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The set of eigenequations for determining the energy levels and wave functions of Wannier exci-
tons in a semiconductor quantum well is derived by use of Green s-function theory. These equa-
tions form a matrix labeled by the quantum-well subband index of the exciton. The coupling be-
tween excitons of different subband indices is included for the first time through the nondiagonal
elements of the electron-hole Coulomb interaction. We found that this quantum interference effect
represents a significant modification to calculated values of exciton binding energies.

In recent years, optical properties of semiconductor
quantum wells have received considerable research in-
terests both experimentally and theoretically. Measure-
ments on energy levels and absorption coefFicients of in-
terband excitons in this type of novel structure showed
clear evidence of multiple subbands due to the quantum
confinement of electrons and holes by the band-edge
discontinuities at the well interfaces. ' It has been well es-
tablished that the binding energies of excitons in quan-
tum wells are significantly enhanced from the values in
bulk materials as a result of the confined carrier motion
in the direction perpendicular to the well interfaces, and
depend largely on the structural parameters of the system
such as the well thickness, energy band-gap discontinuity,
and band offset. In comparing with experimental ob-
servations, theoretical calculations of exciton binding en-
ergies have played an important role in determining the
characteristics of such systems. In this paper, we present
an improved solution to excitonic states in quantum wells
by including, for the first time, the quantum-mechanical
coupling between different subband energy levels.

The early theories on the binding energies ' and oscil-
lator strengths "of excitons in quantum wells are semi-
classical in nature. An exciton is regarded as a pair of
carriers (electron and hole), each specified by its
quantum-well subband index, bound together by the
electron-hole Coulomb interaction. In calculating optical
transition properties of the system, excitons with different
subband indices are treated separately. The whole spec-
trum is the simple sum of contributions from all these un-
correlated subband branches. This type of approach is
equivalent to taking the diagonal approximation in the
exact quantum-mechanical matrix formalism. The non-
diagonal elements of the Coulomb interaction matrix give
rise to couplings between different subband branches of
excitons. We call this the "quantum subband interfer-
ence effect" (QSIE). Recently, a number of authors stud-
ied the valence-band mixing effect in calculating the bind-
ing energies of quantum-we11 excitons. ' ' Their
theories take into account the mixing between the
different degenerate semiconductor valence bands (the
heavy-hole and light-hole bands), but still ignore the mix-
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where c„z (d k) is the destruction of the electron (hole)
with subband index n (m) and in-plane wave vector k,
u, (r) [u, (r)] the periodic part of the crystal Bloch func-
tion, and P'„(z) [P" (z)] the subband envelope function
defined as the solution to the one-dimensional quantum-
well potential in the conduction (valence) band. The in-
terband optical current operator is readily given by
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is the one-particle optical matrix element, and

S„= dz '„z "z
is the overlap integral between subband envelope func-
tions. The total Hamiltonian of the system can be writ-
ten as

ing between different subbands within the same valence
band. In the rest of this paper, we derive a solution to
QSIE within the simple two-band model using Green's-
function methods and illustrate the enhancement of exci-
ton binding energies due to this eft'ect. We found that,
for typical quantum wells, the subband interference effect
gives rise to significant contributions in the calculated
values of exciton binding energies.

We first introduce some definitions concerning second-
quantized operators. The wave-function operator con-
sists of two components of the conduction band and the
valence band,
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where E„' and E" are subband energy eigenvalues, m,
and mh effective masses, and the last term in the equation
is the electron-hole Coulomb interaction operator

XI „. (k', ico) .

To solve Eq. (11),we define a set of auxiliary functions in
the real space:
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so the correlation function in Eq. (10) can be directly ex-
pressed in terms of the values of P„(r,ico) at r=0:

where
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It is easy to verify from Eqs. (11) and (12) that these auxi-
liary functions are solutions of the following coupled
differential equations:

The optical-absorption rate A (co) is related to the
current-current correlation function II(ico). The expres-
sions are
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where, in Eq. (8), ico is the Matsubara frequency on the
imaginary axis, P is the inverse temperature, and T, is
the time ordering operator. The time-dependent current
operator is related to the Hamiltonian in Eq. (5) by
j (r)=e 'j„e '. We evaluate Eq. (8) following similar
procedures as those developed by Mahan' in obtaining
solutions for systems of bulk semiconductors, while not-
ing that subband indices have to be arranged correctly in
the formulas for quantum-well systems. The derivation is
briefly summarized in the following.

The solution to Eq. (8) can be formally expressed as

1 1

(10)

where Eg is the energy band gap of the quantum-well ma-
terial,

E„(k)=E„'+E +
2p

I 1
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and the vertex function I „(k,ico) introduced above
satisfies the following coupled integral equation:

is just the Fourier transform of Eq. (7). Note that each
pair of (n, m) should be regarded as a single index for
specifying a particular branch of excitons between given
electron and hole subbands. So Eqs. (11) and (14) are
both matrix equations coupled by the nondiagonal ele-
ments of Coulomb interaction. From Eq. (9), the absorp-
tion rate

2 (co)= too QS„[—2 ImP„(r =0, co+i 5 ) )
n, m

is expressed as a sum of contributions from all subband
branches. However, different branches of excitons are
coupled to each other and should be solved simultaneous-
ly. Clearly, the solutions we presented here are formally
exact compared to the diagonal approximation used in
previous theories.

The function P„(r,ico) can in principle be expanded
in terms of the eigenfunctions of the corresponding set of
homogeneous equations:

,'p 'V PJ" (r)+ g—V„„.(r)P~ (r)
n', m'

= —Es (j)QJ (r), (17)

where the index j denotes the in-plane degrees of freedom
of both bound states and continuum states. The exciton
binding energy Eii (j) is given by the eigenvalue (up to a
minus sign} in this equation. We investigate qualitatively
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is often used as a tool for determining a certain hetero-
structure parameter. In this regard the prediction of this
long-ignored effect may modify our current knowledge
about semiconductor heterostructures. For instance,
reexamination of experimental data along with calcula-
tions including the QSIE on exciton binding energies in

quantum wells may lead to more accurate determination
of valence-band offsets in heterostructures.
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