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Stationary waves in a nonlinear periodic medium:
Strong resonances and localized structures. I. The discrete model
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The stationary-wave equation in a periodic, nonlinear medium is studied as a nonintegrable
dynamical system. Two main properties are shown: (i} There exist four types of "localized solu-
tions" which correspond to the four strong resonances of the dynamical system, one of which is the
so-called "gap soliton" already described by Mills and Trullinger [Phys. Rev. B 36, 947 (1987)]. (ii)
These solutions are close to analytic ones; however, they are weakly chaotic, and this stochasticity is
responsible for observable physical eC'ects. In particular, it assigns a maximum spatial extension to
the localized structures. Near the bifurcation giving rise to a localized solution, the onset of sto-
chasticity is shown to be a critical phenomenon, whose critical exponent is evaluated. In this paper
we consider a discrete model. In the following paper, we consider a continuous model.

I. INTRODUCTION

The propagation of a wave in a periodic nonlinear
medium is a new, interesting problem. Up to now, only
stationary waves have been considered, and from two
different points of view: (i) Delyon et al. ' have shown
that the transmission of a wave through a finite sample
exhibits nonanalytic properties, and (ii) Mills and Trul-
linger have described analytical solutions in the first gap
of the linearized system, the so-called "gap solitons. "

These two aspects of the propagation look antinomic.
Actually they are not. Indeed the stationary-wave equa-
tion is a nonintegrable dynamical system, and its solu-
tions are generically nonanalytic. The phenomena de-
scribed by Delyon et al. occur at finite wave amplitude:
then the stochastic behavior of the solutions is immedi-
ately perceptible. On the other hand, the gap solitons are
only weakly chaotic.

We shall be primarily interested, in this paper, in sta-
tionary waves which are close (in an appropriate sense) to
analytic and localized solutions of the wave equation. By
"localized" we loosely mean that some physical attribute
of the wave (amplitude, phase, or eventually polarization)
exhibits a rapid variation around some space points. Gap
solitons belong to this class, but we shall see other types.
The analysis of these structures is considerably clarified if
the dynamical system is described as a mapping of the
plane into itself, and this will be realized in the two mod-
els which we propose to consider. In these models the
nonlinearity is cubic and, in the case of light propagation,
it would be produced by the auto-Kerr effect. In the
"discrete model" the propagation constant (the refractive
index in the light problem) exhibits sudden jumps on
equidistant sites. Then the mapping takes the form

F: (4 „,4 „+i)~(C„+i,4 „+2),
N„being the wave amplitude on the nth site (which will
prove to be real in the present problem). In the "continu-

ous model" the refractive index is harmonically modulat-
ed, and one defines a Poincare map 6 of the continuous
How:

(@,d@/dx) ~(@,d@/dx ) +t
where C&(x) is the continuous wave amplitude and I. is
the period of the modulation externally imposed to the
medium.

Now the central point is the following. Let P be an el-
liptic fixed point of the mapping (or if one of its iterates).
When the winding number v of P, which is a continuous
function of the system control parameters, takes a ration-
al value, a periodic cycle bifurcates at P with some period
q, and the elliptic points of this cycle are created with
zero winding number. As a result, mapping I'~' can be
approximated by a first-order differential equation and
the dynamical system becomes integrable. Actually this
property is consistent with the Kol'mogorov-Arnol'd-
Moser (KAM) theorem which says that regular closed or-
bits are expected in an open neighborhood of P. Howev-
er, some bifurcations are "more beautiful" (or dangerous)
than the others: these are the so-called "strong or
Arnol'd resonances" which appear when v=1/n, with
n =1,2, 3,4. Then the KAM orbits around P are strongly
perturbed and, as a result, localized solutions appear.
The two first resonances occur either in the gaps (gap sol-
itons) or in their neighborhood, giving kinklike solutions
(in the terminology of optics they would be called "dark
solitons"). The third and fourth resonances appear either
in the gaps or in the passing bands, giving rise to new
structures which we call "triangles" and "squares. "

Let us now come back to the chaotic behavior of the
localized solutions. A first observation is that these solu-
tions are "small-amplitude" ones (i.e., the wave parame-
ters exhibit small amplitude variations around isolated
space points). Indeed, perfect localization is only ob-
tained at resonance value, where the amplitude vanishes;
the system is then exactly integrable. One could expect
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that weak stochasticity would produce only small observ-
able effects. That is untrue. In particular, we show that
stochasticity imposes a maximum spatial extent (MSE} to
a localized structure. This means that, in contradistinc-
tion to the case of an integrable system, a large propaga-
tive medium cannot support a one;peak localized solu-
tion: only multipeaks solutions are available. Moreover,
numerical investigatio~ suggests that MSE exhibits a crit-
ical behavior near a bifurcation value: it diverges as

, A, being the deviation of the wave number from its
bifurcation value and v a universal critical exponent. We
evaluate v in the two models and find indeed the same
value.

Our work is presented in two successive papers. In the
present one (paper I) we analyze the discrete model. This
model has several advantages. First, it is already
classified among the admitted nonintegrable dynamical
systems (see, for instance, Gumowski and Mira ), and it is
simpler than the continuous model, in the sense that we
do not have to deal with a Poincare map. We also note
an interesting property from the experimental point of
view: the gaps of the linearized system have all equal
size, which makes it possible to observe localized struc-
tures at high Bragg order.

In the second paper (paper II} we study more briefly
the continuous model which introduces some new
features, and also removes some unphysical aspects of the
first model such as the dissymmetry of the solutions
versus the sign of the Kerr constant. We also include a
general discussion of the physical observability of the sta-
tionary localized structures.

II. THE DISCRETE MODEI.

A. General considerations

where

E =E(1+pi% i ), (2)

being the wave amplitude on the mth site, and c. the
modulation amplitude parameter. This model would be
realized by a set of thin nonlinear dielectric sheaths.

It is easily shown (see the Appendix) that such a model
yields, through an appropriate limit, the following recur-
sion relation obeyed by the 4 's:

(3)

We assume that refractive index n(x) exhibits 5-like
jumps on equidistant sites:

n(x)=1+ pe 6(x —m),

defined by

Um+i= Vm

V +i= —U +E V

This equation looks like a discretized version of the
stationary nonlinear Schrodinger equation, and it has
been recently used by Delyon, Levy, and Souillard' for
studying the transmission of a wave in a finite periodic
nonlinear medium. However, these authors use a
different definition of energy parameter E„,namely

E =2 cosk —p I
+

In this expression, our parameter c, characterizing the
modulation of the refractive index in the absence of the
Kerr effect, does not enter. This form of E also implies
that the linearized system is only to be found in a passing
band, actually in the first Brillouin zone. Moreover, the
coefficient of the nonlinear term in expression (4) is k in-
dependent. But we show in the Appendix that this is not
allowed if Eq. (3) is to represent the propagation of a
wave in a stratified medium.

Equation (3) has the property of conserving the wave
energy Aux J=2i(%„%„*+,—%„*4„+i). Moreover, they
are invariant in the change %„~e %„(gauge invari-
ance), 8 being an arbitrary angle. These two properties
have the following important consequences. (a) If the
Aux is null, then 4„,solution of Eq (3},can be taken real.
Indeed, J=0 implies that g„ /g„* =g„+i /g„*+ i, and
therefore the phase of the complex number 4'„ is
preserved in the course of the iteration of the mapping.
Then the gauge invariance permits one to take +„real.
(b) Reciprocally let us consider a fixed point g of F. Its
phase is constant and, as a result, J(g) vanishes. Obvi-
ously these properties also pertain to any iterate F' ' of
the mapping. Therefore any fixed point of F'J', that is,
any periodic orbit of F with period p, cannot exist except
in a zero-Aux system. But we shall see in the following
that the localized solutions are associated with homoclin-
ic or heteroclinic orbits of the mapping, that is, connect-
ing periodic points. Therefore we shall limit ourselves in
this paper to the study of zero-Aux systems. Of course,
relaxing this restriction poses an interesting problem
which obviously involves nonstationary waves (time-
dependent problem). We shall show in a subsequent pa-
per that there exist nonzero Aux solutions which are lo-
calized with analogous shapes, but propagative.

Taking %'„real and setting

with

E =2[cosk —E sink ( I+p~V
~ )], (4) we obtain, in the zero-flux case, the following mapping:

where k is the wave number, and the nonlinear term
would represent in optics the auto-Kerr effect. Setting
U =+,V =4 + „relation (3) is equivalent to the
mapping of the plane into itself:

F: (U, V )—+(U +„V +, )

f: (X, Y)-+(X', Y')

such that

X'= Y,
Y'= —X+E Y—gY
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with

Eo =2 (cosk —e sink ),
g=sgn(Epsink)=+1 .

(9)

(10)

Ep

A remarkable property of the model is that p enters
the above equations only through its sign. Therefore, l pl

contributes to the solutions only as a scaling factor. We
also remark that the sign of c is not a relevant physical
parameter. Indeed the mapping equations are invariant
in the change (e~—E, k~ —k). The mapping can be
studied in terms of the only parameters Ep and g; then
the results will be interpreted in terms of parameter k, c,
and sgn()M) with the help of relations (9) and (10).

k

B. Elementary properties of the mapping:
Symmetries and fixed points

The dynamical system described by Eqs. (g) belongs to
a class of conservative systems already considered in the
literature (see, for instance, Gumowski and Mira and
Bak and Pokrovsky ) but most of its mathematical prop-
erties are still unknown (as are those of any nonintegrable
mapping of the plane into itself). However, some simple
remarks can be made.

First, being given an orbit of the mapping, there exist
two other orbits, respectively, symmetric from the first
one versus the first and the second bissectrix. The sym-
metry versus the first bissectrix is readily shown by in-
verting the sense of light propagation through the system.
The second symmetry results from the first one and from
the symmetry of the mapping transformation versus the
origin [the change (X~—X, Y~—Y) implies
(X'~—X', Y'~ —Y')].

Second (Symmetry property S), when inverting the sign
of the parameters ( [Eo,r) I ~ [ Eo, —gI ), a—n orbit solu-
tion I Xk I of the first system is transformed to
I( —I)"Xi, J in the second one, and the fixed points of f
are transformed to those of f' '=fof. This allows us to
restrict the study of the mapping to one value of g, say
g= —1.

1. Fixed points off and f bifurcation diagrams

A first fixed point of f is the origin. It is stable (ellip-
tic) or unstable (hyperbolic) according to whether or not

FIG. 1. Graph of Eo(k) for c, =0.3.

Eo belongs to interval [—2, 2]. In other words, this inter-
val corresponds to the passing bands (PB) of the linear-
ized system, while gaps (or stop bands) are found outside.
In a passing band, the eigenvalues of the linearized map-
ping at the origin are e —'+, where y is given by

cosy =Ep/2

and the winding number of the origin is v =g/(2m ).
It is worth remarking that the gaps are found in finite

bands of wave number k, which vanish in the limit of
small c.. Figure 1 shows the graph of Ep as a function of
k as it results from relation (9), if one assumes that E does
not depend on k. This is generally untrue, but taking ac-
count of the dependence of c. on k would only introduce a
slight quantitative modification of the graph of Eo(k).
The gaps for kH( vr, rr) are in—tervals (

—k„0) and
(k2, m. ). The other fixed points (X„Y,) off are given by

X, =+(rilEo —2l )', Y, =X,

while the fixed points off ' '(X2, Yz ) are

X, =+(qlE, +21)'", Y, = —X, .

Figures 2(a) and 2(b) show the domains of existence of the
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FICx. 2. (a) Table showing the domains of existence and the stability of the fixed points off and f ' ' for r) = —l. (b) Bifurcation di-
agram of the fixed points.
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FIG. 3. Bifurcation diagrams in terms of parameter k: (a) for p & 0, (b) for p & 0.

fixed points and their stability in terms of Eo for g= —1

together with the bifurcation diagrams of these fixed
points. The bifurcation diagrams with respect to variable
k are straightforwardly obtained from previous ones (in
terms of E) thanks to relations (9) and (10). However, the
transformation +„—+N„ is singular for sink =0 As a re-
sult, the fixed points of f and f' ' either remain at finite
distance or go to infinity, depending on the sign of p and
of the k value (k =0 or k =m.). The resulting diagram is
sketched in Fig. 3(a) for p, )0 and Fig. 3(b) for p & 0.

2. Egect of the sign of the Kerr constant

The bifurcation diagrams in terms of wave number k
exhibit a strong dissymmetry between the cases p )0 and
p(0. In particular we see that a system with positive
Kerr constant has only hyperbolic fixed points (disregard-
ing the origin). As we shall see below, this implies that
such a system can support kink solutions but no solitonic
ones, while the reverse is true in the case of a negative
Kerr constant. This is a particular feature of our dicrete
model. %e shall show, in the study of the continuous
model, that there always exist solitonic solutions inside
the gaps, regardless of the sign of the Kerr constant.

C. Strong resonances and localized solutions

Consider an elliptic fixed point 0 of some iterate f '"'
of the mapping. Its winding number v is a continuous
function of the control parameter (here Eo). Therefore it
can take any rational value p/q. Then it appears (or "bi-
furcates") one or several period-q cycles with q elliptic
points and q hyperbolic points. For v=p/q+X and in
the case of a standard bifurcation, the distance of those
points from 0 and the winding number of the elliptic
points is of the order of v'A, . There exist heteroclinic or-
bits connecting the hyperbolic points of the cycle which
bound the domains of closed (or "quasiclosed") orbits

around the elliptic points. Now the size of these domains
shrinks to zero when A, ~O and the phase portrait around
the origin is made of fairly regular closed orbits, except in
a vanishingly small neighborhood of the cycle points.
This fact is consistent with the KAM theorem which pre-
dicts the existence of analytic orbits inside an open neigh-
borhood of the origin. Actually we shall later show how
to calculate these orbits through an appropriate perturba-
tive treatment.

However, there exist abnormal bifurcations which, al-
though yielding analytic solutions in the neighborhood of
the bifurcated point, modify qualitatively the orbits
around Q. These are the strong or Arnol'd resonances,
and they appear at four values of the winding number,
namely v=1, —,', —,', and —,'. Then the orbits around the
bifurcated points are strongly modified with respect to
regular KAM orbits, and, as a consequence, there appear
observable localized solutions. The bifurcation parame-
ter will be defined as

+=27TV+A, .

1. First and second resonances

Consider first the bifurcations of the origin (and the
case ri= —1). The first resonance (v= 1,qr=2vr) appears
when Eo crosses value 2. From expression (11) the wind-
ing number of the origin is associated with A, (

~ Eo —
2~ )'

For Eo ) 2 the origin is the only fixed point of f and it is
unstable (see Fig. 2). For Eo &2 the origin becomes un-
stable (we, are in the linear passing band), while there ap-
pears two hyperbolic fixed points on the first bissectrix,
noted A, and B, in Fig. 4(a). The distance of these
points to the origin goes to zero like A, , the orbits being
more and more stretched along the bissectrix. A phase
portrait of the kinklike solutions is shown in Fig. 4(a).
Actually, for k small but finite the solutions are not ana-
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FIG. 4. (a) Phase portrait in the passing band near the gap
edge. (b) Detail of the phase portrait near fixed point B&. (c)
Graph of Y(n) showing the ki.nk structure. At the end of the
last plateau, the orbit diverges.

lytic. Figure 4(b) shows the details of an orbit in the vi-
cinity of the origin (obtained by numerical iteration of the
mapping), while Fig. 4(c) shows the spatial variation of
such a solution.

We shall now show that, in the limit A, —+0, the map-
ping becomes integrable inside a neighborhood of the ori-
gin including the fixed points. Let us set

x&2=au —X'v,

y&2=ku+A, 'v .

This new reference frame has its axis along the bissec-
trices, and the scaling of u and v by means of A, and A, en-
sures that the hyperbolic fixed points remain at the same
distance from the origin and the angle between the eigen-
vectors of these points is unchanged when A, ~O.

The mapping reads, in terms of new variables u and v,

u'=(1 —
A, /2)u+A(2 —1, /2)v+(A, /4)(u+Av)

(12)

v'=(1 —1, /2)v —(1/2)u+(1/4)(u+Av)

We see that Au =-u' —u and Av=v' —v go uniformly to
zero when A, —+0, a fact which was expected since the
winding number of the origin goes to zero. This suggests
that the above mapping has integrable orbit solutions in
this limit, and that these solutions are those of a continu-
ous differential equation. Indeed we have

1 —
—,'(u+A, v)= —(u+A, v)

4v —X(u+Av)[1 —
—,'(u+Av) ]

hv
Au

(13)

and we see that Av /Au goes to a well-defined limit when
k —+0. Then Av/hu gets the meaning of the derivative
dv/du, and Eq. (13) takes, in this limit, the form of the
first-order differential equation:

This limiting procedure is justified because the solutions
of Eq. (13) (where b, v/hu is replaced by dv /du) are con-
tinuous functions of A, , and converge towards the solu-
tions of Eq. (14) when A, ~O. These have the form

(1—
—,'u )

v =C+
4 (15)

the separatrix (kink solution) corresponding to C =0.
The second strong resonance of the origin (v=2, y=m)

appears, for g= —1, when Eo crosses value —2. For
Eo (—2 the origin is unstable (linear gap). f ' ' has two
elliptic fixed points A2, 82 on the second bissectrix, and
its distance to the origin is proportional to A, . Then one
obtains orbits circling around A2 or 82, one of them be-
ing the homoclinic orbit of the origin [see Fig. 5(a)]. This
type of solution is nothing but the so-called "gap soli-
tons. " Note that, considering the successive iterates of
an orbit point by f instead of f ' ', we should obtain
points belonging alternately to the upper and lower
plane. This means that the wave phase is reversed (or
makes rr jumps) on each successive modulation periods.
Therefore we shall call these localized structures "alter-
nate solitons. "

A convenient way for obtaining the analytic solutions
in the limit A, ~O [here A, =(EO+2)' ] is to use symme-
try property S, which amounts to consider mapping f (in-
stead of f ' ') with Eo close to 2 and g= l. Note that, in
this case, the solutions are now of the "nonalternate"
type. The phase portraits of alternate solitons would be
obtained from those of nonalternate solitons by simply

' (-1)"Yn Yn

"2 10

t', -1)"Xn -::,0 (-1)"Xn

'&4;, 2 10
~ ~

t . t ~

Eo=-2. 1 (b)(-1)"Yn

1000Jv it. iviLJLi ~ )!1! &! )!&! t! 3 f 3f )! )!

--V0. 1
~ C 1 ~ ~

(c)

FIG. 5. (a),(b) Detailed phase portraits of solitonlike orbits
showing the stochastic domains near the origin. (c) Graph of
( —1)"Y(n ). If the system were integrable all the peaks would
have a positive sign. The stochasticity near the origin is respon-
sible for the random sequence of peaks signs.
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rotating the later phase portrait by m /2 around the ori-
gin. The calculation proceeds along the same lines as
above, using the same scaling, and we obtain the follow-
ing family of solutions:

(16)

the solitonic solution corresponding to C =0.
Figure 5 has the same meaning as Fig. (4) applied to

tlie solitonic case. We shall comment later on the aspects
related to the stochastic character of the solutions.

2. Third and fourth resonance (v= s, ~)

Their calculation is somewhat more complicated and it
is convenient to call upon the standard treatment of nor-
mal forms (see, for instance, Arnol'd ).

A preliminary remark concerns the nonlinearities of
the mapping. f exhibits only cubic nonlinear terms, a
fact which rules out the possibility of the third resonance
at the origin. We are therefore led to consider the more
general problem of secondary bifurcations, namely the bi-
furcations of an elliptic fixed point P of f'i' instead of
those of the origin.

Now it is convenient to project vector (X„,Y„) on the
two eigenvectors of the mapping linearized around P.
One obtains two components z„,z„which are complex
conjugate, and z„+„z„,z„* obey the following recursion
relation of the form:

In the case of a "normal bifurcation, "B=0 and the solu-
tions (18) correspond to elliptic orbits in the (X, Y) plane.

3. Fourth resonance

Being triggered by the cubic nonlinearity, the bifurca-
tion of the period-4 cycle at the origin is a strong reso-
nance. This resonance appears at a very low level of the
wave energy, as do the first two resonances. It is ob-
served for y=vr/2, or ED=0, that is, in the exact middle
of the pass band. The coeKcients of Eq. (18) here are
A = —

—,
' and B= —

—,
' together with j=4.

Setting g=n/2+A, [with A, =Q( Eo)]—and w =pe'. ,
we obtain that p and 8 obey the equations

dp/dt =( —
—,
'

)p sin(48),

d8/dt =A, —( —,
'

)p [3+cos(48)] . (20)

The fixed points of these equations, which are also the
fixed points of f ' ', are such that 8=m n. /4 and

p (3+cos48) =2k, . Four of them are hyperbolic and are
located in the (X, Y) plane on the middle of the sides of a
square centered at the origin with side length 2&(2A, ).
We also have four elliptic points which are on the sum-
mits of this square [see Fig. 6(a)].

The following expression is an invariant of Eqs. (19)
and (20):

z„+i = e'~z„+H(z„,z„"), (17) K=4Ap —[3+4cos(48)]p" . (21)

w„+, =e' w„+i[A ~w„~ io„+8(ioj ')*] .

In the limit A, ~O this relation yields a differential equa-
tion in terms of an arbitrary continuous variable t
parametrizing the solution. It reads

dw/dt=i[Aw+2~io~ w+B(wj ')*] . (18)

where

H= gak z„"(zf)" .
k,p

The calculation of the normal form consists, for given y
close to a rational value, and for small z„, to make a
change of variables of the form z„=g„+gak~g"(P)',
and to determine the ak 's in order to eliminate as many
nonlinear terms as possible in Eq. (17). The set of irre-
ducible (or nonremovable) terms constitutes the normal
form. Relevant irreducible terms (i.e., with k+p (3) are
associated with the winding numbers v= 1, —,', —,', —,

' (or
tp=2vrv). These winding numbers characterize the strong
resonances.

The normal forms for v= —,
' and —,

' contain only two ir-
reducible terms. They take the form

, =e'"g„+i(A ~g„~ g„+Be'"(P ')*

with j=3,4 and A and B being real coe%cients. y is
close to 2a/j.

Setting &p=2vr/j +A(A, ((1), and g„=e' "~J'to„, we
obtain that the w„'s obey the following recursion relation:

Remembering that X=2p cos8, Y= —2p sin8, Eq. (21) is
a polar representation of the family of continuous orbit
solutions in the neighborhood of the origin. %=A, cor-
responds to the curves containing the hyperbolic points
(heteroclinic orbits). Their equations, in terms of X, Y
variables, are

X'+ Y'+V'2XY=2g (22)

and they represent two ellipses centered at the origin and
whose axes are the bissectrices. They are entangled into

' each other, forming a cross [see Fig. 6(a)]. These ellipses
become A, independent through the variable change
X~X&A,, Y~Y&A, which ,shows that their shape is
preserved when A, ~O. In particular, the area of the
domains of closed orbits around the elliptic points ("ellip-
tical domains") remains a finite fraction a of the ellipses'
area. On the contrary, u~O when A, ~O in the case of a
weak resonance. The orbit by f' ' of a point in such a
domain containing elliptic point P lies on a closed curve
surrounding P. Therefore, iterates Y' '(n) of f' ' exhibit
a spatial variation which is periodic around a nonzero
average value (corresponding to the coordinates of the el-
liptic point contained in the chosen elliptical domain).

For Eo = —0. 1, Fig. 6(b) shows the graph of Y'~'(n) as-
sociated with the orbit of a point very close to a hyper-
bolic point. One observes three plateaus corresponding
to amplitudes 0, +&(2A, ). The sequence of these three
plateaus and of the peaks which precede or follow them is
obviously random. We shall come back later to this
point. Figure 6(c) shows Y' '(n) associated with an orbit



13 092 J..COSTE AND J. PEYRAUD 39

En =-0.1

"Y(1)
A

iV-E;,V-E;)

X(4)Xp

bifurcation of an elliptic point P of f). Putting

X=g+x, Y=g+y,
the mapping equations take the form

X
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FIG. 6. (a) Phase portrait of a period-4 cycle for A, =&0.1.
(b) Graph of F' '(n) corresponding to the orbit of a point very
close to one of the cycle hyperbolic points. One notes the ran-
dom sequence of three plateaus preceded or followed by sharp
peaks. These peaks are associated with rapid turns around the
cycle elliptic points.

located inside an elliptical domain (but still close to a
heteroclinic orbit). One observes an anharmonic oscilla-
tion around a nonzero average value. These features are
characteristic of a new localized structure which we call
"square. " Note that, in the case of a normal bifurcation
and in the limit of small A, , elliptical domains would be
unaccessible. Eo =3.5-0.01"Y„ Eo=3.5+0.01"y„3 - gE -2

and the associated normal form for g=2n/3+A, is Eq.
(18) with A, =(2/&3)(Eo ——,'), 2 =&3, and j=3.

In the limit A, ~O the cubic term can be neglected in
Eq. (18). This equation then yields three fixed hyperbolic
points in the (X, Y) plane whose coordinates in a refer-
ence frame centered in P are (p,p), (p, —2p), ( —2p, p),
with p=i, v'2/3. These points are the summits of a rec-
tangle isoceles triangle (see Fig. 7). Several remarks are
in order.

(a) The previous bifurcations were one sided (or of the
pitchfork type). Indeed the coordinates of the bifurcated
fixed points were expressed in terms of &A, , and A, must
be positive. Here, on the contrary, the bifurcated state
exists on both sides of the bifurcation value (A, positive or
negative), the bifurcated solutions being symmetrical
versus elliptic point P when k is changed to —

A, .
(b) The distance of these points from P is of the order

of k instead of &A, in the case of the fourth resonance.
This shows that the domain of KAM regular orbits
around P is smaller for the same deviation A, from the res-
onant winding number.

(c) There exists other fixed points, elliptic and hyper-
bolic of f ' '. But they are found at finite distance from P
(and cannot be obtained through the perturbative treat-
ment).

4. Third resonance

The bifurcation of a period-3 cycle at the origin is not
resoriant because of the absence of quadratic nonlinearity
in mapping f. We shall therefore consider a secondary
bifurcation. The simplest one is the bifurcation of an el-
liptic point P of f inside a gap (case Eo) 2, ii= 1).
Remember that this point was issued from the bifurcation
of the origin at Eo =2. It is located on the first bissectrix
at the distance g'=(Eo —2)' from the origin, and its
winding number is v=y(2m. ) with cosy=3 Eo. Far-
y=2m/3, Eo =

—,
' and g takes the finite value Q —', . There-

fore the third resonance cannot be observed for small
wave amplitude. This conclusion holds regardless of the
chosen bifurcated elliptic point. In the present case the
above value of Eo corresponds to c) 1, a somewhat un-
physical situation. But this resonance can also be ob-
served for small c. inside a passing band, by considering
the bifurcation of any elliptic point belonging to a cycle
with period equal or larger than 3. The phenomenon
would be quite analogous (same kind of normal form).
Let us therefore analyze the simpler case above (i.e., the

g 0.'Oi

x i3i yE
Qo &+o oi

".n -"Eo-2
'

. QQO tD. Oi

„Y(3) ~E0 0
-0.01

0 2000 ' 4000'
, n

EO=3.5-0.01 (c)

F&R. 7. Bifurcation of an elliptic point P of f inside a gap,
giving rise to a period-3 cycle (strong resonance). (a) Phase por-
trait of f"' in the neighborhood of P for A, = —0.01. (b) Same
phase portrait for A. =0.01. The bifurcation is double sided, and
the domain of regular orbits around P is bounded by an isoceles
rectangle triangle. (c) The graph of Y' '(n} corresponding to a
heteroclinic orbit exhibits two plateaus.
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(d) Equation (18), without the cubic term, yields the
following differential equations obeyed by real variable x
and y:

&3 dx /dt =(x+2y )[2—(3/&2)x ],
&3 dy/dt = —(y+2x )[A.—(3/&2)y] .

These equations show that the heteroclinic orbits joining
the three fixed points are nothing but the sides of the
above rectangle triangle. Obviously the shape of this tri-
angle is preserved when A, ~O.

(e) The orbits are quite regular inside the triangle, but
apparently chaotic outside, except in a small neighbor-
hood of three elliptic points of f ' ' located very far from
the triangle.

The above features are characteristic of the new local-
ized structure which we call "triangle. " These structures
are only obtained for finite wave amplitude.

D. Stochastic behavior of the localized solutions

Determining the measure of the stochastic domains in
a mapping of the plane into itself is still an open problem.
We only remark, according to numerical results, that
strong resonances obviously play a major role. Indeed, as
soon as a resonant cycle is created, important nonlinear
effects appear in the neighborhood of the bifurcated
point. We have already observed stochastic domains
near the hyperbolic points of the various localized struc-
tures even near the bifurcation value.

Now we know that the system becomes integrable in
the neighborhood of the bifurcated point. However,
some residual stochasticity survives near the hyperbolic
points of the cycle, and it manifests itself by two major
physical effects.

(i) Perfect localization is impossible. We mean that one
cannot find in a large system a stationary solution in
which a characteristic variable (amplitude or phase of the
wave) exhibits a rapid variation around only one space
point ("one-peak solution" ). Perfect localization is
characteristic of an integrable system in which an orbit
can approach a hyperbolic point as close as is wanted.
But this is practically impossible in a nonintegrable sys-
tem, due to the shape of the stable and unstable mani-
folds of the hyperbolic points. As a result, there exists a
maximum spatial extent (or MSE) of a localized solution.
In the solitonic case the solutions will generically exhibit
multipeaks. The same phenomenon appears in the kink
case (outside the linear gap), but the sequence of peaks is
necessarily limited because bounded and divergent orbits
are "connected" near the hyperbolic points.

(ii) The stochasticity manifests itself by sudden ir varia-
tions of the wave phase, and this occurs in a random way.
Let us for instance consider a nonalternate soliton. Its
orbit in the (X, Y) plane would stay in the same half
plane if the system were integrable. Actually the orbits in
the two half planes are "connected" near the origin. .

Passing from one half plane to the other one means that
the wave phase exhibits a m variation. The orbit makes a
random successive number of turns around each elliptic

point. The same phenomenon is expected in the case of
an alternate soliton, by observing the phase one time out
of two periods (orbit of f' '). Figure 5 shows this sto-
chastic behavior.

Stochasticity produces random variations of the field
amplitude in the case of the fourth resonance. The inter-
pretation of Fig. 6(b) is the following. When an orbit
reaches the neighborhood of a hyperbolic point P of the
cycle, two elliptical paths are available: the shortest con-
nects P to the nearest hyperbolic point in an anticlock-
wise sense; the second connects P to the other nearest
neighbor in the clockwise sense, by circling around the
neighboring elliptic point. This explains the randomness
of the plateaus sequence and also the peaks of the figure:
they are associated with the rapid turns around the ellip-
tic points.

We now want to analyze the first effect in more detail,
and show numerically that the onset of stochasticity near
the bifurcation of a resonant cycle looks like a critical
phenomenon, characterized by a critical exponent. Let
us consider the kink case. In the integrable limit (A, —+0),
the bounded orbits (located inside the separatrice) are
symmetrical with respect to the origin. The stochasticity
will break this symmetry, and we propose to study this
effect in the following way. We consider the orbits of ini-
tial points M located on the bissectrix at a variable dis-
tance 5 from one of the hyperbolic fixed points, say A,
(see Fig. 8). For large enough 5, M belongs to a regular
orbit accurately described by Eq. (15). Then, if 5' is the
shortest distance of an orbit point from the second hyper-
bolic fixed point B

&
(along the first way from A, to Bi),

we have 5'=5. Decreasing 5, the graph of 5' as a func-
tion of 5 is horizontal up to a definite value 5, where it
exhibits a sharp transition from a constant value to a
chaotic regime (see Fig. 9).

5, corresponds to a number N, of mapping iterations
(5,y c =&e, y being the Floquet exponent of the hyper-
bolic point which is larger than unity). N, is about the
maximum number of iterations needed for going from 3

&

to B, without escaping afterwards to infinity or going
back to A &. In other words, N, is a measure of the
above-mentioned MSE. The variation of N, is a function

r

I

II
I /IJ /

y

I

rI

FIG. 8. Geometry of a kinklike orbit with distances 6 and 5
defined in the main text.
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FIG. 11. Inward and outward fields around a barrier.

FIG. 9. Sharp boundary of the stochastic domain around a
hyperbolic point. Graph of 5' as function of 6.

of A, whose graph is shown in Fig. 10.
We observe that this graph exhibits a set of nearly hor-

izontal plateaus connected by sharp discontinuities, the
plateau widths decreasing when A, ~O. It appears that
the discontinuities take place for X=A, with A, close to
2m/m (m integer). For such a I, value a period-m cycle
with winding number 1/I, which may be called a "pri-
mary cycle, " bifurcates at the origin. Actually k is
found to be slightly different from 2n/m, and equal to
the winding number of the nz primary cycle, one point of
which is distant from 2, by 5, . In other words, I /m is
the winding number of the last primary cycle encoun-
tered before entering the "stochastic domain. " This re-
sult indicates the importance of primary cycles in the
overall stochastic behavior of the solutions. The graph
X, (iL) is increasingly close to a continuous curve as A, ap-
proaches zero. This limit function N, (A, ) is very well
fitted by a power law: N, =k with v=1.4. v is the
critical exponent characterizing the onset of stochasticity
on the left side of the gap edge.

The same type of calculation performed in the soliton
case yields the same critical exponent v (X, =A, ' '). In
this case, X, is the maximum spatial extent of a pseudo-

10 log~O(~c&

soliton. For N&N, we get the multipeaked solutions
shown in Fig. 7(c).
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APPENDIX: THE DISCRETE MODEL

In this model we have a set of thiri equidistant dielec-
tric sheath with a nonlinear refractive index. They are
represented in Fig. 11, together with the fields E.—propa-
gating, respectively, towards the right side and the left
side. k. is the refractive index of the jth sheath.

Writing the continuity of the E— fields and of their
derivatives through the boundaries of the nth sheath, we
obtain

E I +
n

E„' p4

P„E+'
where

&„=(1/4p„)[(p„+1)'e "—(p„—1)'e "],
P„=(i /2p„)(p„—1)sing„,

with

p„=k„/k, qr„=k„l .

In the limit 1~0, k„/k~ oo, and k„l/k~2e„, u„and
P„read

8 3 —---- 8.5 .

8.3.
0.031 0.032

a„=1 +i e„, P„=is„.
e„will be taken of the form e„=e(1+p~%„~ ).

Now we easily obtain the matrix relation between fields
E„—+ and E„—++ I, which reads

++n +1
E.+I

a„b„
a* b*

n n

E+
El

'0 1

0.1

,Eo"2
0.2

with
a„=(1+iE„)e'",

b„=is„e'

FIG. 10. Graph of log&o(6, ) (or N, ) as a function of
k =ED —2. It is made of a set of plateaus whose width is a de-
creasing function of A, . For small A, we find that the variation of
N, is well fitted by N, =A, with v=1.4.

where we have assumed sheath separation L equal to uni-
ty. From the above matrix relation, we deduce that
4„=E„++E„obeys recursion relations (4) and (5) of the
main text.
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