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Operator ordering in effective-mass theory
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We study the problem of operator ordering in the e6'ective-mass Hamiltonian with kinetic energy
operator 4 {m pm ~pm ~+ m ~pm ~pm ), for a position-dependent efFective mass m. Here

a+P+y= —1. We use merely the inherent criterion that the eigenvalues of the Hamiltonian
should correspond to finite and uniquely determined energies. Through exact model calculations we

show first that divergences occur unless a =y, and second that a =y =0, P= —1 is the only univer-

sal set of operator ordering parameters which gives unique results.

I. INTRODUCTION with

The effective-mass approximation' is an extremely use-
ful method in semiconductor physics, by means of which
dynamic and static properties of charge carriers can be
studied free of complexities due to the lattice potential of
the material. The effective-mass treatment rests on a firm
basis for homogeneous semiconductors. It becomes in
fact asymptotically exact when the perturbations of the
periodic Hamiltonian, for instance in the form of a shal-
low impurity potential, become su%ciently gentle.

In its simplest form the effective-mass wave function
(envelope function) for the conduction band, say, obeys
the Schrodinger equation with a Hamiltonian

fi
V +E,+U(r) .2'

Here m is the effective mass, E, the (simple) minimum of
the energy dispersion E(k), and U(r) is the perturbing
potential. I is considered scalar since complications
arising from tensorial effective masses are not germane to
the issue to be discussed here.

The efFective-mass approach has also been used exten-
sively as a computational method to deal with
nonuniform crystals, in particular because of the increas-
ing attention paid to man-made heterostructures like
quantum wells and superlattices. The molecular-beam
epitaxy technique makes it possible to produce abrupt in-
terfaces between materials and in these applications the
effective-mass parameters become position dependent.
The most straightforward generalization of Eq. (1) uses
the now position-dependent conduction-band edge E,(r)
in the potential-energy part of the Hamiltonian. Since,
however, a position-dependent effective mass m (r) and
the momentum operator do not commute, the question
arises of the correct form for the kinetic energy opera-
tor.4'

The basic requirement is, of course, that the Hamil-
tonian is Hermitian. The operator ordering

H= —
—,'irt (m Vm~Vmr+mrVm~Vm )+E,(r)+ U(r),

a+P+y = —1,
secures Hermiticity, and includes special cases that have
appeared in the literature, viz. ,

—'m 'V +—'V m ' m ' V m ' Vm 'V (4)

for the kinetic energy (omitting the constant —iri /2).
The question of the actual values of a, P, and y

remains, and the present article addresses this issue in a
limited sense. We do not discuss the relation of (2) to a
more complete treatment of the underlying crystal struc-
ture, nor the question of whether an effective-mass
description of the simple type (2) can be justified at all.
Our objective here is different. We stay completely
within the framework of effective-mass theory, i.e., we ac-
cept Eq. (2) as our starting point. The point of interest is
possible inherent limitations on the values of a, P, and y.
It is perhaps surprising that there are any limitations on
the operator ordering beyond Hermiticity. As we shall
see, however, unacceptable physical consequences occur
unless specific choices are made.

II. EIGENVALUE PROBI.KM

We will in Sec. III study the eigenvalue problem

Hf=Eg.
For that purpose reformulations of the operator (2) will
be useful. An obvious possibility is to let the position-
dependence mass dependence take the form of an
effective-potential term. Introducing

y=m -'"y
and carrying out all differentiations in Eq. (5) we end up
with

—V P= I2A' [E—V(r)]m(r) PV l(r)—

+ [(y —a)' —P']( V& )'I y .

(2) Here
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V(r) =E,(r)+ U(r)

l(r)= —,'Inm(r) .

From the form (7) it is seen that applications to abrupt
heterojunctions, i.e, to discontinuous effective-mass varia-
tions, apparently result in two types of singularities in the
effective potential: derivatives of 5 functions and squares
of 6 functions, both ominous signs. This observation is
superficial, however, since we will see later on that be-
cause of cancellation effects it may not necessari/y be
disastrous to have both types of singularities present
simultaneously.

A second useful reformulation employs the wave func-
tion

a/2+ y/2

In this case the new wave function satisfies

f2—[V y+2P(Vl )Vy
2m (r)

+(y —a) (Vl) y]+V(r)y=Ey,

or

This is the Euler-Lagrange equation for the variational
functional

to be stationary. Inserting the explicit form of H, we ob-
tain, after a partial integration,

,'A Jd—rm~[)Vy) —(y —a) (V'l) )y~ +2A' m(r)V(r)(y( ]8 (y)=
dms~+' y 2 (12)

In particular, we will make use of the Rayleigh-Ritz in-
equality

Eo ~R (y)

for the ground-state energy.

III. NECESSITY QF a=y

heterostructure with no conduction-band ofFset between
material 1 and material 2, and with a third surrounding
material that the electron cannot penetrate. The physical
relevance of the model is, however, not crucial for the
conclusions we draw.

In order to tame the singularities we consider the
discontinuous effective-mass variation above as the limit
of the continuous mass-dependence (Fig. 2),

As a test case we solve the simplest possible eigenvalue
problem, a particle in a one-dimensional box whose inte-
rior consists of two materials with effective masses m

&

and m2, respectively (Fig. 1). For definiteness we assume
m2&m&. This could represent transverse motion in a

-L
I

-FL EL
X

I I

-L CL

FIG. 1. An abrupt heterostructure in a box. The effective
masses are m

&
and m&, respectively. FIG. 2. A continuous effective-mass variation.
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m& for —L &x & —eL,
m(x)= (m, m, )'"(m, /m, )

"'~ for Ixl &eL,
m2 for eL &x &L,

(14a)

(14b)

(14c)

aJ', (z )+bY (z )

aJ (z )+bY, (z )

=(m, P)' cot[L (m, P)' (1—e)]+pc,
and, at x =eL,

(26)

2R E=P (15)

when @~0. This choice secures for finite e a piecewise
linear variation of the function l (x), Eq. (8), that enters
the effective potential.

%'ith the notation

aJ' (z+ )+b Y,'(z+ )

aJ (z+ )+b Y (z+ )

=(m2E)' cot[L (mzk)'~2(1 —e)] pc .—

Eq. (7) now takes the form Here

Em
& P—for L&x—& eL, —

[ Em(x—)+b, ]P for eL &x—&eL,
Em2$ f—or eL &x (L .

(16b)

(16c)
and

c =(1/4eL) ln(m2/m, ) (28)

Here 6 is a constant potential,

+=z(+eL)=(m&m2)' l ' c '(m2/m )*'

b, =(v/4eL) ln (m2/m, ), (17)

with the abbreviation

v =—P —(y —ct) =(1+2ct)(1+2@).

The boundary and matching conditions are

(18)

P( —L)=P(L)=0,
continuity of P at x =+eL, plus definite discontinuities
b,P' in the slope P' at x =+eL. The discontinuities in the
derivative occur because the V i term in (7) produces 5
functions at x =+EL. Integrating the one-dimensional
version of Eq. (7) across x =+eL we obtain

P(x)=A sin[(m, E)'~ (x+L)],
while for eL &x &L we have

(21)

[b,p'] +,L = + (p/4eL ) 1n(mz/m, )p(+eL ), (20)

For L&x ( eL—the releva—nt solution of (16a) is

The ratio b/a is determined both by (26) and by (27).
Equating these two expressions for b/a, we obtain the
final equation to determine the energy eigenvalues k

First, we solve this eigenvalue equation numerically for
the ground state Po as function of e, for some values of
a, p, y (Fig. 3). The crucial feature that emerges is that
the eigenvalue becomes negative for e less than a critical
width parameter eo, except when o.'= y.

The width eo at which the ground-state energy goes
negative can be found exactly. This is useful as a check
on the numerics, but we refrain from giving the exphcit
formula. We show, however, in Fig. 4 the variation of
this critical width with

I
a —y I (for fixed p}. The

influence of the mass ratio m2/m
&

is also apparent in the
figure.

In the abrupt limit e—+0 the ground-state energy does
not merely become negative when any, it also diuerges.
This can be shown rigorously by means of the Rayleigh-
Ritz inequality (13).

P(x)=8 sin[(m2E)'~ (x —L)] . (22)
cx=Y

E,

In the narrow intermediate range the solution is less ele-
mentary. By introduction of the new variable

z=4eL(m&m2)'~ E'~ (mz/m&)'~ ' /ln(m2/m, ) . (23)

-Yi=1

Eq. (16b) takes the form

d 2' d ch
z +z +(z —v )/=0,

dz

Bessel's equation. Hence

P(x)=aJ (z)+bY (z)

(24)

(25)

-2-

I I I i I I

as 1

3

0

tb)

~ I I I I

as 1

in this range.
It remains to splice the wave function at x =+EL.

Continuity of P together with the slope-discontinuity re-
quirement (20) yields, at x = eL, —

FIG. 3. The ground-state energy as function of the relative
width e of the healing layer for several values of a,P,y. We
have taken m2 =2m &. Energies are measured in units of
A'2/2mzL'. (a}P= —l; {h)P= —2.
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FIG. 4. The width eo for which the ground-state energy van-

ishes, as a function of ~a —y ~, and for three different tnass ratios
m2/m ~. The value P= —1 is used.

Pl 2
2EOA

PPl i
' f72 i

Since m, ~ m ~ m2 we can form from (12) the weaker
inequality

For yea, however, we can always choose A, so large
(and independent of e) that the second term in (33), of
O(A, '), dominates the first term, of O(A, ). We may
presuppose that e is chosen in advance so small that this
A, is within the range (32). Hence the upper bound can be
made negative and proportional to e . We conclude
that for a heterostructure (i.e., m&Wmz), and for any,
the ground-state energy diverges towards minus infinity
in the abrupt limit, a useless and unphysical result.

Morrow and Brownstein consider the same class (2) of
eC'ective-mass Hamiltonians, and obtain also the result
that a must equal y. They conclude, however, that the
junction acts as an impenetrable barrier, forcing the wave
function to vanish at the boundary. The reality is, as we
have just seen, rather different. The wave function is con-
centrated at the junction which acts as an extremely
singular attractive well.

In conclusion, application of the effective-mass equa-
tion to abrupt heterostructures requires

(35)

This still leaves the value of a =y, or, equivalently, of p,
undetermined. In the next section we shall argue that
overall consistency can only be had if 0. and y vanish.

(y —a) 1

(4eL )z mz m2

+L
g dx—L

ln (m~/m2)

(30)
—

—,'tri m Vm~Vm g+[E,(r)+ U(r)]Q=EQ . (36)

IV. ARGUMENT FAR a=y=0

With a=y the stationary Schrodinger equation takes
the form

for a g that vanishes at x =+I,. A convenient trial func-
tion is

As long as the potential U is everywhere finite, one sees
immediately that unless

0 for ixi) eXL,
e A, L —x for (x ~

(eA.L,
with a variational parameter A, in the range

1&A, &e '.
Insertion into (30) yields

5A
Ee ~ [64K, (m~/m )

)~~~

256m, I. E

—(y —a) A, '(m, /m )~~~

Xln (m2/m, )],
where we have used that

3—2A, +—I, )1

(31)

(32)

(33)

m g continuous, m~Vm i)'j continuous, (37)

the first term in (36) will contain stronger singularities
than the other two terms.

We will now argue that consistency requires cz=y =0,
or, equivalently, p= —1. Again a simple test model will
be used, in this case a one-dimensional 6 well:

U(x) = —p5(x) . (38)

It differs from the standard textbook example in that the
mell is surrounded by different materials, with effective
masses m& and m2, on the left-hand and the right-hand
side, respectively [Fig. 5(a)]. For simplicity we assume
zero band-edge discontinuity, E, =0.

We approach the singular potential in a controHed
manner by considering the 5 well as the a~0 limit of the
square-well potential in Fig. 5(b), viz. ,

For y =o: only the first term remains, and taking k equal
to its maximum value e ' we have

Eo 2 (m2/m, )( 5' lul

4m ]I
(34)

Since by Eq. (12) Eo is positive in this case, this shows
that for a=y the ground-state energy is finite when
e—+0.

(39)0 otherwise .
The result should be independent of the values of a

&
and

a2 as long as the @~0 limit is taken. The main advan-
tage with the everywhere-finite potential (39) is that
boundary conditions are unproblematic.

We seek bound states in the 5 well. With the now
piecewise constant potential the solution of the

—pe '(a, +a@) ' for a, e&x (aze, —
U(x)= .



39 OPERATOR ORDERING IN EFFECTIVE-MASS THEORY 12 787

y(x)

0

V(x)

-~,F CI&E.

V. CONCLUDING REMARKS

We have in the present article explored the conse-
quences of the different ways of ordering the momentum
and the mass operators in the effective-mass Hamiltonian
(2). Assuming the values of a, p, and y to be universal,
we have through exactly solvable test cases shown that
only for a=y=O, p= —1 are results finite and self-
consistent. For a more general starting point than the
operator (2), which leads to the same conclusion, see the
Appendix.

The resulting kinetic operator

(b) ——'A Vm 'V, (47)

FIG. 5. (a) The 6 well. (b) Square-well approximation to the
6 well.

and

q„=(—2m„E)'/ /A', (41)

Schrodinger equation has the form

A„exp( —q„~x ~
) (well exterior),

B„c so(Q„e' x+C„) (well interior) .

Here the subscripts r =1,2 refer to material r, while A„
B„,and C„are constants. Moreover,

was apparently first used by BenDaniel and Duke.
It is interesting that a very recent study finds that

photoluminescence spectra for GaAs/(Al, Ga)As quan-
tum wells are best fitted with a value of p in the neighbor-
hood of —1.

The remaining question is of course the relation of
effective-mass theory to a more complete treatment of the
underlying crystal lattice. Needless to say, the applica-
tion to heterostructures must at least have the same re-
strictions as for homogeneous materials. It is also
known' that for heterostructures the validity is more re-
stricted. However, exact model calculations have
shown' that when the effective-mass approximation is
valid, the operator ordering is given by the values
a=y=0, P= —1.

Q„= I2m„[eE+p/(a, +a2)]) '/ /fi . (42) APPENDIX

Connecting the wave function and its derivative at the
three boundaries x = —a, e, 0, and a2e, in accordance
with the matching conditions (37), we obtain the follow-
ing implicit equation for the bound-state energy E:

In this appendix we consider a more general starting
point than Eq. (2). For a Hermitian kinetic operator one
may take

q„—Q„E ' tan(a„e'/ Q„)

Q„+E q„tan(a„e Q„)

In the limit @~0this simplifies to
2

g mP(q„—a„Q„)=0,

(43)

(44)

a,. p,. 7,. y,. p,. a,.
—,'gc;(m 'pm 'pm '+m 'pm 'pm '), (Al)

where a;+P;+y; = —1 and where the coefficients c, sum
to unity. Introducing the wave function (6) we are again
led to the efFective potential equation (7), but with new
coef5cients that are given by the replacements

or
2

g mP[q„2@a„m„(a—, +a2) 'fi ]=0, (45)
and

p=gc;p;

(a —y)' —p'=pc, [(a, —y, )'—p,'] .

(A2)

(A3)

using the e~O limit version of Eq. (42).
Inserting the connection (41) between q„and E, we

finally obtain the energy eigenvalue

(a, m~i+'+a m~+')
g2 ( P+ 1/2 + P+1/2 )2( + )2

(46)
mi m2 ai a2

in the 6 well. In the homogeneous limit m&=m2 this
reduces to the well-known result E = —

—,'p mA in-
dependent of P, and of a „a2.

The crucial observation is that for a heterostructure
(m, &m2) the energy level E is unique, i.e., independent
of a, and a2, if and only if P= —1.

This demonstrates that the many-term operator (Al) is in
fact identical to a two-term operator of the form studied
in the main text. The equations (A2) and (A3), together
with a+p+y= —1, determine the "effective" values of
a, p, and y. The only new feature that may possibly
occur is that the coefficient (a —y), which plays such a
crucial role in the discussion in Sec. III, can also be nega-
tive. (Thus, the eff'ective values of a and y are not neces-
sarily real. ) For (a —y) negative the junction acts as an
impenetrable repulsive barrier, rather than a singular at-
tractive well. This situation is just as unphysical, and can
only be avoided if a =y, as before.
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