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Analytic results are presented for four new fractal lattices. A basic similarity between fractals
and homogeneous glassy networks is the fluctuating environments of the lattice sites. The fractals
are classified in terms of their local bonding geometry by comparison with glassy networks: (1)
amorphous graphite, (2) two-dimensional and (3) three-dimensional Zachariasen glasses of two com-
ponents, and (4) a three-component, infinitely ramified glass model with fractal dimension d = 3 and

spectral dimension d )2.5. Localization and size scaling of corner-to-corner propagation are inves-

tigated, and it is found that there is a transition from power-law to exponential dependence in the
case of model (1) at a correlation length A. =64. Edge states appear to play an important role in

propagation over distances longer than k. Effects of ring closure and site variety are studied by
making two modifications to model (1). In the first, branch cuts unroll the ring structure into a
Bethe lattice. In the second, the rings are severed, resulting in a fractal tree. Results suggest that
noncontinuum spectral structure is more closely related to site variety than to connectedness or ring
closure in these fractal-glass models. This is similar to Anderson localization in the homogeneous
random case.

I. INTRODUCTION

Analytic solutions for Green functions of several new
fractal lattices are presented here. The results are used to
study properties of amorphous structures that are glass-
like and hierarchical.

Amorphous materials having short-range order due to
bonding constraints but lacking long-range order are gen-
erally sorted into three categories. ' These are (1) sub
stitutional disorder, in which atoms are substituted ran-
domly on a lattice with translation symmetry, (2) position
al disorder, in which atomic positions are randomly dis-
tributed, and (3) topological disorder. The latter is a par-
ticular kind of positional disorder distinguished in the
case of amorphous semiconductors because of the special
role played by the bonding network in determining the
properities of these substances. A tight-binding model
Hamiltonian for an amorphous semiconductor is a
mathematical model determining one-electron properties,
and at the same time its nonvanishing matrix elements
define a neighborhood structure. Two sites are neighbors
if H has an element connecting them. Thus, H expresses
a relationship between topology of the lattice and proper-
ties of the model.

Each of the three classifications listed above tacitly
presumes a kind of homogeneity that the network models
treated below do not have. The density of atoms is con-
stant, for example, and though the neighborhoods of the
sites fluctuate, the distribution of neighborhoods is as-
sumed not to be a function of position. Each of these
classes of disorder can thus be called homogeneous.

In contrast, it has been proposed that certain amor-
phous structures including granular semiconductors and
diftusion aggregates are better modeled by scaling fractal
networks. ' These are not homogeneous but are per-
forated by voids on every length scale in such a way that

the density is not constant. The number of sites X de-
pends on the network diameter L according to X-L",
where d is the fractal dimension. The models treated
below are of this kind.

In the work reported here we assume there are granu-
lar semiconductors or amorphous carbon networks such
as soot or charcoal which, because they have a scaling
pore structure consisting of a distribution of voids of all
sizes, are trema fractals down to the atomic length scale.
Small-angle x-ray-scattering data from lignite coal have
been interpreted as due to fractal pore structure. The
fractal nature of lignite may have to do with the surface
rather than the volume of the pores, and it is clear that
density is not a function of size in macroscopic samples.
It is nevertheless interesting to explore the properties of
scaling fractal models with local bonding geometry like
that of graphite or of semiconductor materials in order to
see how they are similar to or difFerent from the homo-
geneous cases.

The inhomogeneous models called fractal glasses below
have two essential properties. They are trema fractals
with a scaling distribution of pore sizes. Also, as in the
case of a random network, there is great variety in the
site environments. Figure l(a) shows part of a random
fractal-glass model for amorphous graphite. The
hierarchical model of Fig. 1(b), though not random, has
in common with the random case the two important
properties of a scaling-void distribution and site variety.
To support this claim, a digression site variety is in order.

In crystals with translation symmetry there are unit
cells in which a given site has the same environment or
set of neighborhoods as the corresponding site in any oth-
er cell. In both Figs. 1(a) and 1(b), neighborhoods are
varied. In fact, when arbitrarily large neighborhoods are
considered, the sites of Fig. 1(b) are unique modulo the
overall C3„symmetry of the lattice.
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FIG. 1. (a) Amorphous and (b) ordered fractal-glass models
for graphite.

FIG. 2. Recursions for Fig. 1(b). (a) Generating relation; (b)
Green functions x, y, u, and ur.

Site variety can be made quantitative by introducing
information-theoretic indices. These are entropylike
quantities computed by partitioning sites into equivalence
classes by neighborhoods, which can be done in many
difFerent ways. For example, each site in Fig. 1(a) or 1(b)
is either threefold coordinated with three adjacent rings
of lengths I, m, and n, or it is twofold and adjacent to two
rings of lengths I and m. Classes of a partition are thus
denoted (I, m, n) or (1,m). In ordered graphite, all sites are
in (6,6,6). Dividing the number of sites in each class by
the total number of sites gives a probability which is used
to define an entropy. Such an information-theoretic in-
dex thus quantifies site variety. Site variety in graphite,
according to this partition, would be zero.

In the following we find exact recursion formulas for
G reen functions of several fractal-glass models. The
effects of ring closure around the pore structure and of
site variety on the one-electron spectral and transport
properties are isolated and analyzed. In Sec. II, fractal
glass models are introduced. Each of these models is re-
lated to the Sierpinski lattice treated by Domany, Alex-
ander, Bensimon and Kadanoff. ' The methods for com-
puting Green functions are reviewed in Sec. III." Local
densities of states (LDOS) and other spectral properties
of the models are presented in Sec. IV. In Sec. V, eigen-
states are discussed. The long-time average probability
for propagation across the lattice is used to study elec-
tron localization as a function of lattice size and of ener-

gy E. Edge states are shown to be important in control-
ling transport from corner to corner. Effects of ring clo-
sure and site variety are investigated in Sec. VI. Ring
closure is removed in two ways. In the first, branch cuts
are introduced which replace the fractal by various
Bethe-lattice approximations, or covering lattices. This
also reduces site variety. Alternatively, rings are broken,
resulting in fractal trees. Sec. VII is a summary.

is expected to be relatively stable because a large propor-
tion of its rings are of length 4m +2 for some m. ' '

The fourth graph in another hierarchy is shown in Fig.
3. The first graph is a single point (black dot) and the
second consists of a sixfold ring with alternating black
and white dots. Graph n +1 is composed by connecting
the corner sites (black) together with three bonds, each
bond being decorated with a white vertex. Hence black
sites become threefold coordinated while white dots re-
tain twofold coordination. This sequence is model 2. In
the large n limit, the lattice again becomes a fractal. As a
model for amorphous graphite, the coloring may
represent a difference between twofold and threefold
sites. Extra valences would be saturated by hydrogens.
Alternatively, the twofold and threefold sites may be oc-
cupied by diff'erent atoms, as in a two-dimensional (2D)
Zachariasen glass. ' '

The graphite interpretation of model 2 is not as plausi-
ble as that of model 1 because the 4m +2 rule is not as
well satisfied, which leads to a large number of nonbond-
ing states, as noted below.

The Zachariasen-glass interpretation becomes more in-
teresting in a 3D version of the model. Thus, model 3 is a
hierarchy generated by starting with a single black site
and, at each iteration, connecting black corner sites of
four copies of graph n together by six bonds, each
decorated with a white site, to make graph n +1. White
sites are thus twofold and black sites fourfold coordinat-
ed. Model 3 is related to the diamond structure in the

II. MODELS

The graph in Fig. 1(b) is fourth in a hierarchy. The
first graph in the sequence is a sixfold ring (benzene) and
the second consists of three sixfold rings connected by
three bonds (triphenylene). Graph n +1 is defined by
connecting three copies of graph n with three bonds, as in
Fig. 2(a). In the limit of large n, the lattice becomes self-
similar. This sequence defines model 1, or the tri-
phenylene lattice. As a model for amorphous graphite it FIG. 3. 2D Zachariasen fractal glass.
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same way model 2 is related to graphite. If black and
white sites are considered chemically difFerent, model 3 is
a quartzlike Zachariasen glass.

Unfortunately, the fractal dimension of model 3 is only
d =2, so it is a rather unsubstantial model for a 30 glass.
There are also many nonbonding and strongly localized
states. Thus we next consider a more plausible 3D
fractal-glass model.

The lattice of model 4 is a Cartesian product. The
Cartesian product of two graphs 3 and B is defined as
follows. "' Let V(A) and B(B) represent the vertex
sets of A and B. If graph C is the Cartesian product of A
and B, then its vertex set V(C) is the Cartesian product
of V( A) with V(B). V(C) consists of all pairs (i,j) where
i H V( A ) and JH V(B). Adjacency on C must also be
defined. Let vertices (i,j) and (k, l) be adjacent on C if ei-
ther i is adjacent to k on 3 and j = l, or i =k and j is ad-
jacent to l on B. Hence, for example, the square lattice is
a Cartesian product of two linear chains.

Graph n of model 4 is the Cartesian product of two
copies of graph n of model 2. Ignoring the extreme
corner points (of which there are only three) each site on
model 2 is either twofold coordinated (white) or threefold
coordinated (black). Thus sites on model 4 are fourfold
(white), fivefold (gray), or sixfold coordinated (black).

The lattice of model 4 is a self-similar fractal with
d=21n3/ln2=3 since graph n +1 is composed of nine
copies of graph n. However, the number of bonds formed
during the connection is not constant, as it is in models 2
and 3, but grows as 2". Thus model 4 is much more con-
nected. While graph n+1 of model 2 or 3 can be
separated into its graph-n components by severing only a
small number of bonds, graph n +1 of model 4 cannot.
The order of ramification of model 4 is not finite. ' Be-
cause of its higher ramification and its fractal dimension
near 3, model 4 is a plausible fractal model for a Za-
chariasen glass of three components.

To each of the four models there corresponds a tight-
binding one-electron Hamiltonian. The model Hamil-
tonian H corresponding to a given graph A is taken to be
the adjacency matrix. ' ' The index set of H is V(A),
and H, =1 if i and j are connected on A, otherwise
H; =0. The reason for .choosing this austere approxima-
tion is simplicity. It has been mentioned that H plays
two roles. As the adjacency matrix, it defines neighbor-
hoods and hence the graph topology. As the Hamiltoni-
an, it determines electronic behavior of the model via the
discrete Schrodinger equation. For graphite models, one
can think of H as the Hiickel Hamiltonian of ~-electron
theory. In general, however, this simple form of H is
chosen in order to isolate and simplify the relationship
between adjacency of sites and properties of eigenstates.
It is clear that the same mathematical model applies to
the phenomena of lattice vibrations, spin waves, and
difFusion by hopping, as well as to the linearized
G inzburg-Landau equation. ' The one-electron interpre-
tation is used consistently in the current work.

III. GREEN FUNCTIONS

try of the resolvant matrix

G (z) =(zr H—)

defined for z outside the spectrum of H.
The method used to compute G;.(z) for a fractal

hierarchy such as the sequence in model 1 is to express a
small subset of Green functions for Hamiltonian n +1 in
terms of the corresponding ones for Hamiltonian n. The
resulting recursion relations thus give a particular set of
Green functions on the entire sequence in terms of the
solution for generation n =0. A symmetry-adapted ver-
sion of this method was used by Alexander to treat a
Sierpinski lattice in a magnetic field. '

The recursions for model 1 are constructed with refer-
ence to Fig. 2. 3, 8, and C are three copies of the graph
for generation n. Linked together as shown they form
generation n+1. Connecting sites on each of the sub-
graphs are numbered 1 through 6, so that site 1 on sub-
graph 3 is A 1, and so on.

Ho is the Hamiltonian for the three disconnected sub-
graphs. Thus Ho is the direct sum of three copies of
Hamiltonian n. Hamiltonian H for generation n +1 is
given by

H =Ho+ V,

where the sparse matrix V has as its only nonzero entries
the bonds connecting A, B, and C.

The necessary entries of

g(z)=(zI —Ho) (3)

for generation n are assumed known. Taking symmetry
into account, the required elements of g (z) are x, y, u,
and w illustrated in Fig. 2(b). They are

x =g„(z),

u =g„,(z),
w =ggi(z)

Inserting H from Eq. (2) into Eq. (1),

G (z) =g (z) +g (z) VG (z) .

X =G(A 1, A 1)=x +wG(C2, A 1)+uG(B1, A 1),
Y=G(C6, A 1)=wG(AS, A 1)+uG(B6, A 1),
U=6(B4, A 1)=uG(A4, A 1)+wG(C3, A 1),
8 =G(CS, Al)=uG(AS, A1)+wG(B6, A1) .

(6)

One next solves for the corresponding X, Y, U, and 8'of
generation n +1:

Spectral and transport properties are obtained from
Green functions. The Green function G; (z) is the i,j en-

The right-hand sides are evaluated by solving simultane-
ously
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G(C2, A 1)=xG( A5, A 1)+yG(B6, A 1),
G(B1,A l)=xG(A4, A 1)+yG(C3, A 1),
G(A5, A 1)=w +xG(C2, A 1)+yG(B1,A 1),
G(B6, A l)=xG(C3, A 1)+yG(A4, A 1),
G(A4, A 1)=u +xG(B1, A 1)+yG(C2, A 1),
G (C3, A 1)=xG (B6, A 1)+yG ( A 5, A 1) .

The resulting recursion formulas are

X=x+[x(1+y —x —y)(u +w )

+2y(y —y +x )uw]/b, ,

Y=[y(1—y)u +2xyuw+(I —y —x )w ]/b. ,

U=[y(1 —y)w +2xyuw+(1 —y —x )u ]/b, ,

8'=[xy(u +w )+(1—x —y )uw]/i)), ,

(7)

(8)

with

b, =(1—2wx)[1 —2w (x +2y)] . (14)

K =HeI +Is H, (15)

where H is Hamiltonian n of model 2, I is the identity on
V(H), and is the matrix direct product. If u„and u,
are eigenvectors of H with eigenvalues E„andE, then
eigenvectors of k are each of the form' '

A single black site is used as a seed for either model 2
or model 3 so that x =y = 1/z. Again, other seeds can be
used, but strict triangle or tetrahedron symmetry is re-
quired.

Model 4 is not solved in the same way. Rather, be-
cause it is a Cartesian product of model 2 with itself, its
Green functions are obtained as convolutions. "

From the definition of model 4, the Hamiltonian K of
its generation n is

where
b, =(1—x —y)(1+x —y)(l —x +y+y ) .

Np~=upu~

with corresponding eigenvalue

(16)

To obtain x,y, u, m for generation n in the family of
model 1, one starts with Green functions for the sixfold
ring:

x =z(z —3)u/2,

y =(z —2)u/2,

u =2(z —1) '(z —4)

w =zu/2,

(10)

b, [1—2w (x +y) ][1—w (2x —y)] .

The value of m does not iterate, and m could in fact be
scaled out of the equations: r =mx, s =my.

Similarly, for model 3,

X =x +3wy [1—2w(x —y)]/b. ,

I'=wy [1—2w(x —y)]/i)). ,
(13)

and iterates Eqs. (8) and (9) n —1 times. Any other graph
with sufFicient symmetry could be used as a seed in place
of a sixfold ring. Thus these recursions really represent a
class of model hierarchies, modulo the initiating seed.
When m = u =y, the recursions become the two-
dimensional map (x,y)~(X, I') for the Sierpinski lat-
tice."

Model 2 is treated similarly. Referring to Fig. 3, let x
be the diagonal Green function for one of the extreme
corner sites black on generation n. Let y be from one
such corner site to any other. To provide for the possibil-
ity that black and white sites are diferent, there is a diag-
onal site energy Eo in the Hamiltonian for each white
site. The Green function for a single isolated white site is
w =(z Eo) '. Procee—ding as in the case of model 1

yields

X=x+2wy (1—2wx)/b, ,

Y =wy [1—2w(x —y)]/b. ,

where

E„=E„+E (17)

The set G (z) of Green functions for generation n of mod-
el 4 are found from the set g (z) for model 2 by expanding
in terms of eigenvectors and using Eqs. (15)—(17). The re-
sult is"

IV. LOCAL DENSITIES OF STATES

The local density of states (LDOS) at site i on the
graph of H is

(19)

where u, is component i of eigenvector u with eigenval-
ue E . For convenience,

5(E E,)= (ii/7r)l—m(E—E,+ill)—
so that each peak in Eq. (19) is broadened by a fixed
amount g. The width g is adjusted to control the resolu-
tion.

From Eqs. (1), (19), and (20) one has the standard re-
sult"

D;(E)= —(1/m) I [mG;;(E+i l)]i. (21)

Thus the LDOS for connection sites (i.e., for the outer-
most corners on the generation n graph) of model 1, 2„or
3 is found from the imaginary part of X after n —1 itera-
tions of Eqs. (8), (11),or (13). Model 4 is treated through
the convolution in Eq. (18).

= —(1/vr) f Im[g;, (s +ill)]gk((z s)ds . (—18)

Equation (18) defines any Green function on model 4 in
terms of a pair on model 2.

The recursion relations obtained in this section give a
certain subset of all Green functions for each model.
Others are easily obtained by Eq. (5).
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Figure 4 presents the LDOS for a corner site of model
1 at generation n =16 (8.6X10 sites). The resolution i)
is a fixed ratio (—„') of the energy range shown for each
curve. Thus the relative resolution is constant. As the
energy scale expands, successively higher levels of fine
structure become visible. Peaks grow as the resolution
becomes finer since the area under a given peak is fixed.

The entire spectrum is shown in Fig. 4(a). Symmetry
about E =0 is a consequence of the fact that the graph is
bipartite, ' ' a property shared by all models treated
here. The vertices of a bipartite graph can be painted
with two colors so that each vertex is adjacent only to
vertices of the opposite color. There is a pairing between
an arbitrary eigenstate of energy E and another of energy—E. This consists of changing the signs of the eigenvec-
tor coefficients on sites of one of the two colors.

Since the off-diagonal Hamiltonian matrix entries are
+ 1, the ground state, or state with eigenvector
coefficients all of one sign, has a maximum eigenvalue
E,, However, because of pairing one can think ofE;„=—E,„asthe ground state. The reAection
E~—E is equivalent to changing the off-diagonal 0 ele-
ments to —1.

The perfect graphite lattice is also bipartite, and hence
the LDOS is symmetric about E =0. In contrast to mod-
el 1, the graphite LDOS is a smooth curve. Its Van

Hove singularities consist of steps at E =+3, logarithmic
peaks at E=+1, and a parabolic zero at E =0. Assum-
ing two spin states and one electron per site, graphite is
semimetal with its Fermi level at E =0.

An essential difference between model 1 and graphite is
that, as in the Sierpinski case, ' there is no continuum in
the spectrum of model 1. That is, considered as a set of
real numbers, the spectrum has no interior points. This
property, which is typical of fractal lattices, is illustrated
in Figs. 4(b) —4(e) showing successively higher resolution
near E=E;„.The small feature in the LDOS near
E = —2. 5 in Fig. 4(b) appears to be a relatively smooth
curve. Figure 4(d) reveals its discontinuous fine struc-
ture. Successive magnification shows the structure re-
peating in a self-similar manner. The self-similarity is
also typical of fractal lattices and is due to geometrical
self-similarity of the eigenstates as E approaches E,„of
the nodeless ground state.

Near the ground state (E~E,„)the envelope of the
total density of states (DOS) for a fractal behaves as

(E,„E)',with—c =
—,'d —1, where the spectral dimen-

sion d is the dimension of an effective wave-vector

space. For models 1 and 2, d=21n3/ln5=1. 365. The
true density of states, like the LDOS, is highly singular
and consists of a hierarchy of fine structure, but it scales
as'

D (E,„—a b,E)=a'D. (E,„b,E) . — (22)

0.0-
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I
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I

-2

A 1D binary-alloy model with random substitutional dis-
order also shows hierarchical fine structure in its DOS at
the band edge. However, in the random-alloy case the
DOS scales differently

lnD (E,„ab,E)-(E,„—ab,E)— (23)
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FIG. 4. LDOS for model l. (a) Entire spectrum, (b) lower
half, and {c)—(e) successively higher resolution near the ground
state.

with p =
—,'. Band tails of this type occur quite universally

in the case of random disorder due to geometrical corre-
lation between fl.uctuations in the random potential. 24, 25

Thus the form of the band-edge DOS is a characteristic
difference between ordered fractal-glass models and ran-
dom models. However, there are band tails correspond-
ing to localized states in both cases, and these cause
hierarchical fine structure in the LDOS.

The peaks near E =+1.281 (truncated) in Figs. 4(a)
and (b) are localized triphenylene molecular states. They
are symmetry decoupled from the rest of the lattice.

Figure 5(a) shows LDOS for a corner site (black) on
model 2 (n =16). ED =0 is chosen since nonzero Eo does
not reduce symmetry and thus would remove no degen-
eracy. The spectrum is a noncontinuum with, self-
similarity near E;„(orE,„)as in model 1. Resolution
is about —„',of the range shown. The LDOS for this site
is zero near E =0, but the model contains a large number
of localized nonbonding states with E =0. These have
amplitude only on the white sites and are localized on
subgraph units of each length scale.

Due to a high degree of eigenstate localization, a typi-
cal LDOS on model 2 bears less resemblance to graphite
than does a typical LDOS on model 1. The peaks in Fig.
5(a) are more tightly clustered. Eigenvalues are still more
tightly grouped in model 3 due to an even higher degree
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FIG. 5. LDOS at corner sites for (a) model 2 and (b) model 4.

of localization. To find a spectrum without as much
empty space one must look at lattices with more con-
nectedness. Hence, we proceed to model 4.

Figure 5(b) shows the LDOS for a corner site on model
4 obtained from iteration n =16 of model 2 via Eq. (18).
Self-similarity near E =E;„is inherited from model 2
through the convolution. Like the other fractal models,
model 4 has no continuous part to its spectrum. Howev-
er, the corner-point LDOS has more interesting struc-
ture, including states near zero.

For each of the models iterated, some of the eigenstates
represented in the LDOS for the sites chosen are strongly
localized while others are relatively extended. We turn to
the topic of localization.

V. EIGKNSTATES AND LOCALIZATION

A good example of a localized molecular state is pro-
vided by either of the two states on model 1 correspond-
ing to the peaks in the LDOS on the corner site with
E =+1.281. As noted in the section above, they are due
to a pair of states on the isolated triphenylene molecule,
related by pairing, with E =+[1+(17)'~ j/4. These
eigenstates have large amplitude on the corner site, but
zero amplitude on the connecting sites where the tri-
phenylene unit attaches to the rest of the fractal. Thus
they do not couple into the glass, but remain localized
molecular eigenstates of model 1 for each generation.
There are other such molecular states.

Localized eigenstates of the fourfold-coordinated
Sierpinski lattice are treated in the original paper by
Domany et al. by means of decimation. ' Rammal also
discusses the Sierpinski eigenstates. Both papers in-
clude pictures of amplitude patterns of certain states.

j
/& X /

-1 +1 +1

/
/-& X /

-1 +1 +1 +1 +1

FIG. 6. Edge states. (a) Fourfold Sierpinski lattice with

E = —2; (b) model 1 with F. =+1.

The eigenstates of models 1, 2, and 3 presented here have
general properties in common with those of the
Sierpinski case, which is reviewed here brieAy.

At a given generation n, , each eigenstate on the
Sierpinski lattice is either new or is related by decimation
to a state of the previous generation n —1. Eigenvalues
of the new states are E = —1 or E = —2. Eigenvectors
can be chosen so that E = —1 states are internal surface
states bounding the voids. New states with E = —2 are
edge states, as illustrated in Fig. 6(a). States not new at
generation n are of one of three types: (i) the ground
state E =+4, (ii) descended from the E =+2 state on
generation n = 1 (triangle), or (iii) descended from
E = —1 or E = —2 on generation n —1. Thus, at each
generation, there are states localized at various length
scales associated with the voids of the pore structure, and
there are edge states and other, related states.

The nonbonding states of model 2 have zero amplitude
on black sites and alternate +1 on white sites forming
closed, self-avoiding walks of length 4m. An orthogonal
set can be chosen around boundaries of each void with
perimeter 12 or larger. The nonbonding states are in this
way associated with the pore structure in model 2.

There are also surface states bounding the external
edges of model 2 as a whole and of each of its subgraphs.
These are superpositions of benzene molecular states with
E =+1. Consider one of the outer edges. Let the ampli-
tude on each white site on the edge be zero. To form the
edge state with E =+1, choose one black edge site and
assign it amplitude +1. The white site backbonded to it
would also have amplitude +1, while second-neighbor
black sites on the edge would have —1, and their back-
bonded white sites +1, and so on. Corners are not
di%cult to make, and thus states can be constructed that
are localized on any length scale. Such states contribute
to the peaks at E =+1 in the LDOS for the corner site of
model 2 as shown Fig. 5(a).

Eigenstates of model 4 are direct products of pairs of
eigenstates of model 2. Thus there are nonbonding states
associated with the inner surfaces of the toroidal voids
that make up the pore structure of model 4. There are
also surface states bounding model 4 as a whole and
bounding each subgraph. These contribute to the peaks
at E =+2 and at E =0 in the corner-point LDOS of Fig.
5(b).
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Edge states on model l play an interesting role in
determining electron transport properties. An amplitude
pattern for one of these is shown in Fig. 6(b) where it is
compared with an edge state of the Sierpinski lattice in
Fig. 6(a). An edge state of this kind would connect sites
on opposite corners. On model 1 the edge-state energies
are E =+ l.

As a measure of electron transport we use the corner-
to-corner propagation amplitude. ' Let

~ j(t) ) be the
state evolved from basis state

~ j ) at t =0. The probabili-
ty of finding an electron at site i at time t, given an elec-
tron at site j at t =0 is

~
(i

~ j (t) ) ~
. Integrating over time

gives

P;, = I l&~'Ij(r)&l'«=(2~) ' J' "
G, (E)~'dE .

(24)

The integrals converge for finite g. P;- is a measure of
the long-time likelihood for propagation from j to i.
Selecting corner points j =2, i =5 from Fig. 2, define

P„=(2m.) I ~u (E +&9)l dE, (25)

where u„is obtained by n iterations of Eqs. (7) and (8).
Unlike conductivity or other bulk transport properties,

P„depends in detail on the way the eigenstates couple to
the pair of chosen sites. Nevertheless, P„provides a con-
venient way to look at transport across the lattice as a
function of lattice size. Figure 7 shows P, versus genera-
tion number n. The length of an edge is I.-2".

Power-law behavior is seen in Fig. 7(a), which shows a
best-fit line through computed values of ln(P„/Po) versus
n for n (6. The slope —l. 11 (= —ln3) is consistent with
P„-L ", where d is the fractal dimension. This would

25

20-:

15

(a)

n=3, «&

10..

be expected if the wave function were spreading out uni-
formly over available sites out to a correlation length
A, -2 =64.

Beyond L =A, , exponential decay sets in. Figure 7(b)
shows that ln(P/Po) becomes linear in L, or, in other
words, P, is proportional to e . Here v=0. 045.

The transition to exponential behavior beyond L =A, is
similar to the behavior of conductance of the Anderson
model for homogeneous disorder, to which well-known
scaling arguments apply. P„is a different measure of
eigenstate localization and the current models are not
homogeneous or random. However, localization in either
case is manifested in the existence of a growing propor-
tion of molecular or standing-wave states as lattice size
increases. Scaling arguments for conductance in the frac-
tal case have been suggested by Rammal and Toulouse. 31

It is interesting to resolve P„into contributions from
eigenstates at various energies. Figure 8 shows corner-
to-corner propagation per E as given by ~ u„(E+i g) ~

for
generations n =3, 6, and 8 of model l. For n =3, L & A, ,
and propagation occurs at many energies. Thus the
curve in Fig. 8(a) resembles the LDOS of Fig. 4(a). For
n =8, I ) A. , and propagation is in narrow energy chan-
nels near E =+1, as seen in Fig. 8(c). The intermediate
case n = 6 with L =A, is shown in Fig. 8(b).

The propagation from corner to corner for large I
takes place mainly via the edge states as shown in Fig.
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6(b) and via states that evolve from edge states as the sub-
graphs of generation n are joined together forming gen-
eration n + 1 of the lattice. The energies of these are near
+1 and the amplitude patterns zigzag along the subgraph
edges. Edge states in the case of homogeneous random
disorder play a role in the quantum Hall e6'ect.

VI. RING CLOSURE AND SITE UARIKTY

Eigenstate localization is a common property of the
hierarchical models. In the random networks, where lo-
calization also occurs for suScient disorder, it is associat-
ed with noncontinuum regions of the spectrum. As a
function of structural parameters the spectra of either the
random or the hierarchical models may or may not con-
tain continua. Because of the similarities between these
two kinds of models, the existence of hierarchical lattice
Hamiltonians with spectral continua but all eigenstates
localized suggests two questions. " The first is whether
there is a continuum-delocalization region in the homo-
geneous random but not in the hierarchical case. The
second is whether geometrical properties such as site
variety, ring structure, or (especially in the fractal case)
connectedness can be correlated with spectral properties.
It is this latter question that will be pursued here.

It is possible to remove the eff'ects of ring closure and
site variety in varying degrees by introducing branch
cuts. These unwind rings by making the lattice mul-
tisheeted. To do this, the recursive definition of model 1

is modified so that after a certain generation k the lattice
becomes an infinitely branching Bethe tree.

As an example, consider a benzene ring. A walk
around the ring encounters the original site after six
steps. If a cut is introduced, then after six steps the walk
encounters not the original site but another identical
copy of it. The ring is thus transformed into the infinite
chain, which is its universal covering graph. The origi-
nal ring is recovered by identifying every sixth site on the
chain as the same site. The Green functions for the ring
can be found as a sum over the chain Green functions
connecting sites that are equivalent modulo t;he sixfold
ring. Thus one can keep track of contributions to the
ring Green functions due to paths winding around the
ring a certain number of times.

The similar introduction of a cut in each ring of a
square lattice yields as its universal covering a fourfold-
coordinated Bethe lattice.

The strategy here is to begin by cutting each ring in the
fractal graphite model 1, except for the elementary six-
fold rings of the seed, thus forming a Bethe-lattice cover-
ing. Then, by systematically reconnecting rings of in-
creasing length, the e6'ects of ring closure on the spec-
trum are studied.

Figure 9 shows in symbolic form the method of gen-
erating Bethe-lattice coverings of model 1. After iterat-
ing the recursive definition of model 1 k —1 times, the re-
sulting graph is used as a seed initiating the sequence of
Fig. 9. The result after many iterations is a Bethe lattice,
each unit cell of which is graph k of model 1. Thus it is a
multisheeted model in which all rings of model 1 up to
generation k are included normally but all larger rings

FIG. 9. Recursive definition of Bethe covering lattice. The
kth generation of model 1 is used as a seed to grow a Bethe lat-
tice.

have been unwound by the introduction of branch cuts.
From Fig. 9, one finds that the Green function g for

the corner site at the top of a multisheeted covering
satisfies

g =x+g[(u +w )(1—xg)+2uwyg]/b, ,

where

(26)

~=[1—g «+y)][1—g (x —y) l, (27)

and x, y, u, and w are obtained from the (k —l)th itera-
tion of Eqs. (8) and (9). Unlike the fractal case, Eqs. (26)
and (27) iterate to a fixed point. The physical Green
function is the root of

(x —y )g +[x(u +w ) —2(uwy+x)]g

+(1—u —w )g —x =0, (28)

which approaches x as u, U, w, and y tend to zero. This
root is most easily obtained by iterating Eqs. (26) and
(27)

Figure 10 shows the e6'ect on the I.DOS of closing
rings of various lengths. Only the sixfold rings of the
seed are closed in Fig. 10(a), corresponding to k = l. In
Fig. 10(b), for which k =2, all rings in the triphenylene
units are closed, so the model consists of a Bethe lattice
with triphenylene unit cells. In the case k =3, for which
all rings on the next generation are closed, the I.DOS is
almost indistinguishable from the limit k~ ~ shown in
Fig. 10(c) for this choice of resolution. However, the
spectrum is actually composed of finite, continuous bands
for any finite value of k. This is because u, w, y, and x are
rational functions, so g can be seen from Eq. (28) to be
algebraic of finite degree in E.

It is well known that the low-order moments of the
LDOS must be reproduced accurately by the cluster-
Bethe-lattice scheme employed here. ' The first
discrepant moment with respect to E of the LDOS (Refs.
37 and 38) is determined by the length of the shortest
closed walk present on model 1, but absent in the cover-
ing k. However, it is interesting that the Bethe lattice
reproduces the detailed shape of the LDOS for rather low
k, even for such a pathological spectrum.

The Bethe-lattice coverings remove closed rings, and at
the same time they permit continua to condense in the
spectrum. The continuous energy bands dissociate into a
fractal as successively longer closed rings are reintro-
duced. However, it is wrong to conclude that ring closure
causes the dissociation, since as the Bethe lattice removes
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where

b, =[1—x(U+y)][1 —x(U —y)] . (30)
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FIG. 10. LDOS for various coverings. (a) Only the benzene

rings, (b) all triphenylene rings, and (c) all rings are closed.

To treat the lattice formed from generation k of model 1,
one starts with x, y, w, and u given in Eqs. (10) for the
benzene seed and iterates Eqs. (29) and (30) k —1 times.
The resulting values of x, y, w, u and v =x are then used
to seed Eqs. (23) and (24) which are iterated as many
times as necessary.

The root-site LDOS of the trees constructed in this
way do not show continuous ranges of eigenvalues.
Whatever the value of k chosen, the spectrum of the tree
model, like that of each of the other fractal models, does
not contain any interior points.

The difference between the generation k of the Bethe
lattice and of the tree lattice is not in connectedness or in
ring closure. Both are quasi-1D in the sense that major
portions of the graph of either model can be separated by
cleaving only one bond. The essential difference is in the
variety of site environments. For k = 1, there are only six
different kinds of sites deep in the Bethe lattice, while the
sites of the fractal tree maintain variety by being connect-
ed by different numbers of steps to branches of different
sizes.

Joannopoulos has studied the relative importance of
ring closure and site variety in determining features of
the LDOS in homogeneous models of amorphous semi-
conductors using a Bethe-lattice approximation.
Bond-angle fIuctuations rather than ring closure were
found to determine the shape of the LDOs near the top of
the valence band in these homogeneous models.

X =x +x [(u +w )(1—xu)+2utvxy]/b, ,

Y =u y/5,
U =u [u (1—xv)+wxy]/b, ,

V=u [u(1 —xu)+xy ]/5,
~= u [~ (1—xU)+ uxy]/b, ,

(29)

rings it also reduces site variety. At a point far from the
root of the k =1 Bethe lattice, there are only six distinct
site environments, since the unit cell consists of a sixfold
ring. Thus, removing rings by introducing cuts does not
discriminate between the effects of ring closure and site
variety.

To remove rings without eliminating variation in site
environments, we modify model 1 in a different way. If
after generation k the bond between subgraphs 8 and C
in Fig. 2(a) is cleaved for all successive generations, the
result is a new kind of fractal tree. All rings are as in
model 1, up to generation k, but all larger rings are
disconnected, i.e., broken. Since the model is still a frac-
tal there is still fluctuation in the site environments, but
rings are removed.

Breaking the link between subgraphs b and C in Fig.
2(a) reduces the symmetry. Thus another distinct Green
function must enter the recursion. The diagonal Green
function x at the root site is now distinct fom the one at
a lower connection site, which we shall call v. Following
the procedure of Sec. III, one has

VII. SUMMARY

The models studied above are simple tight-binding
one-electron Hamiltonians on hierarchical lattices. An
important characteristic which they share with homo-
geneous random networks is that the detailed environ-
ments of the individual sites fluctuate considerably. Be-
cause of the scaling properties of their pore structures
they are also trema fractals.

The local bonding of model 1 shown in Fig. 1(b) is like
porous graphite. Figure 2 shows model 2, which is a 2D
Zachariasen glass of two components. Model 3 is the 3D
analog of model 2, thus representing a quartzlike fractal
glass. Unfortunately, since the fractal dimension of mod-
el 3 is only d=2, it is not a good model of a 3D glass.
Thus, model 4 is constructed as the Cartesian product of
model 2 with itself. Model 4 has fractal dimension d =3
and spectral dimension d =2.7, and it is infinitely
ramified. Each model comprises a hierarchy of Hamil-
tonians I H„I, the generation n + 1 Hamiltonian H„+,
being defined in terms of H„.

The principal analytical results of the work reported
here are the recursion formulas of Sec. III which express
exactly Green functions for generation n + 1 in terms of
those for generation n for models 1, 2, and 3. Green
functions for model 4 are given as convolutions in Eq.
(18). Each set of recursion formulas could also be used to
study other hierarchical families by varying the seed H0,
and extension theory could be used to include the effects
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the effects of second-neighbor interactions. "
Certain eigenstates can be identified as localized molec-

ular states that have become symmetry decoupled from
the bulk of the glass. There are states associated with the
inner surfaces bounding the voids of the pore structure,
and other states associated with outer surfaces or edges
bounding the lattice as a whole as well as each subunit.
Thus, eigenstates are localized in a hierarchical way on
every length scale.

The time-integrated corner-to-corner propagation
probability P„for generation n is used to study localiza-
tion on model 1 in Sec. V. Figure 7 shows that P„-I.
until the lattice size I =1,=64, then at larger I„P„-e . This transition from power-law to exponen-
tial behavior is similar to that of electrical conductance in
the case of random disorder. ' In mode1 2, there is no
power-law behavior (A, =o) and the exponential drop be-
gins right away. Edge states with E=+1 as shown in
Fig. 5(b) participate to an increasing extent in the
corner-to-corner propagation on model 1 as I,~~.

The effects of ring closure and site variety are explored
in Sec. VI, where two new models are introduced.

In the first modification, model 1 is iterated normally
up to generation k, beyond which branch cuts are insert-
ed in the recursive definition. The result is a Bethe lattice
with generation k of model 1 as a unit cell. Green func-
tions for this modification are given by Eqs. (26) and (27).
The resulting spectrum is a collection of continua over
small energy ranges. However, the Bethe-lattice LDQS
forms a smooth enevelope that fits the main features of
the corresponding LDOS for model 1 very well for small
k.

In the second modification, model 1 is again iterated
normally up to generation k, beyond which all rings of a
longer scale are broken by severing the connecting bonds.
This results in a fractal tree on which each unit cell is

generation k of model 1. Green functions are given by
Eqs. (29) and (30). Here the resulting spectrum has the
noncontinuum structure of a typical fractal.

The difference between the two modifications is not in
connectedness' or in ring closure' but in site variety.
It is suggested that localization of eigenstates and the
lack of continua in the spectrum in these fractal-glass
models may best be understood in terms of the Anderson
mechanism. In both the random networks and the
hierarchical fractals, localized states result from the su-
perposition of reflected waves with incommensurate
phases caused by the fluctuation in site environments.

One could easily include two additional effects that
have not been treated here. The existence of rings of odd
length is known to be important in determining proper-
ties of glasses. Odd rings could be introduced by modi-
fying the models slightly. The Sierpinski lattice contains
odd rings. Also, a true random potential could be added
to the fractal models by drawing subunit components
from a statistical distribution at each stage in the itera-
tive definition. Rigorous self-similarity in the LDQS of
ordered fractal models is a consequence of self-similarity
in the geometry. The exact nature and energy of the edge
states also depends on the detailed regularity. %'ere one
to include randomness in the hierarchical definition of
the lattice, the self-similar fine structure would be des-
troyed, but the fractal scaling law Eq. (22) would remain
valid in a random fractal-glass model. This is quite
different from the Urbach form of the band tails in homo-
geneous random networks. Edge states would also be
expected in the random fractal case as in the homogene-
ous random case. Thus no essentially new features are
expected to appear if randomness were added to the
definition of the ordered fractal-glass models treated in
this work.
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