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Two types of conductance minima in electrostatic Aharonov-Sohm conductance oscillations
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We predict the existence of two diferent types of conductance minima, arising from diferent
interference conditions, in the conductance oscillation of a one-dimensional ring due to the elec-
trostatic Aharonov-Bohm effect. The occurrence of t~o types of minima doubles the frequency of
the conductance troughs in the oscillations, making it t~ice that predicted by the Aharonov-Bohm
effect. This feature, which is not inhibited by elastic scattering in the weak-localization regime,
can, however, be observed only at sufficiently low temperatures. At elevated temperatures, one of
the two types of minima is bleached out and the normal Aharonov-Bohm frequency is restored.

In this Rapid Communication, we point out an intrigu-
ing feature in the conductance oscillation of a one-
dimensional ring due to the electrostatic Aharonov-Bohm
effect. ' \unlike in the magnetostatic effect, the conduc-
tance oscillation of a ring due to the electrostatic effect ex-
hibits two distinct sets of minima arising from two
dt+erent interference conditions. One set of minima is
caused by the usual destructive interference of transmit-
ted electrons, and the other arises due to the constructive
interference of an electron traveling completely around
the ring and interfering with itself at its point of entry into
the ring. In the next paragraphs we establish the ex-
istence of this feature and discuss various issues related to
it.

For purposes of analysis, we represent a one-dimen-
sional ring structure as shown in Fig. 1. We assume that
phase randomization in the two contacts (termed "source"
and "drain") occur sufficiently far away from the junc-
tions between the contacts and the paths. The (two-
terminal) conductance of the structure, in the linear-
response regime, is given by
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where the asterisk denotes complex conjugate.
The scattering matrix representing propagation along

the two paths (i.e., across the junction 8-C in Fig. 1) is
given by4
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where t and r stand for the transmission and reffection
coefFicients within the paths. The subscripts 1 and 2 iden-
tify the corresponding path and the unprimed and primed
quantities are associated with forward and reverse propa-
gation of an electron from the source to the drain.

where Tt,t, ~ is the transmission coefBcient of an electron
through the entire structure, E is the kinetic energy of the
electron, and EF is the Fermi level.

The conductance G depends on the transmission Tt,t,~.

The transmission T„„.i can be found from the overall
scattering matrix for the ring structure determined by cas-
cading three scattering matrices. They represent propa-
gation from the source to the two paths, propagation
along the paths and propagation from the paths to the
drain, respectively. For simplicity, we represent the first
and the last of these scattering matrices (for junctions
A -8 and C-D in Fig. 1) by the so-called Shapiro matrix
which relates the incident, reAected, and transmitted am-
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FIG. l. Schematic representation of a one-dimensional ring-
like structure showing the incident, reAected, and transmitted
electron amplitudes.
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If we assume ballistic transport in the two paths, in which case r j -ri =r j =rq =0, then cascading the three scattering
matrices for the three junctions A-B, B-C, and C-D yields the overall scattering matrix and thence the transmissionT„„j(.D+/A+) as

[(t j+'tq) —(b —a) t jtq(t I +i~)]
[1 —t j(a tj+b tq)][1 —tq(a tq+b tj)] —a b l jtq(r j+ti) (4)

The above equation is a perfectly general expression for
the transmission through a ballistic one-dimensional ring.
It may be pointed out that ballistic transport, although
difficult to achieve, is not totally unexpected in strictly
one-dimensional semiconductor microstructures at low
enough temperatures since elastic scattering events are
highly unlikely in one-dimensional structures. The case
of diffusive transport, when elastic scattering is present, is
discussed later.

Let us now consider the conductance of the ballistic
ring in a magnetic field. In the presence of a magnetic
Aux inducing the magnetostatic Aharonov-Bohm effect,
t j, tq, t j, and ti in Eq. (4) transform according to the fol-

lowing rule:

l8/2 t t e l8/2

ie/2 t ~ t ~ —ie/2 (5)

where the quantities with carets represent transmission
amplitudes in the absence of any magnetic flux and 0 is
the magnetostatic Aharonov-Bohm phase shift given by
8 (e/jj'i)@, @being the Aux threaded by the ring. Using
the transformations given by Eq. (5) in Eq. (4) and as-
suming that the two arms of the ring are identical in all
respects so that (in the absence of any flux) t j =ti and
t)' t2', we get

ejje'~ (I+e '~)[I —(b —a) jjij]
[1 ijij(a '+ b—'e ")][1 ijij(a '+b 'e—")] a 'b 'ij'ij—'(e" ' +e "') '

The numerator in T„„j(8)goes to zero and hence the
conductance of the ring [see Eq. (1)] reaches a minimum
whenever

8 —@ (2n+1)n.e

2kL+2v =2nx. (9)

It appears that if condition (9) is satisfied [in which
case the nuinerator in T&,«j(8) remains identically zero
independent of 8], the conductance of the ring should al-
ways remain at its minimum, regardless of the magnetic
flux. However, that is not quite true since the denomina-
tor in Ti,&,j(8) could also become zero at some values of
the magnetic flux. It is easy to see that the denominator
does vanish whenever 8~2nz or @ nh/e (n 0 or an in-
teger) in which case, application of L'Hospital's rule
shows that ( T&,&,j(+ nh/e) ( l. It is interesting to note

This gives the usual conductance minima in the magnetos-
tatic Aharonov-Bohm oscillations associated with destruc-
tive interference of transmitted electrons. Note, however,
that the numerator in T&,&,j(8) also becomes identically
zero (independent of the magnetic jfux) if the following
condition is satis6ed,

(b a) Ejrj =1.
It can be shown from the required unitarity of the

Shapiro matrix that the quantity b —a differs from unity
by a constant phase factor, i.e., b —a e". Also, in ballis-
tic transport, t j t j

e'" (where L is the length of each
path and k is the electron's wave vector in either path at
zero magnetic Aux). Therefore, Eq. (8) really corre-
sponds to the condition,

that if the ring's parameters (wave vector and length) are
such that Eq. (9) is satisfied (which actually implies that
the ring is "Fabry-Perot resonant" at zero magnetic Aux),
then ( T„«j(N)( =b~„pi„wherethe 6 is a Kronicker 8.
In that case, at a temperature of 0 K, the magnetoconduc-
tance G(C) of the ring will appear as a series of "spikes"
occurring at 4& nh/e; the spikes, however, will broaden
with increasing temperature.

In the case of the electrostatic effect, the transforma-
tions in Eq. (5) are replaced by

t)~ t)

,t2 t)e'~ t2 t)e" (10)

where p is the electrostatic Aharonov-Bohm phase shift
between the two paths given by

/2

y= —V&r) = 1+—e v2m*E eV
jj'i h, E

—1 L. (11)

Here (r, ) is the harmonic mean of the transit times
through the two paths which depends on the incident ener-

gy E of the electrons and also the potential difference V
between the paths.

The difference between the transformations in Eqs. (5)
and (10) accrue from the fact that the magnetostatic
Aharonov-Bohm phase shifts suffered by an electron in
traveling along opposite directions (time-reversed paths)
have opposite signs, whereas the electrostatic phase shifts
will have the same sign. This is an important distinction
which ultimately causes two different sets of minima to
appear in the electrostatic effect but not in the magnetos-
tatic effect. Is is also this difference that precludes the ex-
istence of an electrostatic analog of the magnetostatic
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Aronov-Al'tshuler-Spivak effect.
Using the transformations given by Eq. (10) in Eq. (4), we obtain (for the electrostatic case),

ei ) (1+e') [1 —(b —a) 't") iIe "]
[I —i) iI (a '+ b 'e')] [1 —i) iI ( a' e"'+b ' e")] a'—b 'i ('i ('e"(I+e")' (i2)

or
i/2
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E

—1 L=(2n+1)n.

(i3)

This gives the usual conductance minima (which we
call the primary minima) associated with destructive in-
terference of transmitted electrons. Note, however, that
the numerator of Trcr ](p) also vanishes if

(b —a)' )tIt'eel. (i4)

In ballistic transport, this corresponds to the condition
t/2

1+ eV
E +1 L+2v=2mx.2kL+y+2v=

(is)
It is obvious that whenever condition (15) is satisfied,

the numerator of T«ra~(p) goes to zero and the conduc-
tance should fall to a minimum unless the denominator of
T«ra~(P) also happens to go to zero at the same time. The
denominator vanishes whenever &=2nn. Hence, unless
Eq. (15) is satisfied only by those values of rt that are even
multiples of n (which requires 2kL+ v to be an even mul-
tiple of n or the ring to be Fabry-Perot resonant at V 0),
the conductance of the ring should reach a minimum
whenever p satisfies Eq. (15). This gives rise to an addi-
tional set of minima which we call the secondary minima
The physical origin of the secondary minima is the follow-
ing: Eq. (15) represents the condition that an electron,
entering one of the paths from the left contact, gets
reflected into the other path at the right contact, travels
ful! circle around the ring and interferes constructively
with itself at its point of entry at the left contact. This
maximizes the reflection and hence minimizes the
transmission and conductance. This phenomenon could
also cause a secondary set of minima to appear in the
magnetostatic oscillations, but there the conditions for the
occurrence of the primary and secondary minima are ex-
actly identical (they occur at exactly the same value of the
magnetic flux), so that they are always indistinguishable.
But in the electrostatic case, the two conditions are
different so that the two minima are distinguishable.

Let us now establish the requirements for the distingui-
shability. For this, we erst find the difference between the
phase shifts that give rise to the primary and secondary
minima. From Eqs. (13) and (15),

The numerator of T«„~(p) vanishes and the conduc-
tance reaches a minimum whenever

y =(2n+ I )~
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where kT is the thermal spread in the energy.

From Eq. (17), we can find two critical temperatures

Tprimary and Tsecondary above which the Primary minima
and the secondary minima, respectively, are bleached out.
These two temperatures are estimated by equating ~p„mary
and ds««d„y to n. which gives (assuming the electron en-
ergy E to be the Fermi energy EF)

1 1 1kT' . ,primary
42m *,QEF QEF + eVp

This difference becomes an even multiple of n (or,
equivalently zero) if 2(kL+ v) is an odd multiple of n,
i.e., if the ring happens to be Fabry-Perot antiresonant at
V=O. In that case, the primary and secondary minima
will overlap and remain indistinguishable. Barring this
case, and the case of the ring being Fabry-Perot resonant
at V 0, both types of minima will not only occur in the
oscillations, but also remain distinguishable.

It is clear that the appearance of two diferent sets of
minima doubles the frequency of the conductance troughs
in the oscillations. It is interesting to examine whether
this can ever give rise to exactly half-periodic (h/2e) os-
cillations. For this to happen, the secondary minima must
occur when p 2m+ since the primary minima always
occur when p (2n + 1)n. But the secondary minima
cannot occur when p 2m@ since [from Eq. (15)] that
would require 2(kL+ v) to be an even multiple of tt in

which case the secondary minima do not even appear.
Hence, exactly half-periodic oscillations can never arise
from this effect in ballistic transport.

We now examine the effect of nonzero temperature on
the two types of minima. Nonzero temperature gives rise
to a thermal spread in the electron's energy which results
in a bleaching out of the conductance minima due to en-
semble averaging over the electron's energy. The primary
minima are bleached out when the spread in the quantity
on the left-hand side of Eq. (11) (due to a spread in the
electron's energy) exceeds x and the secondary minima
are bleached out when the spread in the quantity on the
left-hand side of Eq. (15) exceeds n. These two spreads
are

4primary Asecondary
= (2n + 1 )x (2m' —2kL —2v) . h 1 1

k Tsecondary +
L 42m' qE, QEF+eV,
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~here V~ is the potential at which the first primary
minimum occurs and V, is the potential at which the first
secondary minimum occurs in the oscillations.

Note that both Tprimary and Tsecondary increase with in-
creasing EF or carrier concentration and decrease with in-
creasing length of the structure. It is therefore necessary
to have short structures with high-carrier concentration in
order to observe both minima at su%ciently high tempera-
tures.

In Fig. 2, we show the eA'ect of temperature on both
types of minima in the oscillations. While the primary
minima can persist up to rather high temperatures, the
secondary minima bleach out at much lower temperatures
since (as we can see from Eqs. (18) and (19)] T;„,„d,„,,(Tp„; „y.This means that in an experimental situation,
raising the temperature will gradually wash out the secon-
dary minima and the oscillations will gradually revert to
the normal Aharonov-Bohm oscillations with only the pri-
mary minima visible at higher temperatures.

Finally, another interesting feature, which is clearly
visible in the oscillations, is that the primary minima tend
to bleach out more and more in the higher cycles of the os-
cillations whereas the secondary minima exhibit the oppo-
site behavior. This allows one to distinguish between the
two types of minima in experimental data. It is a very in-
teresting behavior and is easily understood from Eq. (17)
which shows that at a given temPerature Applmzfy in-
creases with increasing V while A„„„d„yactually de
creases with increasing V. The significance of this is that
at elevated temperatures, even if the secondary minima
are not visible in the first few cycles of the oscillations,
they could eventually sho~ up in the later cycles.

Before concluding this Rapid Communication, we
brieAy discuss the eA'ect of elastic scattering. We have
carried out an analysis in the presence of elastic scattering
following Ref. 4 and found that elastic scattering does not
inhibit the twin-minima feature in the weak localization
regime as long as the temperature is well below T,'„,„d,„y.
We have also found that the feature is not completely in-
hibited in multichanneled transport as long as the number
of channels (propagating modes) is not too large. It
therefore appears that the feature predicted in this Rapid
Communication is quite robust and should be observable
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FIG. 2. The electrostatic Aharonov-Bohm conductance oscil-
lations in a "ballistic ring" made of GaAs showing both types of
minima. Each type of minima recur with the usual Aharonov-
Bohrn periodicity, but the separation between two adjacent
minima (belonging to the two diff'erent types) is smaller than
and unrelated to the Aharonov-Bohm periodicity. Note that the
secondary minima are bleached out at much lower temperatures
than the primary. These curves were obtained by performing
the integral in Eq. (1) numerically. The parameters for the ring
were carrier concentration equals 1.55 x10 cm ', path length
equals 1000 A, e=0.5, and v=0.

in realistic semiconductor structures at su%ciently low
temperatures.

In conclusion, we have established the existence of a
hitherto unsuspected feature in the conductance oscilla-
tion of a one-dimensional ring due to the electrostatic
Aharonov-Bohm eA'ect. We have identified the origin of
this feature and discussed the conditions for its observabil-
1ty.
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