a, )

+2A2er(q2, jz )cos(q2.a„—a2)

+2A3e (q3, j3)cos(q3.a„—a3) . (48)

We consider the related energy E ' ' ', in connection
with Eqs. (6.3) and (6.5) of Gurevich. 3 For
q, +q2+q3=6, where G is some reciprocal-lattice vec-
tor,

b" (q„q2, q3)=[b (q„q2, q3)+b~ 1 1 (q2, q&, q3)+bj j j (q, , q3, q~)

+b,„„,(q3 ql q2)+bj„„,(q2 q3 ql)+bj j j (l3 l2 ll)] (49)

with
t'

1j„.j.(qi q2 q3)= &~ g &t ~I „le' 'Hq', l~g', , &+ f e' '[Uq'q'(r)nq'(r)+v ' ' '(r)n'0'(r)]dr
k, occ bands

S'Z, n"']
(50)

The different first-, second-, and third-order quantities
correspond to Eq. (48), where a;=O'. The Hartree part
of the interaction term vanishes, while the exchange-
correlation part of it, in the local-density approximation,
will be very easy to evaluate in the real space. This ex-
pression of the phonon-phonon interaction parameters
uses only the first-order wave functions and densities
needed to find the phonon frequencies. The CPU time
gain with respect to supercell calculations is obvious.

In this last section, we have obtained explicit formulas
for second- and third-order quantities related to the
frozen-phonon perturbations. We could also consider the
long-wavelength limit of periodic perturbations, which
corresponds to uniform strains. or electric fields. The
long-wavelength limit of the self-consistent system
(30)—(32) and the related properties will be developed in a
subsequent paper. We also note that the scaled-
Hamiltonian technique suggested by BGT (Ref. 19) is
easily implemented within the nonlinear-response-
function formalism.

V. CONCLUSION

This paper deals with the construction of the deriva-
tives of the total energy of solids to an arbitrary order, on
a first-principles basis, within density-functional theory.
The response coefficients which can be computed cover
the nonlinear hyperpolarizabilities, the anharrnonic

effects in static or dynamic lattice deformation, and
different types of coupling between strains, phonons, and
static electric fields of any range of wavelengths. In
essence, the method generalizes the approach described
by Baroni et al. ' ' and uses the 2n +1 theorem adapted
to many-body quantum mechanics in the framework of
the DFT to obtain, for instance, third-order nonlinear-
response functions with virtually the same computational
effort as for the calculation of the linear coefficients.
Higher-order coefficients can also be analytically ob-
tained using the same approach: a second-order pertur-
bation treatment will provide all fifth-order response
coefficients.

In contrast to the usual brute-force supercell ap-
proaches, the present scheme is based on a high-order an-
alytic derivative of the total energy, instead of finite-
differeg. ce estimations.

Another important advantage of this scheme is that it
allows one to treat periodic perturbations applied to a
crystal without resorting to the generation of large super-
cells, and to consider explicitly the perturbation wave-
length incommensurate with the periodic structure of the
perfect crystal. Derivatives with respect to the perturba-
tion wavelength can also be considered.

Finally, we have explicitly written the expressions for
the electronic part of the dynamical matrix, of its gra-
dient with respect to the wavelength, and of the third-
order anharmonic coefficients. These quantities give ac-
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cess to phonon frequency, group velocity, and phonon-
phonon interaction.
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I

This appendix gives the explicit formulas for the ener-

gy corrections to any perturbation order, as obtained
from the application of the 2n +1 theorem.

For the one-electron Schrodinger equation, the gen-
eralization of Eq. (11) reads

[i/2] [i/2] i [i/2] [i/2] [(i —1)/2]
E = g g g 5(t J k —l)& 4'~'~H'"~%'"'&+ g g g 5(l J k l)& e"'~H'" —e'"~e'"'&

j=0 k =0 l=[(i +1)/2] j=0 k =0 l =0

(Al)

where [x] means the integer part of x. If we turn to the many-body problem, the second term and the external-potential
part of the first term in Eq. (Al) present no contribution from perturbative self-consistent corrections of order higher
than [il2]. After summation on a, in the expression of the total energy, Eq. (1) at order i, the other part will become

(l)
SZr [n]f n" "(r) dr . (A2)

l = [(i+1)/2]

We then combine this expression with the electron-electron interaction in Eq. (1), expanded at order i, to find

[i/2] [i/2] [(i—1)/2]
Z.", = y y y y. S( ——k l)&e'.&'~II—'" '"~e'"'&

j=O k=0 l=0 a

[i/2] d+f g u,"„,"(r)n'"(r)dr+ —. .., Er n' '+ g A, n' '

l=o
(A3)

Here, all quantities, except v,„„enter with maximum order [i/2]. The 2n +1 theorem is then proved to all orders in
the DFT treatment of the many-body problem.
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