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Structural phase transitions in chalcogenide glasses
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The composition dependence of the structural and electronic properties in chalcogenide glasses

suggests that there exists a structural phase transition at the average coordination number of 2.67.
Materials having smaller coordination numbers are characterized by molecular structures, and oth-
erwise three-dimensional networks govern the properties. The result is discussed in light of topo-
logical and percolative arguments.

I. INTRODUCTION

Since Zachariasen's pioneering work' one of the long-
standing problems in condensed-matter physics has been
how to grasp the structure of disordered solids. For crys-
talline materials, Bragg s equation gives, in principle, a
method for uniquely determining periodic lattices, and
understanding of relationships between microscopic
structures and macroscopic properties has been a subject
in solid-state physics. Amorphous solids, as opposed to
crystals, possess no long-range order, and since we have
no established techniques capable of identifying non-
periodic configurations, physics on amorphous materials
is far behind that of the crystalline science.

A lack of the translational regularity, however, makes
it possible to change continuously the elemental ratios in
glassy compounds. Hence, compositional studies seem to
be vitally important for amorphous materials. It is a pur-
pose of this paper to emphasize such an approach, in
which the dependence of various properties on composi-
tions for series of glassy chalcogenide semiconductors is
exploited to draw a structural picture in a coherent
fashion.

Upon examining the amorphous structure of covalent
glasses, we may classify building elements into two com-
ponents; one is normal bonding structure consisting of
covalent bonds of densities on orders of 10 —10 cm
which can be specified by chemical and topological na-
tures, and the other is defects, e.g. , impurities, dangling
bonds, valence-alternation pairs, and wrong bonds
(homopolar bonds in stoichiometric alloys). The density
of defective bonds is, in general, less than 10 of that for
the covalent bonds, and therefore structural behaviors
are determined mostly by the normal configurations.
Further, these are primarily responsible for such elec-
tronic properties as the band-gap energy, in contrast to
gap states originating from defects. Thus, consideration
of glassy characters using topological concepts may give
fruitful ideas similar to those obtained through the
unified understanding of crystalline properties based on
periodic lattices. We will discuss in the present work
physical characteristics seemingly governed by the topo-
logical bonding structure, which involves a hierarchy of
correlation ranges, from short to medium.

Regarding the short-range configuration extending to
—5 A in scale, the present status of understanding is
more or less substantial. ' X-ray difI'raction and extend-
ed x-ray absorption fine-structure (EXAFS) studies give

information on radial distributions, and Raman-
scattering spectra are feasible to examine molecular clus-
ters. These investigations manifest that the short-range
orders in amorphous materials are nearly the same as
those in crystalline counterparts. The coordination nurn-
ber is preserved in covalent glasses, obeying the so-called
8 —N rule, where N is the valency of an atom. The rule
suggests that the numbers of nearest-neighbor atoms for
S(Se), As, and Si(Ge) are, respectively, 2, 3, and 4. The
average coordination number Z of covalent bonds is a
good measure representing characters of atomic units.
If a sample has a composition of Ge(Si) As~S(Se),
then

Z =4x +3y+2(1 —x —y) .

It should be kept in mind that an implicit assumption
made on using the average coordination number is in-
discriminate in species of valence bonds. The chemical
property is obscured, and instead the topological nature
will emerge.

To characterize the medium-range structure over dis-
0

tances of -20 A, the network dimensionality D seems
to be a useful quantity, which is defined as the number of
dimensions where covalently bonded clusters can be ex-
tended. Zallen has argued that D =1, 2, and 3, respec-
tively, for amorphous Se, As&S(Se)3, and Si(Ge). For in-
stance, D = 1 for Se corresponds to a chainlike morpholo-
gy, in which entangled chain molecules are held together
with weak intermolecular forces mostly consisting of the
van der Waals type, and D =3 means three-dimensional
continuous-random networks.

We have at present, however, no experimental tech-
niques available to define the medium-range structure
with confidence, and proposed ideas, specifically for chal-
cogenide glassy alloys, appear to be controversial in a
qualitative sense. For glassy As2S3, as an example, helical
(D =1), layerlike (D =2), and cross-linked (D =3)
(Ref. 10) structural models have been inferred, depending
on difterent kinds of structural studies. Further, for ter-
nary alloys such as Ge-As-S(Se), structural dimensions
have not been suggested. Nomenclature denoting classes
of structures is also a source of the problem, since any
clearcut lattices cannot be envisaged for disordered ma-
terials. Each word may embody some aspect of a materi-
al, but it would not necessarily visualize the overall
features.

In the present paper, I will attempt to obtain conceptu-
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al ideas representing the amorphous structure through
examining compositional changes in several properties.
The study focuses on properties of materials having high
covalency and, hence, discussion of glassy compounds
containing heavy elements, e.g. , Te, Sb, Sn, and Bi, is
hardly given, since physical properties of such glasses
may be influenced substantially by metallic characters
which render the coordination numbers changeable. "'

Further, bulk glasses are inspected as far as possible be-
cause some evaporated films seem to have structures
different from bulk glasses and/or to contain a large
number of defects and voids' ' which make them un-
suitable for the present purpose. Even for bulk glasses,
properties vary resting on preparation procedures and so
forth, ' whereas the variations may be neglected in com-
parison to compositional dependencies.

Ge-As-S glasses are systematically studied, and Sec. II
deals with the experimental details. Section III provides
results together with comparative data on other Ge- and
As-chalcogenide alloys. We will see various signatures
suggesting a structural phase transition at Z =2.67, in
addition to that at 2.4 predicted by Phillips and oth-
ers' ' and demonstrated experimentally. It is shown
that the transition at Z =2.67 can be accounted for on
the basis of a constraint model for two-dimensional ma-
terials. Si-S(Se) glasses may be exceptions to the present
argument and, therefore, the composition dependence is
discussed separately in the last part. Section IV contains
a summary. A preliminary result of the present work was
published elsewhere.

II. EXPERIMENTS

Glassy Ge As S, „ ingots having various composi-
tions in a glass-forming region shown in Fig. 1 were
prepared by the melt-quenching method. Chemical mix-
tures of Ge, As, and S chunks of 99.9999%%uo purity were
vacuum-sealed in silica glass tubes, which were heated at
1000 C for 12 h. The glass tubes were rocked continu-
ously during heating in order to ensure homogeneity.
The melts were quenched in air. The composition richest
in S content, Ge, pAs, pS8p was very explosive, and could
not be prepared despite several trials. By contrast, two
samples deficient in S atoms were crystallized, even when
quenched into water. Accordingly, these were excluded
from further measurements. The chemical compositions
of prepared glasses were ascertained by electron-
microprobe x-ray analysis. The ingots were polished to
wafers 20—50 pm thick for x-ray and optical experiments.

The density was measured using the Archimedean
method along with methylalcohol as a reference medium.
The atomic volume was calculated from the density and
an atomic weight for a given composition. X-ray
diffraction patterns for polished samples were monitored
in a transmission geometry using copper radiation (40
kV, 40 mA) and a position-sensitive proportional counter.
The exposure time was about 10 min. Details of elastic
and optical experiments were described in previous pa-
pers. ' In brief, the bulk modulus was evaluated from
velocities of acoustic waves of 10 MHz and/or by
measuring deformation of samples under hydrostatic
pressure. There were no meaningful differences be-
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tween the acoustic and the static values. The reversible
photodarkening phenomenon was evaluated from shifts
of the optical-absorption edge.

III. RESULTS AND DISCUSSION

A. Atomic volume and microscopic structure

Figure 2 shows the atomic volume U, as a function of
the average coordination number Z for As-S, ' As-
Se, ' Ge-S, ' Ge-Se, and Ge-As-S systems. The result
for Ge is calculated from the thin-film density, and the
value for S at room temperature is obtained through in-
terpolating the data of the melt and of the glassy form,
which is stable only at lower temperatures than
—30 C. Not surprisingly, small quantitative variations
exist among some data reported by difterent authors, but
inconsistency in the composition dependence is not
marked. (Similar observations are confirmed for other
dependencies discussed in the present paper. )

Several features are worth pointing out in Fig. 2. It.
may be startling that, even for the ternary glasses fixed by
two compositional quantities x and y, the average coordi-
nation number Z appears to be determinative of the
atomic volume. Further, for all systems depicted in the
figure, we see that a gross composition dependence is a
decrease in the atomic volume with an increase in Z. In
addition, there seem to exist minima at Z =2.4 and max-
ima at Z =2.67, except for the peak in As-S having a
limited glassy-forming region of Z ~2.45. The existence
of the extrema in the ternary alloys may be vague, prob-
ably because of different atomic sizes. The maxima at
2.67 and minima at 2.4, however, can be disclosed also in
the data for Ge-As-Se (Ref. 35) and Ge-Sb-Se (Ref. 36)
ternary systems, and for Ge-As-S glasses reported by
Myuller et al.
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FIG. 1. Chemical comPositions of PrePared Ge„AsySl — —y

glasses (0 ), crystallized samples ( X ), and an exploded sample
{8,). The triangular diagram contains only the S-rich portion,
in which the glass-forming region is shown by a dotted line.
The average coordination number Z of a sample is given by pro-
jecting the compositional point onto the bottom scale.
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FIG. 2. The atomic volumes for various chacogenide glasses
as a function of the average coordination number Z. The
present results for Ge-As-S glasses are plotted by circles. Solid
lines for binary alloys show representative tendencies with an
accuracy of +0. 1 cm'//mol. Dotted lines depict estimated be-
haviors.
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FIG. 3. X-ray diffraction patterns for several Ge AsyS
glasses. The average coordination number Z is given in the
left-hand panel.

It can be argued with the following two reasons that
the Z dependence of the atomic volume originates from
changes in bonding topology. First, for the binary alloys
the figure shows the minima occurring at GeS(Se)~ and
As2S( Se ), , and the maxima at GeS(Se)2 and As2Se.
Among these compounds, As2S(Se)3 as well as GeS(Se)&
are stoichiometric samples constructed totally with
heteropolar bonds, ' whereas the extrema are situated
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FIG. 4. FSDP characteristics in Ge-As-S (circles) and As-S
(squares) glasses as a function of the average coordination num-
ber Z. Open and solid symbols show the distance ( = 2n/Q) and
the intensity norinalized with that of the second peak at Q =2.2
A ' (see Fig. 3).

also at the nonstoichiometric materials GeS(Se)~ and
As2Se. This fact indicates without a doubt that the
dependence has no connection with chemical ordering.
Second, the variations of the atomic volume in Ge(As)-Se
and Ge-As-Se systems can be attributed mainly to some
change in bonding structures, since Ge, As, and Se atoms
are located closely in the same rank on the Periodic
Table, so that the atomic radii are nearly the same. The
observations that sulfide systems exhibit similar trends to
those of the selenide imply preponderance of a topologi-
cal rule over the composition dependences.

It is known that chalcogenide glassy alloys show a
diffraction peak at Q ( =4' sing/A. ) = 1 A ', often
termed the first sharp diffraction peak (FSDP).3'6 The
peak position suggests periodic structures separated by
—5 A and the half-width implies correlation lengths of
-20 A, on medium-range scales. Figure 3 shows a selec-
tion of x-ray diftraction patterns for Ge-As-S glasses. We
see that both the intensity and the position of the FSDP
change with the compositional variation.

Figure 4 presents the Z dependencies of the intensity
and the distance d (=2'/Q) calculated from the FSDP
for the Ge-As-S system together with those for As-S
glasses. ' The intensities are normalized with those of
the second peak at g =2.2 A ', nonetheless, the overall
features are una6'ected by the normalization procedure.
We emphasize again that the compositional changes are
governed by the one parameter Z in both systems. For
Ge-As-S alloys, with increasing Z from -2.4, the intensi-
ty increases, peaks at around Z =2.67, and then de-
creases. A continuous strengthening in the peak intensity
for As-S glasses with Z in a region of Z ~2.43 seems to
be along this line. The fact that glassy Se exhibits no
FSDP is also in accord with the compositional trend.
In contrast, the distance increases monotonically with Z
for both systems when Z ~ 2.4. Similar characteristics
for the FSDP intensity and position can be pointed out in
other compounds, e.g. , As-Se, ' Ge-Se, and Ge-S. '
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Therefore, it may be argued that the composition varia-
tions are universal among covalent chalcogenide glasses.

In order to grasp the Z dependencies of the atomic
volume and the FSDP characteristics, we tentatively as-
sume a variation scheme of medium-range glassy struc-
tures with Z as follows.

(i) In glassy Se(S) of Z =2, the network dimension is
approximately unity.

(ii) Upon introducing As and/or Ge atoms to these
chalcogen glasses, the one-dimensional rnolecules are
cross linked, and gradual structural transforrnations from
D =1 to 2 take place. At Z =2.67, layer structures are
fully evolved, namely D =2 when Z =2.67. The layer
structures may be considered to be segmental, not frag-
mental, since the fragmental clusters ~ould be sur-
rounded by a number of dangling bonds having unpaired
electrons. Experiments reveal, however, that the spin
density is at most 10' cm . ' ' In the present context,
it may be helpful to imagine a pile of crumpled papers,
which typify covalent layer clusters.

(iii) When Z increases further, the structures undergo
the transition to three-dimensional networks, progressive-
ly multiplying cross-linked sites. Finally, at Z =4 &hree-
dimensional continuous-random networks appear.

This model for the structural variation underlies discus-
sion throughout the present work, and will be examined
in some respects.

The above assertion is mostly consistent with previous
arguments, specifically with the Zallen's view. It has
been accepted widely that D =1 in twofold-coordinated
glassy materials. (Zallen assigns D =0 for orthorhombic
S with the reasoning that the crystal consists of S8 rings.
Nonetheless, for glassy S there is ample evidence suggest-
ing polymeric structures. ) The idea that D =3 when
Z =4 is in current use. ' Thus, a priori, that D increases
with Z seems plausible. The assumption that D =2 for
materials of Z=2. 5 has been proposed previously with
structural models based on some kind of layer
configuration, e.g. , the distorted layer structure ' and
the raft geometry. Further, almost all present pressure
studies useful in obtaining insights into amorphous struc-
tures support the low-dimensional nature. ' In the fol-
lowing, we see that under the present hypothesis the Z
dependencies of the atomic-volume and FSDP charac-
teristics can be understood coherently.

The atomic volume is one of most fundamental proper-
ties, given through normalizing the compositionally aver-
aged atomic weight with the density. By dividing the
atomic volume with Avogadro's number, N„we can
evaluate the mean volume occupied by an atom included
in a material of interest. Thus the quantity for a D-
dimensional solid can be estimated approximately as

u, (D) =1@,r R

where A and r denote the van der Waals and the covalent
bond lengths. Here, the filling factor of atoms in space is
neglected in order to clarify the argument. (The intro-
duction seems to improve quantitative agreement be-
tween the estimated volumes and the experimental re-

0

suits. ) Since R =4 and r =2 A, we expect
u, (l)) u, (2)) u, (3), inequalities in harmony with the

gross experimental tendency. The increase in the atomic
volume from Z =2.4 to 2.67, however, appears puzzling.

The increase in the atomic volume can be connected
with the FSDP characteristics, in case the structure is
two dimensional. In light of the layer model, the FSDP
is interpreted as the peak diffracted from stacks of layers
held together by intermolecular bonds mostly consisting
of van der Waals forces. ' ' ' Since the layer separation
d calculated from the peak position seems to correlate
with R, the monotonic increase in u, ( =X, r R ) from

Z =2.4 to Z =2.67 can be related to the expansion of the
interlayer distance. In the present context, therefore, the
compositional change in this region might be regarded as
an application of "negative pressure. " "

The correspondence of the changes in the atomic
volume and the FSDP position is also supported quanti-
tatively. Fractional changes in the atomic volume in the
compositional region of interest are, as shown in Fig. 2,
about 5% which is approximately —,

' as large as those of
the distance d shown in Fig. 4. The difference is under-
standable, provided that the layers are not completely Hat

but have corrugated finite thicknesses, as those included
in layer crystals such as As2S(Se)3 and GeS(Se)2. ' ' '

The change in d would be partitioned by atoms located at
bordering and in internal regions of the layers, i.e.,
b u, = b,d(Xt, /N), where the ratio represents the fraction-
al number of the layer-bordering atoms. For the layer
structures in the chalcogenide crystals, the fraction can
roughly be estimated at —,'.

The atomic volume starts to decrease again at
Z =2.67, since the structure is transformed from two- to
three-dimensional networks. Below the critical composi-
tion, As and/or Cxe atoms ean be incorporated into the
layers, enhancing the layer rigidity. At Z —2.67 the
number of atoms included in unit area of the layers be-
comes ultimate. In higher-Z materials, the excess coordi-
nation Z —2.67 promotes three-dimensional crosslinking.
We may envisage that the cross linking proceeds, accom-
panying intercalated atoms, because as shown in Fig. 4
the increase in the distance still remains in this composi-
tional region.

The assumption of the structural transition at Z =2.67
gives a plausible explanation for the composition depen-
dence of the FSDP intensity shown in Fig. 4. According
to the present picture, the intensity increases, rejecting
degrees of the two-dimensional correlation. Therefore,
the FSDP intensity grows continuously from Z =2 to
Z =2.67 with the layer evolution. At Z =2.67, the layer
structure is fully developed, exhibiting the maximal
FSDP intensity. The structural transition causes the turn
of the peak intensity, which decreases further with in-
creasing number of cross-linked sites.

It seems worthwhile to consider here experimental evi-
dence indicating that the atomic volume does not neces-
sarily correlate with the FSDP position. Chalcogenide
glasses exhibit the reversible photostructural transforma-
tion and, for instance, in As2S3 at room temperature it
has been demonstrated that the photostructural transfor-
mation accompanies an increase in the volume, in con-
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trast to an increase in the FSDP angle, suggesting
shrinkage in the interlayer distance. ' It has been report-
ed, however, that the photoinduced change in the peak
position is not reproducible. In addition, the fractional
changes in the volume and the peak position for the pho-
tostructural phenomenon are at most 1.5%, much small-
er than the observed compositional changes, —10%, in
the region of 2.4~Z ~2.67. We can assume, therefore,
that the atomic volume is primarily governed by the layer
separation, while it may be modified by secondary eff'ects,
such as changes in structural randomness, ' which are
neglected in the present speculation.

B. Topological considerations

N„=Nd . (3)

For a material having the coordination number of Z,
N„(Z) can be expressed as a sum of radial and angular
valence-force constraints: ' '

N„(Z) =Z /2+ (2Z —3 ), (4)

where 2 in the angular term corresponds to the two free-
doms 0 and g in a polar-coordinate representation
(r, O, cp) of an atom bonded to another atom located at the
origin, and 3 can be related to the system rotation around
x, y, and z axes. Combining Eqs. (3) and (4), we obtain
Z =2.4, i.e., the coordination number of the most stable
glass is 2.4. The same conclusions are also drawn by per-
colative arguments ' ' and counting the number of zero-
frequency modes. '

In order to understand the transition at Z =2. 67, con-
sideration for medium-range structures may be indispens-
able. Following the Phillips's prediction, ' we can
express the constraint for an atom included in a planar
cluster extending in, e.g. , the x-y plane as

N„(Z) =Z/2+(Z —l ),
where the angular term is calculated as excess degrees of
Z variables in 0 over a rotation freedom around the z
axis. Note that the number of the angular constraints is
reduced to Z —1 because of the presumption of the pla-
nar medium-range configurations. If the cluster is laid in
a three-dimensional space, each atom must have three in-
dependent freedoms for stable existence. Therefore, the
constraint-balancing condition (3), unified with Eq. (5),
gives Z =2.67. That is, a two-dimensional glass appears
to be fixed stably in a three-dimensional space, if the
coordination number is 2.67.

The above notion developed for ideal planar clusters
seems applicable to real materials. As was mentioned in
Sec. III A, layer clusters included in chalcogenide glasses
may have corrugated structures with finite

It may be valuable to consider the transitions at
Z =2

~ 4 and 2.67 in light of the constraint-counting argu-
ment originally proposed by Phillips for amorphous co-
valent materials. Taking the short-range structure into
account, he has asserted that in the glasses having the
highest stability the number of topological constraints
N„, evaluated for an atom is equal to the number of the
flexibility, namely the spatial dimension Nd = 3:

FIG. 5. A structural model for glassy Ge-As-S{Se), and the
projected lattice onto a segmental plane. Ge, As, and S{Se)
atoms are represented, respectively, by fourfold-, threefold-, and
twofold- coordinated circles.

thicknesses. ' ' ' However, if the clusters are inherently
two dimensional as illustrated in Fig. 5, they can be pro-
jected to segmental planes, which may extend in restrict-
ed scales corresponding to the medium-range order.
Hence, the present idea can be adopted to real layer
structures through the hypothetical planar lattices. Note
that homological projection of three-dimensional net-
works onto planes is impossible, inevitably creating
crossed bonds.

The experimental observations seem to be consistent
with these constraint ideas. Since the FSDP is influenced
mainly by intermediate structures, the intensity has only
one peak at Z =2.67. By contrast, both the short- and
medium-range orders reflect upon the atomic volume,
and therefore it has the extrema at Z =2.4 as well as
Z =2.67. The existence of the minima of the atomic
volume [and the band-gap energy (see Fig. 6)] at Z =2.4
may be in accord with the Phillips's argument, because
with respect to microscopic structures the stability can be
associated with tight bonds having short bond lengths.
Thus it is conceivable that a stable glass has a small
atomic volume.

However, the reasons why the interlayer separation in-
creases with Z at around 2.5 and the maximal volume ap-
pears at Z =2.67 are still vague. Probably concomitant
with these dependencies is that, as is suggested by a pres-
sure study, the interlayer interaction sustained through
lone-pair electrons in Ge-chalcogenide glasses appears to
be weaker than that in As-chalcogenide alloys. A few
possible explanations can be off'ered for these observa-
tions. As for a topological reason, evolution of medium-
range order may accompany areal extensions of rigid-
layer segments, requiring more free space between the
layers. As a consequence, the separation and the volume
would increase, accompanying weaker interlayer interac-
tion. Regarding this speculation, it is mentioned that a
lattice model for a crystalline GeS(Se)2 layer consisting of
balls and sticks is more rigid than that for an As2S( Se )3

layer. This fact may imply that folding of a single layer
into segmental structures becomes more and more
difficult with increasing Z, and the separation between
the segments is enlarged. Alternatively, the features
could be ascribed to a chemical nature. We note that
even in crystalline compounds similar structural trends
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C. Electronic properties

It may be quite startling that the Z dependence resem-
bling that of the atomic volume is discernible for the opti-
cal band-gap energy Eg. Figure 6 shows some examples
for As-S, ' ' As-Se, Ge-S, ' '' ' ' and Ge-Se (Refs. 47
and 49—51) systems. For Ge-S(Se) glasses, the maxima at
Z =2.67 can clearly be marked, and for the As-Se system
we can envisage the peak at around Z =2.67. For the
As-S system the critical composition is out of the glass-
forming region. In contrast, minima or inflections seem
to exist at Z =2.4 in all binary systems. It is mentioned
further that the extrema at Z =2.4 and 2.67 are also seen
in the composition dependencies of dielectric constants in
Ge-Se and As-Se glasses.

For the compositional behavior of the band-gap ener-

gy, we try to delineate an elemental picture, extracting
essences from rigorous theoretical calculations. To
evaluate the band-gap energy E, consideration of three
quantities is required. Namely, Eo, the average energy
splitting between the conduction and the valence band;
Ev, the valence-band width; and Ec, the conduction-
band width, which are all combined to give an expression

E =Eo —Ev~2 —Ec~ (6)

—2.5-
0-
c3
CC
UJz 2-
CL

l l.5-

CD

are observed, i.e., GeS(Se)2 layer crystals have wider layer
separations and greater atomic volumes than those of
As2S(Se)2 crystals. This characteristic may have some
connection with the increases in the layer separation and
in the atomic volume in glassy samples.

A more fundamental problem is that no theoretical ex-
planations are given for the experimental observations,
implying two-dimensional structures in chalcog enid e
glasses of Z =2.5. In this context, it may be worth men-
tioning that oxide glasses Si(Ge)02 of Z =2.67 are three
dimensional. The problem is open for future studies.

Eo remains constant, or at least is modified monotonical-
ly if inherent band characters are not changed
throughout the compositional regions of interest. The
conduction band in chalcogenide glasses arises from anti-
bonding states and, hence, we expect in terms of a simple
tight-binding theory that the band broadens with the
coordination number Z,

E, (H)Z,
where (H ) denotes the transfer integral. The broaden-
ing is a consequence of short-range effects, accompanying
the contraction of the atomic volume, and it is effective in
decreasing the band-gap energy. The fact that the
covalent-bond length is modified slightly, 2. 2 —2.4 A, for
all investigated systems implies a nearly constant contri-
bution from the transfer integral ~ In contrast, it is
known that the width Ev of the valence band is substan-
tially influenced by the intermolecular interaction, since
the valence band originates from the lone-pair —electron
states, wave functions of which protrude into the inter-
molecular space. A pressure study' for chalcogenide
glasses suggests that the width Ev changes approximately
as

E~ ~ exp( —d'Ig) .

where g is assumed to be a constant representing a degree
of spatial extension of lone-pair electrons and d' is the in-

termolecular distance changing as a function of Z. In the
present context, d' is proportional to d for the materials
exhibiting FSDP's. Of course, expressions other than Eq.
(8) may be available; nonetheless, it seems universal that
the width becomes wider with decreasing d'.

On the basis of the above analysis, a scenario can be
written for the composition dependence of the band-gap
energy shown in Fig. 6. When Z increases from 2, the
band-gap energy decreases predominantly through the
short-range effect. [A slight increase for the Ge-Se sys-
tem may be upset by the intermolecular effect expressed
in Eq. (8) through the interlayer expansion: i.e., as shown
in Fig. 2 the decrease in the atomic volume for glassy
Ge-Se in this region is relatively small. The presumed
contraction of the valence-band width with Z is also in
accord with electronic structures examined using ellip-
sometry. ] In the region 2. 4 ~ Z ~ 2. 67 the band gap
broadens mainly reflecting the increase in the layer sepa-
ration. When Z ~ 2. 67 the coordination number becomes
a dominant factor again in decreasing the band gap, be-
cause the degree of cross linking is successively enhanced
with increasing Z.

D. Elastic properties

'2
l

3
Z

FIG. 6. The optical band-gap energies for Ge(As)-S(Se)
glasses as a function of the average coordination number Z.
The accuracy of the representative lines is about +0. 1 eV. The
data of S, Ge, and Ge-Se of 3 ~ Z ~4 are obtained for amor-
phous films.

The Z dependence of the bulk modulus exhibits a
threshold at Z =2.67, which is exemplified in Fig. 7 for
the Ge-As-S (Ref. 25) and Ge-Sb-S (Ref. 36) systems.
Ge-As-Se glasses manifest a dependence quantitatively
similar to that in Ge-As-S, and the data are excluded
from the figure. We see that the bulk moduli of these ter-
nary glasses are nearly constant when Z ~ 2.67; otherwise
the rigidity increases dramatically with Z.

It should be mentioned here that the composition
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FIG. 7. The bulk moduli for As-Se, Ge-As-S, and Ge-Sb-Se
glasses as a function of the average coordination number Z. A
theoretical curve obtained through numerical simulation is also
shown, for which the scale is given on the right-hand side (see

the text).

dependencies of elastic properties in binary systems do
not necessarily show the threshold at Z=2. 67. An ex-
ample is seen in Fig. 7 for the bulk modulus in the As-Ge
system, which reveals a prominent peak at AszSe3, the
stoichiometric composition of Z =2 ~ 4. This dependence
is attributable to a chemical eff'ect, ' namely the
strength difference between hornopolar and heteropolar
bonds, and, accordingly, it is eliminated from the present
argument.

Comparison of the observed threshold at Z =2.67 with
a theoretical prediction may be valuable. He and
Thorpe ' have shown through numerical simulation, tak-
ing only the valence forces into account, that an elastic
phase transition occurs at Z =2.4. They found that, for
the networks generated by random removal of covalent
bonds from the diamond lattice, the bulk moduli were
zero when Z 2.4; otherwise these increased in propor-
tion to (Z —2.4)' along with the rigidity percolation.
The threshold composition 2.4 is different from the ex-
perimental value 2.67.

There may be a possibility that consideratio~ for the
intermolecular effect leads to an increase in the theoreti-
cal threshold. In typical chalcogenide glasses, the inter-
molecular force constant is about 5% of the covalent-
bond —stretching constant. ' With respect to the scale
used by He and Thorpe, plotted on the right-hand side of
Fig. 7, the intermolecular eff'ect may add -0.05 to the
calculated modulus. The contribution seems to be
greatest at Z =2, and decreases to zero at Z =4, since
there is no intermolecular interaction in tetrahedrally
connected networks. Therefore, the theoretical curve
would be biased, showing a threshold at Z =2.67. This
possibility appears, however, too coincidental.

Alternatively, it is tempting to speculate that in all

chalcogenide glasses the topological rigidity thresholds
are located at Z =2.67 in light of the following two ways.
The first is based on the medium-range constraint argu-
ment given in Sec. III 8, which predicts that D 2 if
Z ~ 2. 67 and D =3 otherwise. Thus elastic properties are
governed by weak intermolecular forces in low-Z materi-
als, and, by contrast, when Z ~2.67 these are gradually

dominated by stronger cova1ent bonds with increasing
Z. The threshold at 2.67 can, therefore, be connected
to the transition between the two kinds of distinct struc-
tures.

The second approach follows the ring-correction idea
given by Thorpe. ' He has demonstrated that, while a
simple rigidity-percolation analysis predicts the elastic
transition at Z =2 ~ 4, the existence of ring structures con-
sisting of atoms fewer than six is effective to increase the
threshold. Since layer structures are favorable in creating
small rings, we can expect shifts of the threshold to
greater Z values in low-dimensional materials. The fact
that the bonding angle for chalcogen atoms is nearly 90
can contribute to multiplying small rings. As examples
for these speculations, we see, on the basis of the
Thorpe's idea on the ring correction, that crystalline
forms of GeS(Se)~ layers and SiSe(S)z chains, both of
whi'ch have the 2.67 coordination, are just rigid. This
means that, in the corresponding glassy systems, the
threshold may exist at Z =2.67. In real glasses, however,
various distributions of ring sizes can be envisaged, so
that if an intimate correspondence between the two
speculations exists, it is vague.

It is known that the composition dependencies of ul-
trasonic propagation characteristics at low temperatures
also show thresholds at around Z =2.67. Gilroy and
Phillips ' examined acoustic attenuation at 550 kHz in
Ge-Se(S) glasses and found that the attenuation normal-
ized with respect to that in Se decreased with increasing
Z to zero at GeSe2, Z =2.67. Duquesne and Bellessa
measured the acoustic attenuation in amorphous Ge-Se
in the 100-MHz range at temperatures between 0.1 and
10 K, and evaluated the density of the two-level tunneling
systems. The composition dependence in their publica-
tion reveals that the density decreases when Ge atoms
are added to the Se matrix, and is nearly constant be-
tween GeSe2 and pure Ge. In short, both data indicate
the threshold at Z =2.67, while the concentration is es-
timated to be roughly 10' cm, comparable to defect
densities.

Gilroy and Phillips have asserted, following Phillips's
idea, that the threshold shifts to Z =2.67 provided the
bond-bending constraint for Se atoms is neglected.
That is, for Ge Se& glasses the total number of con-
straints per atom can be expressed as

X„. =2x+(l —x)+5x, (9)

where the first two terms represent the stretching con-
straints for Ge and Se atoms and the last term denotes
the bending constraint for Ge atoms. Combining this ex-
pression with Eq. (3) gives x =

—,', or Z =2.67.
Neglect of the angular constraint for Se(S) atoms, how-

ever, seems dubious, since the configuration between
pairs of Ge atoms bonded through Se(S) is preserved fair-
ly well in these glasses. ' In contrast, the present model
assuming low-dimensional structures bearing out the Aex-

ibility in materials of Z 2. 67 may give more plausible
explanations employable to these acoustic behaviors.

A brief examination into Raman-scattering spectra
reinforces the present argument. Figure 8 shows the
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FIG. 8. The peak wave numbers of the low frequency
Raman-scattering peak as a function of the average coordina-
tion number Z in As-S and Ge-S glasses. The accuracy of the
results for As-S shown by a line is within +5 cm

peak wave number of the so-called "low-frequency
peak" as a function of Z for As-S (Refs. 17 and S7) and
Cre-S (Ref. 58) glasses. We see that the peak wave num-
ber is nearly constant, 20—30 cm ', when Z 2.67, and
otherwise it increases with Z, exhibiting a threshold at
around Z =2.67. The origin of the low-frequency peak is
still a subject of considerable debate, whereas in any mod-
els the peak frequency is related in a qualitative way with
the medium-range structures. ' ' Accordingly, the
present model based on the structural transition at
Z =2.67 is in harmony with this Z dependence.

E. Photodarkening

I I I I I
GO

The reversible photodarkening phenomenon observed
in chalcogenide glasses shows an interesting composition
dependence. Figure 9 displays the magnitudes evaluated
at room temperature for As-S, As-Se, Ge-S, Ge-Se,
and Ge-As-S (Ref. 26) glasses. The photodarkening
strongly peaks at around Z =2.67 in all systems except
As-S, which in the glass-forming region exhibits a tenden-
cy to increase with Z, similar to the characteristics in the

other materials.
The composition dependence can be understood, pro-

vided the structural transition occurs at Z =2.67. The
photodarkening has been supposed to result from
structural transformations which are triggered by pho-
toexcitation of electron systems. ' ' ' A part of the
transformed atomic structures seems to be relaxed
thermally at room temperature, and therefore materials
having higher glass-transition temperatures exhibit
greater photodarkening effects. Since the glass-transition
temperature becomes higher with Z when Z ~2.67, the
enhancement of the photodarkening in this compositional
region can mainly be ascribed to the increase in the
glass-transition temperature. In contrast, it is speculated
that cross-linked rigid structures are unfavorable to the
phenomenon, since no free space is available to photoin-
duced atomic motions. Hence the magnitude seems to
decrease with increasing Z above the critical composi-
tion.

F. Si-S(Se) systems

Si-S(Se) glassy systems may have unique characteris-
tics, whereas experimental studies are limited because of
hygroscopic and volatile properties. Figure 10 shows the
Z dependencies of the atomic volume, the position and
the intensity of the FSDP, ' and the band-gap energy '

for Si-Se glasses. The composition dependencies of the
structural and electron properties resemble those in Ge-
and As-chalcogenide systems shown in Figs. 2, 4, and 6,
namely the atomic volume, the FSDP intensity, and the
band-gap energy exhibit maxima at Z =2.67, and the
FSDP position changes monotonically. (The band-gap
energy for Si-S glasses may follow a similar dependence,
while the feature in samples of Z ~2.67 has not been
known because the band gaps are in excess of 3.6 eV. '

No other data relevant to the present purpose seem avail-
able in this system. ) Thus we would apply the dimension-
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systems. The data for Ge-Se, As-S, and As-Se are obtained us-
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FIG. 10. The atomic volume U„ the optical band-gap energy
F. , the FSDP position 2m. /Q, and the normalized FSDP intensi-
ty I for Si-Se glasses as a function of the average coordination
number Z.
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al idea developed for Vie(As) alloys to the Si-Se system
also.

Nevertheless, the structure of Si-chalcogenide glasses is
supposed to be one dimensional. Johnson et al. "' have
suggested that glassy SiSez with Z =2.67 is constructed
by entangled chains consisting of edge-sharing Si(Se&&2)~
tetrahedra. Griftiths et a). and Gladden and Elliot t
have proposed for SiSez glass a cross-linked chain-cluster

0
structure, which on a scale of -20 A may be viewed as
one dimensional. Since glassy Se has polymeric chain
molecules, all Si-Se glasses with Z ~2.67 appear to be
essentially one dimensional.

Amorphous Si has three-dimensional networks, and
therefore it is conceivable that in the Si-Se system D =1
when Z ~2.67 and D =3 otherwise. If this assertion is
justified, the FSDP can be ascribed to the interchain
correlation. Then, the continuous intensity increase in
the region of Z ~2.67 can be related to its evolution and,
in contrast, the decrease in the remaining part seems to
indicate structural changes to more cross-linked net-
works.

The composition dependencies of the other properties
shown in Fig. 10 can be sketched out in the framework of
this structural model. An equality v„(l)) v, (3) derived
frotn Eq. (2) can be employed to grasp the gross tendency
of the atomic volume decreasing with Z. The correlation
between the atomic volume and the FSDP position in
2.4~ Z ~ 2. 67 similar to that in Ge- and As-chalcogenide
materials implies that the argument given in Sec. III A,
i.e., the increase in the atomic volume can be associated
with the expanding intermolecular distance, is applicable
here. Since the natures of the conduction and valence
band in these materials are assumed to be the same as
those in Ge- (As-) chalcogenide glasses, ' the correspon-
dence between the band-gap energy and the atomic
volume can be interpreted, as was done in Sec. III C.

In light of the constraint argument, the short-range
constraint represented by Eq. (4) may be responsible for
the existence of the minimum for the atomic volume at
Z =2.4. (The minimum of the band gap at Z =2.4 may
be obscured by the expanding interchain distance, essen-
tially with the same reasoning as that for Ge-Se glasses. )

On the other hand, hov ever, it may be dubious to apply
the layer-constraint model described in Sec. III B for in-
terpreting the maxima at Z =2.67 in Si-alloy glasses.
Detailed discussion of this problem should be based on

more versatile experimental data, and it is beyond the
scope of the present paper.

IV. FINAL REMARKS

At present, we have no conclusive experimental evi-
dence indicating low-dimensional structures in chal-
cogenide glasses. However, there exists much cir-
cumstantial evidence. Among the evidence, the composi-
tion dependence seems worth noting, for which the
present study gives a plausible and unified explanation.

Investigations on the composition dependencies of
structural, elastic, and electronic properties have revealed
the existence of the extrema or the thresholds at
Z =2.67, which can be understood provided that chal-
cogenide glasses undergo a structural phase transition at
this critical coordination number. Specifically, in As-
and Ge-chalcogenide glasses the signatures can be ex-
plained as originating from the topological change from
two-dimensional structures in materials of Z ~2.67 to
three-dimensional networks in materials having greater Z
values. In Si-chalcogenide systems, it appears that D =1
when Z ~ 2. 67 and D =3 otherwise. The nature of these
Z dependencies has been discussed in light of the topolog-
ical constraint arguments, which emphasize the impor-
tance of short- and medium-range structural orders.

The network-dimensionality approach may also be
valuable in dealing with amorphous tetrahedral materi-
als. For instance, we can prepare one-dimensional polysi-
lane, two-dimensional siloxene, and three-dimensionally
networked Si films. Studies on these materials will be
interesting for examining the universality of the dimen-
sional concept in amorphous semiconductors. It also
seems interesting to examine the Z dependence of defect
characters in glassy samples which were prepared under
fixed and reproducible conditions.
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