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Resonant tunneling of holes in double-barrier heterostructures
in the envelope-function approximation
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A transfer-matrix calculation of the resonant tunneling of holes in double-barrier heterostruc-
tures is presented, based on a four-band description of hole subbands. The mixing of heavy- and
light-hole channels at nonvanishing in-plane k vectors produces a variety of line shapes of the
transmission coeScient through dift'erent resonances, some of which with pronounced asymmetry.
Most of these asymmetric line shapes are suppressed by the integration over initial states contribut-
ing to the tunneling current between two p-type electrodes. The mixing eAects increase with the
thickness of the barriers. A discussion of the relevance of these calculations for the interpretation
of measurements and for the design of new experiments is presented.

I. INTRODUCTION

Resonant tunneling of electrons through double-barrier
heterostructures (DBH) was first investigated by Tsu and
Esaki' and has extensively been studied experimental-
ly and theoretically using the transfer matrix, '
the transfer Hamiltonian formalism, ' ' or wave pack-
ets. ' ' Inelastic processes are included in some mod-
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Holes are of interest because of degeneracy at the top
of the valence band, which provides the possibility of
mixing and tunneling through the structure via different
LH and HH channels. Mendez et al. observed reso-
nant tunneling of holes through GaAs-A1As DBH and
found that the results cannot be described with indepen-
dent light- and heavy-hole (LH and HH, respectively)
states. In this paper we apply an extension of the
transfer-matrix technique using a four-band effective-
mass equation, for which exact solutions were recently
given. ' In our model we neglect the spin-orbit split-off
band and also inelastic effects.

The paper is organized as follows: in Sec. II we sum-
marize the formalism, recall the functions in the bulk and
boundary conditions at potential steps, and present an ex-
tension of the transfer-matrix technique to calculate the
transmission amplitudes. In Sec. III we discuss results
for the transmission coefficient as a function of energy for
some typical DBH and for various values of the in-plane
wave vector (k~~). For nonvanishing k~~ mixing of LH
and HH states occurs. The mixing increases not only
with increasing k~~ but also with increasing barrier width.

Interesting structure in the line shape occurs because of
interference of different channels. In Sec. IV we calculate
the current and compare the results with experiment.
Some of the interesting features of the transmission line
shapes do not appear in the current, due to integration
over initial states up to the Fermi energy. The possibility
of experimental configurations displaying interference
effects in the line shapes are briefly discussed. Finally, in
Sec. V, we summarize the results and conclusions.

II. METHOD OF CALCULATION

The envelope-function approximation ' for electron-
ic states in semiconductors is derived from the effective-
mass Hamiltonian of Luttinger and Kohn . Neglecting
the conduction and spin-orbit bands, the effective-mass
Hamiltonian is a 4 X 4 matrix operator H which acts on a
four-component envelope function F(r)=(Fi(r), Fz(r),
F3(r), F&(r) ). Solutions for the eff'ective-mass equation in
the bulk,

HF(r) =EF(r),
were explicitly written by Andreani et al. ' (see the Ap-
pendix) and their notation is adopted in this paper. The
total wave function is, approximately,

y(r)=F(r) uo(r)=fe'"' uo(r),

where for a constant potential F(r)= fe'"' and f is one
of the eigenvectors (A4). uo is the periodic part of the
Bloch functions,

uo(r)=(u, o(r), u2O(r), u3o(r), u4o(r))=(u&zz o(r), u, zz (ro), uzi (r0), u 3&~ o(r)} .
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In each region of constant potential V(z) =const (see Fig. 1), the wave function g(r) is a linear combination of bulk
solutions for a given E and k, k with corresponding k, =+kI, +k&.

For example, in region (b) (see Fig. 1),

g (r)=[b, V' '(+k )e " +b V' '(+k )e ' +b V' '(+E )e ' +b V' '(+k )e

+b&V' ( —k~)e " +b6V( '( —k )e ' +b7V3b'( —k()e ' +bsV4b'( —k~)e " ] uo(r)e
i (k„x+ky)—= (ti' '(z) uo(r)e (3)

P(z) continous at z

BP(z) continous at z
(4)

The matrix B [given in (A6)) is derived by integrating
the efFective-mass equation across an interface. Using

k, is derived from (A3) where E is replaced by E —VI)"'.
For large k~~ and small E, it can happen that either k&

alone or both kI and k& become imaginary in the GaAs
regions. In this case only bulk solutions that vanish at
infinity must be taken into account in the electrodes. For
given incoming amplitudes a (j =1,2, 3,4), the ampli-
tudes b are fixed by the boundary conditions at each in-
terface z

In the approximation that the periodic part of the
Bloch function uo(r) are equal in both layers and with the
assumption that k„and k are conserved during tunnel-
ing, the boundary conditions are Analogous equations at each interface give the

transmission amplitudes t as a function of the incoming
amplitudes a:

t=(M )
—'M, (M, ) (M, (M, ) 'M, (M, ) 'M, a.

The transfer matrix M is defined with use of (7),

(7)

the transfer-matrix technique, ' ' but now for the
four-component function P(z), we get from (3), (4), and
(A6) at each interface an equation for the amplitudes.
For example, at z =zz,

M3b=M4c,

where M3 is a complex 8 X 8 matrix which contains the
coefficients of b; in (3). The amplitudes c are a function
of the amplitudes b,

c=(M~) 'M3b .

Zg

0.028

Z3

Eh

0.111
Eh

Ee0073

Z4

E„=-O.054

t]

t3

0
=M

0
0
0

ap
a3
a4
T]

Pp

P3

P4

(8)

0.299 Ee

0.428
E4

0.245
3

V,=-0.55

The lower part of (8) gives the reAection amplitudes r, as
a function of the incoming amplitudes a . The transmis-
sion amplitudes t„arethen calculated by the upper part
of (8).

The transmission coefficient D„through channel n is,
for example, in the case of an incoming HH state (a, = 1,
az =a3 =a4 =0),

(t)i
i

(t) )
(y(a)~ . (y(a))

(9)

III. TRANSMISSION COEFFICIENT

where X is a normalization factor and the probability
current-density operator is given in Ref. 25.

FIG. 1. Typical potential structure for resonant hole tunnel-
ing experiments. The potential depth Vo= —0.55 eV and the
well width ~„,&]=50 A are used throughout this paper. The
barrier width mb„„„willbe varied. The resonance energies (eV)

0
of a structure with wb„„„=10 A are indicated [k, = k»
=0.0016(2m /a), lattice constant a =5.65 A].

In Fig. 2 we show the transmission coefficients D, for
an incoming HH state [means a, = 1, a&

=a 3 =a4 =0 in
(8)] through the different HH and LH channels
[D„Dz,D3 in (9) correspond to states with
m =+—,', + —,', —

—,']. Since D4(m = ——', ) is about 10 or-
ders of magnitude smaller, it is not shown.
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The incoming HH state is strongly mixed into LH
states. The mixing appears as a peak for transmission
into the HH channel D, [Fig. 2(a)] at the resonance ener-

gy corresponding to a quasistationary LH state in the
quantum well. Also, HH resonances occur in the LH
channels [Figs. 2(b), and 2(c)j. Strong asymmetric line

shapes occur because of interference of resonant HH am-
plitudes with off-resonant LH amplitudes.

For different k„and k, mixing effects change drasti-
cally since the off-diagonal elements in (Al) are linear or
quadratic functions of k and k . For the calculation of
the current in Sec. IV, it is important to notice that a
larger k~t produces average transmission coe%cients D„
which are larger by several orders of magnitude. The
shift in the energy position of the resonance peaks with

k~~ rellects the in-plane band structure E (k~~ ) of the quan-
tum well.

For this value of k i, k& as calculated from (A3) is imag-
inary in the GaAs regions for ~EI smaller than 80 meV.
Only decaying light-hole bulk solutions contribute to the
wave function in the electrodes. Therefore, the Aux
through the LH channels is 0 and, from (9), Dz 3

=0 for
~E~ smaller than 80 meV.

Results for barriers thinner by a factor of 3 show that
the mixing is drastically reduced in comparison with Fig.
2. The increase in mixing with increasing barrier width
can be understood as an increase in mixing with increas-
ing lifetime of the quasibound state in the quantum we11.

Calculations for the incoming LH state show that in
the outgoing LH channel the average transmission
coeScient is several orders of magnitude larger. In this
case the peaks at HH resonance energies are not as prom-
inent as the peaks at LH resonance energies for the in-
coming HH state in the outgoing HH channel. Due to
time-reversal symmetry the transmission coefFicient for
incoming HH state in the outgoing LH channel and for
the incoming LH state in the outgoing HH channel are
equal.

14' & I ~ I ~ I I I s—0.0 —0.1 —0.2 —0.3 —0.4 —0.5 —0.6
Energy (eV)

IV. CURRENT

The current density through DBH between two p+-
type electrodes is

FF + eU

I=1
I

I
~ I

(c)
—2

IIk2

~
I

I

XDt(E, ki, V, U)

(10)

—6

—8C)

10

—14 ~ I I I I a I I I—0.0 —0.1 —0.2 —0.3 -0.4 —0.5 —0.6
Energy (eV)

FIG. 2. Transmission coeScient of an incoming HH state
(a, =1) through a DBH with Vo= —0.55 eV, m„,~1=50 A,
wb,„„,„=30A, k =k =0.036(2m/a) (lattice constant
a =5.65 A). (a) Outgoing HH channel (m, =+

~ ); (b) outgoing
LH channel (m~ = +

~ ); and (c) outgoing LH channel

(m, = ——').

where the sum goes over all incoming HH and LH states
(I,=+—,', +—,').

In the calculation of D the potential (Fig. 1) with bias
is approximated by three regions of constant potential
where the electrostatic potential is averaged over each re-
gion. The result for a typical structure as in Fig. 1 is
shown in Fig. 3.

In the k-space regions identified by IE~ ~ ~E„~,heavy-
hole states have real k, values up to k~~ values much
larger than for light holes. Furthermore, the transmis-
sion coeKcients D„increase with k~~ by several orders of
magnitude and nonvanishing k~~ causes strong mixing.
As a result, most of the current comes from incoming
HH states, even at the LH resonances.

Mendez et al. see structure in the conductance of the
resonant hole tunneling DBH. In Table I we compare
these results with the bias values at the current peaks in
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FIG. 3. Tunnel current of holes through a DBH. The struc-
0 0

ture parameters are wb„„;„=10A,te„,~~
=50 A Vo= 0.55 eV,

EF= —0.055 eV (compare Fig. 1). The figure shows the sum of
incoming HH and LH states and the sum of all outgoing chan-
nels. As discussed-in the text, the current comes mostly from
incoming HH states.

0
Fig. 3. For numerical reasons in the calculation 10-A
barriers were used instead of 50-A barriers in the experi-
ment. In this approximation, we ignore the lifetime effect
mentioned above and the effect of the barrier width on
the in-plane band structure E(kII )

Mendez and co-workers did not mention the doping
of the electrodes, so the Fermi energy in our calculations
is just an estimate. The last two experimental values are
not calculated because the above-mentioned approxima-
tion for the potential in presence of bias is bad at high
bias. When considering Table I, one should keep in mind
the three approximations (10—50-A barriers, estimate of
EF, step approximation for the potential) mentioned
above. Calculated resonance voltages are brought into
agreement with experimental values by multiplying with
a fitted factor 1.76. This factor accounts for voltage
drops outside the double-barrier region, which are men-
tioned in Ref. 20.

It is interesting to consider whether different experi-
mental configurations may be adopted, to observe the in-
terference effects which we described before, but which
are not observable in tunneling current measurements of
the type of Ref. 20. To this aim, it would be desirable to
select the heavy or light character of the holes in the in-

coming and outgoing channels. If a photoconductive ex-
periment is performed, electron-hole pairs with
prescribed heavy- or light-hole character can be generat-
ed with polarized light. ' On the other hand, the selec-
tion of the outgoing channel may exploit the different
drift velocities of heavy and light holes, towards the col-
lection electrode, in a time-resolved experiment. A possi-
bility is, in principle, presented by a reverse-biased p -i-
n+ diode, where a double AIAs barrier is adjacent to
the p+-type region and the photogenerated holes are
created in a wide intrinsic GaAs layer between the
second barrier and the n+-type electrode. Bias can be
adjusted so that electrons are immediately swept to the
n+-type electrode and do not tunnel through the bar-
riers, while holes are removed only via the much slower
tunneling process through the double barrier.

V. SUMMARY AND CONCLUSION

We have presented an extension of the transfer-matrix
technique using the four-component envelope functions.
The formalism is applied to calculate the transmission
coefficient and the tunnel current of holes through DBH.
Strong mixing occurs between LH and HH states. The
mixing increases not only with increasing in-plane k vec-
tor, but also with the lifetime of the quasibound state in
the well. The latter effect corresponds to an increasing of
mixing with the barrier width. The transmission of HH
states through light-hole resonances is much stronger
than the other way around. This may suppress the obser-
vation of HH resonarices in the experiment if the HH res-
onance energy is close to a LH resonance energy. The
mixing provides the interference of resonance amplitudes
with off-resonance amplitudes, which produce several in-
teresting (strongly asymmetric) line shapes.

The tunnel current is calculated and an estimate to
compare with experiment is done. Due to integration
over initial states up to the Fermi energy, the above men-
tioned line shapes are hidden.

Some suggestion for experimental configurations which
might give the possibility to show part of the line shapes
ss discussed.
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TABLE I. Comparison of measured (Ref. 20) resonances in the current, with bias of the current
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Voltage at which
structure occurs
in the experiment
(Ref. 20)

HH1

0.2

LH1

0.43

HH2

0.67

HH3

1 ~ 15

LH2

1.45 2.33

Voltage at which
current peaks in
Fig. 3 times 1.76

0.14 0.37 0.69 0.92 1.44
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APPENDIX

The eigenvalues are

E = P—+(Q +LLt+MM )' (A3)

Basic equations from Andreani et al. ' are used in this

paper. The effective-mass Hamiltonian in the four-band
approximation is

The plus sign refers to HH states and the minus sign to
Lh states.

The eigenvectors are

P+Q
L
M
0

P —Q

0

M

M 0
0 M

P —Q L-
—L P+Q

(Al)

R,
L

V) = Mg, Vz

0

—I
R2
0—M

(A4)

where

2mo

—i&3y,
(k ik )k—, ,

—M

v, =
R2
L

where

0
MV4=

Ri

Q= (k, +k —2k, ),
2m 0

y, v'3
M= (k„—k ) i—k k

Ri=Q P E, —R2—=Q+P+E . (A5)

For k = ky 0 V] V4 are the HH eigenvectors and

Vq, V3 are the LH eigenvectors.
The boundary condition matrix is

0 0

(y, —2y )(t)/c)z) +3y (k, —ik )

—&3y (k +ik ) (y, +2y )(t)/t)z)

0 0

0

0

0

0

(y, +2y~)(c) /t)z) —&3y,(k —ik~ )

&3y,(k„+ik, ) (y, —2y, )(a/az)

(A6)
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