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A method is described for the calculation of the real (e& ) and imaginary (e2) parts of the dielectric
function of In& „Ga„As~P& ~ quaternaries lattice matched to InP (0&y ~ 1.0) at energies below
and above the fundamental absorption edge. The present model is based on the Kramers-Kronig
transformation and strongly connected with the electronic energy-band structure of the medium.
This model reveals distinct structures at energies of the Eo, Eo+ b,o, E&, E& +5&, and Eo (E2) criti-
cal points (CP s). The indirect-band-gap transitions also play an important part in the spectral
dependence of e2. The calculated results are in satisfactory agreement with the experimental infor-
mation over the entire range of photon energies (0—6.0 eV). The compositional-dependence of the
optical-transition strength and broadening parameters at each CP energy and indirect band gap is
also given and discussed.

I. INTRODUCTION

The (1.4—1.7)-pm spectral region is currently of great
interest because of the development of low-loss silica op-
tical fibers in this spectral region. The InGaAsP/InP
quaternary alloys thus become a promising candidate for
light sources and detectors used in optical-fiber commun-
ications systems. ' These alloys are also well suited for
studying the effects of alloy disorder on various phenome-
na, since they offer a wide range of alloy compositions
(0 ~ x ~ 0.48, 0 ~y + 1.0) and can be obtained in a highly
pure form so that the intrinsic properties should be inves-
tigated.

It is of considerable interest to investigate optical
response in semiconductors. Knowledge of the refrac-
tive indices and absorption coefficients of semiconductors
is especially important in the design and analysis of het-
erostructure lasers as well as other waveguiding devices
with the use of these materials.

Spectroscopic ellipsometry is an excellent technique
with which to investigate the optical response of semicon-
ductors. ' Recently, Kelso et al. have studied optical
properties of In, „GaxAs~P, ~ alloys of compositions
y =0—1.0 by spectroscopic ellipsometry. They reported
room-temperature (RT) pseudodielectric-function data of
In& „Ga„As P, alloys for energies from 1.5 to 6.0 eV.
However, these spectral-dependence data have one disad-
vantage with respect to theoretical modeling: they are
not expressed as continuous analytic functions of the
electronic energy gaps or, also, of the alloy composition.

In this paper we present a method for calculation of
the spectral dependence of the dielectric constants, e&(co)
and ez(co), of In& Ga As Pi alloys lattice matched to
InP. The model is based on a simplified model of the
band structure of the materials. ' This model covers
the optical response of semiconductors over the entire
range of photon energies. In Sec. II we describe the de-
tails of our model, which includes the Ep Ep+Ap E],
E, +b,„and Ep (E~) gaps as the main dispersion mecha-

nisms. The effects of indirect-band-gap transitions,
which will play an important part in the analysis of the e2
spectrum, are also discussed. In Sec. III we show the fits
with our model to the experimental data of
In ] z Gax Asy P

& y al loys reported by Kelso et aI. The
compositional dependence of the strength and broaden-
ing parameters at energies of each band gap is also ob-
tained and specified in terms of composition y alone in
Sec. III. Finally, in Sec. IV the conclusions obtained in
this study are brieAy summarized.

II. THEORETICAL EXPRESSION

The joint-density-of-states functions J„(co) can be re-
lated to the optical constant e2(co):

4A e
e,(co)=, , ((c~p~v ) ['J,„(co),

where (~p~) is the momentum matrix element for v

(valence) ~c (conduction) transitions. Real ( e i ) and
imaginary parts (e2) of the dielectric function are also
connected by the Kramers-Kronig (KK) relations:

(2a)

(2b)

In the following we will summarize the model dielectric
functions for the critical points (CP s) of various transi-
tion energies [Ep Ep+5p Ei E]+6&, and Ep
(E2 )].' The eff'ects of indirect-band-gap transitions,
which will play an important part in the analysis of the Ep

spectrum, are also discussed briefly.

A. Eo and ED+50 transitions

The Ep and Ep+Ap transitions in the diamond- and
zinc-blende-type semiconductors occur in the center of
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the Brillouin zone (BZ). These transitions are of the
three-dimensional (3D) Mo CP's. The compositional
dePendence of Ep and Ep+hp in the In, Ga AsyP1 y
quaternary system is expressed by the following quadra-
tric form with respect to the molar composition y: '

«,(co)=
[8i

—8 i i (E i
—iiico ) ]

( irico( E, ), (13)
7rB,y, ( fico ~ E, ),

Eo(y) = 1.35 —0.72y +0. 12y

Eo +b o(y ) = 1.466 —0.557y +0. 129y

(3)

(4)

Assuming the bands are parabolic, and using the KK
relations, we obtain the contribution of these band gaps
to e2(co) and e, (co):

e2(co) = [ A /(A'co) ][(irico —Eo) H(xo —1)

for the E1 transitions, and

7'„[82—Bi,(E, +b, ,
—iiico) )

«', (co)= (fico (Ei+b, i),
7r82 y„(fico ~ E, +6, ),

for the E, +6, transitions, where

(14)

+ —,'(A'co —Eo —50) ' H(y, , —1)],
(5)

pi =%co/E, ,

y„=fico/(E, +b, , ) .

(15)

(16)

e, (co)= AEO '
If (yo)+ —,'[Eo/(Eo+6O)]'5f (y, , ) I,

with

A = 4( —'m')' P
3 2

f (Xo)=So '[2 —
( I+Xo)"—(1—Xo)"H (1—Xo)],

(6)

(7)

In Eqs. (13) and (14), the 8's are the strength parameters.
Since the M, CP longitudinal efTective mass is much
larger than its transverse counterparts, one can treat
these 3D M& CP's as two-dimensional (2D) minima Mo.
The contribution to e2 of this type of 2D minima is given
by

«2(co) =7r[B,y, H(y, —1)+82'„H(y„—1)], (17)

where the H's are functions defined by Eq. (10).
The KK transformation of Eq. (17) gives

(8a)

= -'2 —1+
e (co)= —8 y ln(1 — ) —8 y ln(1 — )~1 ~ 1+1 +1 2+1$ +1s (18)

y, =X~/E, ,

y, , =fico/(Eo+ b,o),

(8b)

(9a)

(9b)

The first and second terms on the right-hand side of Eq.
(18), respectively, correspond to the E, and E, +b., gap
contributions.

C. Eo (E2) transitions

1 for z~0
H(z)= 0 forz(0 (10)

B. E
&

and E
&
+6

&
transitions

The E, and E, +61 transitions in the
Inl-. Ga.Asypl-y quaternary system may take place
along the (111)directions (A) or at L points in the BZ.
The variation with composition of these transition ener-
gies can be written as

E, (y) =3.163—0.590y +0.33y

E&+b, &(y) =3.296—0.466y+0. 26y (12)

The E1 and E, +6, CP's are of the 3D M1 type. The
contributions to e2 of this type are

In Eq. (7), m ' is the combined density-of-states mass and
P is the squared momentum matrix element.

As we will see later, the strength of the Ep and Ep+ 4p
transitions in the In1 Ga As P1 quaternary system is
very weak. This is due to the small density of states asso-
ciated with these transitions (i.e., due to the small
eiT'ective mass of the I 6 conduction band).

The more pronounced structure found in the
In& „Ga AsyP1 y system in the region higher in energy
than E& is labeled Eo (Eo triplet). The Eo transitions in
the zinc-blende-type semiconductors are believed to take
place at the I point, or in the b direction near the I
point. The spin-orbit interaction splits the single-group
I'» conduction band into the double-group I'7 and I'8
bands (splitting energy b,o), and the single-group I »
valence band into the double-group I 8 and I 7 bands
(splitting energy bo). The corresponding transitions at
k=0 (I ) are, resPectively, labeled Eo (I s~I 7), ED+ho
(I s~rs), Eo+6O (I 7~I'7 dipole forbidden), and
E,'+ a,' (r; r;).

The band-structure calculation of Chelikowsky and
Cohen for InP suggests various CP's in this energy re-
gion. Three of them correspond to transitions at the I
point (i.e., Eo, Eo+ho, and Eo +ho+ bo). The
Ep +Ap+ Ap transitions are thought to be too weak to be
dominant in optical spectra. A further transition, found
in the calculation, is located along [100] (b. ) about 20%
of the way to X [Eo(h);6~~6,~]. The E7 transitions are
also expected to take place along the [110] direction ( X )

or near X, and occur in InP for energies close to the Ep
and Ep+hp CP's. However, the strength of the E2 tran-
sitions in InP seems to be much weaker than the strength
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Eo(y) =4.72 —0.3 ly —0.Oly (19)

If the Eo transitions occur at I (b, ), then the CP
should be of the 3D Mo (3D M, ) type. However, it is
found from the present analyses that neither the 3D Mp
nor the 3D MI model represents the peculiar line shapes
of e, and ez in the Ep spectral region. The best fits are
obtained with a damped-harmonic-oscillator (DHO)
model, as in the case of the Ez CP's for some III-V
binaries (such as GaP, GaSb, and InAs) (Ref. 17),
Al„Ga, ,As (Ref. 18), Si (Ref. 19), Ge (Ref. 19), and a-
Sn (Ref. 20).

The DHO gives

e2(co)=CX2) /[(1 —X~) +X2Y ], (20)

I

of the Ep and Ep+Ap transitions. In an earlier work,
the Ep+ hp transitions in InP were attributed to Ez CP's.
However, from theoretical considerations about the
spin-orbit splitting of the conduction band (bo), the
structure has more recently been assigned to the Ep+ Ap
transitions. For compositions y&0, the structure has
also never been resolved for more than two of the three
most prominent expected features (Eo, Eo+Ap and E2).
It has thus been considered that this is due to overlapping
or "missing" structures (i.e. , due to their weak struc-
tures).

The Ep and Ep+ hp transitions in the
In& G-a„AsyP& y system cannot be clearly resolved in
the rather broad CP's observed ellipsometrically (i.e., e,
and e2). Therefore, we consider only the Eo CP's as the
main dispersion source in this spectral region. The varia-
tion with composition of this transition energy can be
written as

) =C (1—X,')/[(1 —X,')'+X,'y'], (21)

with

&2=fin/E p (22)

where C and y are, respectively, the strength and
broadening parameters of the oscillator.

D. Indirect-band-gap transitions

Even though the basic In& „Ga AsyP& y/InP hetero-
structure concepts are understood at this time, some
practical device parameters in this system have been
hampered by a lack of definite knowledge of many ma-
terial parameters. To our knowledge, no detailed infor-
mation is available about the indirect-band-gap energy
E~ in this alloy system. This necessitates the use of some
sort of an interpolation scheme. Let us now esti-
mate the indirect-band-gap energies Es (I s~X6) and
Es (I 8~L6) over the entire range of alloy composition
for In, ~&a~AsyP& y lattice matched to InP.

The quaternary alloy, In, z Ga& Asy P] y is thought to
be constructed of four ternary compounds: In, Ga P,
In i z Ga+ As7 GaAsy P J y p and InAsy P

& y . The material
parameters in many ternary alloys (e.g. , 2 B, C) can
be usually approximated in the form of a quadratic func-
tion: T„ac(x ) =xB„c+ ( 1 x)Bac +x—(x —1 )c, where
the 8's are material parameters of the corresponding
binaries ( AC and BC) and c is referred to as a bowing pa-
rameter for the ternary material ABC. If relationships
for the ternary material parameters (? s) are available,
the quaternary parameter Q (x,y) can be given by

1
Q( y)= [x(1 x)[yTwac(x)+(I y)T (x)]+y(1 y)[xT (y)+(I x)T (y)]I (23)

0. 1896yX—
0.4176—0.0125y

(24)

In Table I we present the indirect-band-gap energies E
and E for the binaries of interest. Table II also lists the
bowing parameters of the indirect-band-gap energies E

Land E~ for some ternaries of interest.
Among various material parameters, the lattice con-

stant is known to obey Vegard's law well, i.e., to vary
linearly with alloy composition. Using this law, the
lattice-matching relation between the compositions x and
y for In& „Ga„As P, to InP is written as

The quaternary indirect-band-gap energies as a func-
tion of composition are obtained by numerical solution of
Eq. (23), using the relation of Eq. (24) and numerical
values listed in Tables I and II. In Fig. 1 we present the
indirect-band-gap energies E and E as a function of
the y-composition parameter for In, „Ga As P, lat-

&
—
ytice matched to InP. The variation with composition of

the Eo [Eq. (3)], Eo+60 [Eq. (4)], E, [Eq. (11)],E, +6,
[Eq. (12)], and Eo (E2) gaps [Eq. (19)] is also plotted in
the figure. It is evident from the figure that the quater-
nary system has a direct band gap [Eo/(Eo+ ho)] as the

Binary E, (eV) E,' (eV)

TABLE I. Indirect-band-gap energies of some III-V binary
compounds (RT).

Ternary
Bowing parameter (eV)

Ex EL

TABLE II. Indirect-band-gap bowing parameters of some
III-V ternary compounds (RT).

GaP
GaAs
rnP
InAs

2.26
1.91
2.21
1.37

2.63
1.73
2.05
1.07

In) Ga P
In& Ga As
GaAs Pl y

InAsy P 1

0.18
1.4
0.21
0.28

0.43
0.72
0.42
0.27
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0-

~ ~

0
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-20
0

Inp

2 3 4
Wu ( eV)

As discussed in Sec. II, we are able to fit the E, (and
E, +6, ) CP structure with either the 2D [Eq. (17)] or 3D
model [Eqs. (13) and (14)]. The 3D model explains the
experimental lower-energy shoulder of this structure well.
The fit in the (2—3)-eV region also becomes satisfactory
when the indirect-band-gap contribution [Eq. (27)] is tak-
en into account. The Eo (E2) structure is seen to be well
fitted by the DHO [Eq. (20)].

In Fig. 3 the solid line is obtained from the sum of Eqs.
(6), (18), and (21). The nondispersive term, ei (=2.1), is
taken into consideration in this calculation. The experi-
mental data (solid circles) are taken from Ref. 8. The

FICi. 3. e, spectrum of InP (x =0, y =0). The solid line is
obtained from the sum of Eqs. (6), (18) (I =0.14 eV), and (21).
The nondispersive term, e, (=2.1), is taken into consideration
in this calculation. The experimental data (solid circles) are tak-
en from Ref. 8. The data in the transparency region (open cir-
cles) are taken from our previous calculation (Ref. 25).

data in the transparency region (open circles) are taken
from our previous calculation (Ref. 25). As discussed in
Refs. 17—20 (also see Fig. 9), the theoretical e, spectrum
[Eq. (18)] exhibits a divergence at the F. , and E, +b, i

edges. An introduction of the damping (broadening)
eft'ect into Eq. (18) can successfully decrease the strength
of the E, and E, +6, peaks and lead to a fact which is
coincident with experimental verification. Such a damp-
ing eFect can be easily introduced in Eq. (18) in a phe-
nomenological manner by replacing co by co+i(I /A).
The best-fit value of I obtained is 0.14 eV. It is also seen
in the figure that a dramatic change in e& near the 4.5-eV
region can be well explained by the DHO model of the Eo
(E2 ) structure [Eq. (21)].

Figures 4 and 5 show, respectively, the fits with our
model to the experimental e& and e

&
spectra of

In& Ga As P& (x =0.25, y =0.55). In Fig. 4, the
solid line is obtained from the sum of Eqs. (5), (13), (14),
(20), and (27). The dashed line is the result of the sum of
Eqs. (5), (17), and (20). The experimental data (solid cir-
cles) are taken from Ref. 8. In Fig. 5 the solid line is ob-
tained from the sum of Eqs. (6), (18) (I =0.11 eV), and
(21). The nondispersive term, .ei (=2.1), is taken into
consideration in this calculation. The solid and open cir-
cles are, respectively, taken from Refs. 8 and 25. As in

the case of InP, we see in the figures better fits with our
model to the experimental data over the entire range of
photon energies.

The fits with our model to the experimental ez and e&

spectra of In& Ga As (x =0.48, y =1.0) are shown in
Figs. 6 and 7, respectively. In Fig. 6 the solid line is the
result of the sum of Eqs. (5), (13), (14), (20), and (27). The
dashed line is obtained from the sum of Eqs. (5), (17), and
(20). The experimental data are taken below 1.0 eV from
Ref. 30 (open circles) and above 1.5 eV from Ref. 8 (solid
circles). It is clear that the indirect-band-gap [Eq. (27)]
and 3D saddle-point terms [Eqs. (13) and (14)] interpret
well the (1.5—3.0)-eV region of the ez spectrum. In Fig. 7,
the solid line is the result of the sum of Eqs. (6), (18), and
(21). The nondispersive term, e& (=2.8), is taken into

TABLE III. Parameters used in the calculation of e&(co) and e&(co).

Composition y
0.42 0.55 1.00

Eo (eV)
Ep +Ap (eV)
El (ev)
E, +a, (ev)
Eo (ev)
Eg (eV)
W (eV")
BI
B2
Bj I (eV ')

V
—0.5)

I (eV)
C
y
D

1.35
1.47
3.16
3.30
4.72
2.05
5.40
4.91
0.09

10.32

0.18
0.14
1.30
0.093

60.4
2.1

1.18
1.34
2.96
3.14
4.65
1.83
4.39
4.30
0.53
8.76
1.06
0.12
1.98
0.145

39.0
2.1

1.07
1.25
2.83
3.04
4.59
1.68
3.64
3.69
1.04
7.28

2.08
0.12
2.49
0.183

30.4
2.1

0.99
1.20
2.76
2.98
4.55
1.58
3.09
3.71
1.06
7.53

2.12
0.11
2.77
0.204

29.4
2. 1

0.84
1 ~ 10
2.63
2.88
4.47
1.38
1.96
3.78
1.37
7.91
2.74
0.13
3.10
0.239

24.0
2-1

0.75
1.04
2.57
2.83
4.41
1.20
1.20
3.84
1.48
7.57
2.96
0.14
2.90
0.225

20.7
2.8
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100

E h, , E'(E)
E,

100

E+/ Eo ~E2)
I

10=

CV

td 1=
E0 E

CV

4) 1:

0.1—
In, „Ga As P&

(y=0.55)
Ini „Ga„As

(x=048)

0.01 I I I I I I I I I

0 1 2 3 4 5 6 7 8 9~ (ev)
FIG. 4. e~ spectrum of In, „Ga As~P& ~ (x =0.25,

y =0.55). The solid line is obtained from the sum of Eqs. (5),
(13), (14), (20), and (27). The dashed line is the result of the sum
of Eqs. (5), (17), and (20). The experimental data (solid circles)
are taken from Ref. 8.

consideration in this calculation. The solid and open cir-
cles are, respectively, taken from Refs. 8 and 25. The ex-
perimental value of e, at the E, peak is about 19. The
smaller the damping energy I, the larger the E, peak
value. ' The calculation with I =0.14 eV agrees well
with this value.

0.01» I I » I I !
0 1 2 3 4 5 6 7 8 9

%&(eV )

FIG. 6. Ep spectrum of In& Ga As (x =0.48, y = 1.0). The
solid line is the result of the sum of Eqs. (5), (13), (14), (20), and

(27). The dashed line is obtained from the sum of Eqs. (5), (17),
and (20). The experimental data are taken below 1.0 eV from
Ref. 30 (open circles} and above 1.5 eV from Ref. 8 (solid cir-
cles).

&n individual contribution to ez of the Eol(EO+b, o),
E, /(E, + b, , ), Eo (Ez ), and Eg gap for

Ga As p, (~ =0.25, y =0.55) is shown in Fig.
g. They are obtained from Eq. (5) (3D Mo) for the

Eo/(ED+ho) gap contribution, from Eqs. (13) and (14)
(3D M&, solid lines) and Eq. (17) (2D Mo, dashed lines)

30 30

25-

10-

Eo ~0
FL

11 1I

r4

20 — 0 o

EE
15—

I

10—

0— 0—

444
~ 44

4~44

-15—

In& „Ga„As P&

(y=o,55)

In „Ga„As
(x=o.~s)

-20
0 2 3

6+ (eV )

-20
0 2 3

~(eV)
5 6

FIG. 5. e& spectrum of In& Ga As~P& ~ (x =0 25,

y =0.55}. The solid line is obtained from the sum of Eqs. (6),
(18) ( I =0. 11 eV), - and (21). The nondispersive term, e&

(=2.1), is taken into consideration in this calculation. The solid

and open circles are, respectively, taken from Refs. 8 and 25.

FIG. 7. e& spectrum of In, Ga As (x =0.48, y =1.0). The
solid line is the result of the sum of Eqs. (6), (18) (I =0.14 eV),
and (21). The nondispersive term, e& „(=2.8), is taken into con-
sideration in this calculation. The solid and open circles are, re-

spectively, taken from Refs. 8 and 25.
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30

In, „Ga As Pi

( y=0.55 )

20
p

1-y

.55)

20—

15—

10—

0
0 3 4

o~ ( ev)

-10
0 3 4

(eV )

FIG. 8. Individual contribution to e2 of the Eo/(Eo+40),
E, /(E, +6]), Eo (E~), and E~ gaps for In& Ga~AsyP]
(x =0.25, y =0.55). They are obtained from Eq. (5) (3D Mo)
for the Eo/{ED+60) gap contribution, from Eqs. (13) and (14)
(3D M], solid lines), and Eq. (17) (2D Mo, dashed lines) for the
E ] /( E ] +6 ] ) gap contribution, from Eq. (20) (DHO) for the Eo

(E, ) gap contribution, and from Eq. (27) for the Eg gap contri-
bution. The sum of these contributions is shown by the bold
line.

FIG. 9. Individual contribution to e] of the Eo/(Eo+Ap),
E ] /( E]+ Le~ak ] )y and Eo ( E2 ) tr ansitions for In] — Ga Asy P ] —y
(x =0.25, y =0.55). They are obtained from Eq. (6) (3D Mo)
for the Eo/(Eo+60) gap contribution, from Eq. (18) with
I =0.11 eV (2D Mo) for the E]/(E]+5]) gap contribution,
and from Eq. (21) (DHO) for the Eo (E2) gap contribution. The
sum of these contributions [including e, „(=2.1)] is also shown
by the bold line. The calculated results of Eq. (18) with I =0
eV are also drawn by the dashed lines.

for the E, /(E, +6, ) gap contribution, from Eq. (20)
(DHO) for the Ec (E2) gap contribution, and from Eq.
(27) for the E gap contribution. The sum of these con-
tributions is shown by the bold line.

The transitions at the 3D Mo edges [Eol(Ec+60)]
yield a continuous absorption obeying the well-known —,

'

power law [i.e., (Ace Eo) ]. T—he transitions at the E
gap provide a gradually increasing absorption spectrum
characterized by a power law of (%co Eg ) . The stee—p

I. 2

high-energy end of the E gap contribution at the E,
edge is the result of the E, cutoff energy modification.
The E'" transitions may also occur at energies above E,

~ p

( =E, ). However, the ensuing E, /(E, +b., ) and Eo (Ez)
transitions can provide sufficient strengths, and thus take
over the E'" gap oscillators present at above E, . The
E, /(E, +b, , ) gaps are of the 3D M, (or 2D Mo) type,
and hence the line shape of the corresponding e2 spec-
trum should be characterized by a steep low-energy side
and a broader high-energy side. This line shape is in
good agreement with the experimental verification. The
E' (E ) structure can be well characterized by the DHO0 2

18model [Eq. (20)]. It has already been pointed out that
the DHO is a different representation of a broadened 2D
Mi CP.

In Fig. 9 we show an individual contribution to e, of
the Ec/(E~+bo), Ei /(Ei+6 &), and Ec (Ez) transitions
for In, Ga As P, (x =0.25, y =0.55). They. are
obtained from Eq. (6) {3D Mo) for the Eol{EO+40) gap
contribution, from Eq. (18) with I =0.11 eV (2D Mc) for
the E~ /(E&+b, , ) gap contribution, and from Eq. (21)
(DHO) for the Eo (E2) gap contribution. The sum of
these contributions [including ei (=2.1)] is also shown
by the bold line. The calculated results of Eq. (18) with
I =0 eV are also shown —by the dashed lines.

It is easily recognized from Fig. 9 that the

Ec/(Eo+bc) transitions strongly contribute to the
dispersion of e„but not to its absolute value. It is also
clear that the strong negative peak observed in the Eo
(Ez ) structure region is well explained by the DHO mod-
el (broadened 2D M, model). The CP structure of the Ec
(E ) gap in InP has been explained by a mixture of a 3D2

8Mo and a 3D M& line shape. However, we find here that
neither the 3D Mo nor the 3D MI model explain the
peculiar line shapes of both e2 and e, which appeared in
the Eo (Ez) spectral region of In, ,Ga As P, alloys.
We can„ therefore, consider that the best representation
of the Eo (E2) structure is the DHO (i.e., broadened 2D
M, ).

B. Strength parameters as a function of alloy composition

The strength of the Eel(Eo+b, o) transitions is
represented by A [see Eqs. {5)and (6)]. These transitions
strongly contribute to the dispersion of ei(co), but not to
its absolute value (see Fig. 9). Spectroscopic-ellipsometry
work by Kelso et al. was limited to the photon-energy
range 1.5—6.0 eV. As recognized in Eq. (3), however, the
Eo gap energies of the In& Ga As P, alloys were
much smaller than 1.5 eV. Therefore we were not able to
see any distinctive structure of the Eo transitions in the E2
spectra of Kelso's data; in other words, Kelso's experi-
mental data are not sufficient for discussing the
Eo/(Eo+hc) strength. Because of this, we have tried to
obtain the strength of A by fitting our model [Eq. (5)]
with the optical-absorption data of In& Ga As PI y
(y =0, 0.25, 0.64, and 1.0) (Ref. 30). The values of A as a
function of alloy composition y for In& ~Ga+AsyPi —y
determined by this fitting, are shown in Fig. 10. The
plots suggest that the value of A varies almost linearly
with the alloy composition y. From the figure, we obtain
the following relation (solid line):
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where ao is the lattice constant in A and E& and 5, are in
eV. The dashed lines in Fig. 11 are the calculated results
of these expressions. These calculated results indicate
that B& and B2 do not differ so largely with each other in
a full range of the y composition. However, the experi-
mental strength B2 relative to B& increases dramatically
with increasing y. This large difference in the experimen-
tal strengths was discussed in Ref. 8 and successfully ex-
plained in terms of the k-linear interaction (also see Refs.
31—34).

The variation of B» as a function of alloy composition
y for In, „Ga+AsyP& y is shown in Fig. 12. The solid
line represents fit of the data to the quadratic equation

FIG. 10. The strength parameter A [Eo/(Eo+ho) transi-
tions] as a function of alloy composition y for
In) ~ Ga~ Asy P] y.

A (y ) =5.4—4. 2y . (29)

The contribution to the dielectric susceptibility arises
predominantly from the E, /(E&+6, ) transitions. The
strength of the E, /(E

&
+b

&
) transitions is represented by

B's [see Eqs. (13)—(18)]. In Fig. 11 we show the variation
of B, and B2 (solid circles) as a function of alloy compo-
sition y for In, Ga As P

&
. These plots suggest that

both B, and B2 vary in the quadratic forms (solid lines):

B,(y)=4. 91 —3.85y +2.78y

Bz(y) =0.09+2.65y —1.26y

(30a)

(30b)

E)+(b)/3)
B) =44

aoEi

Ei +(2b, i/3)
Bq =44

ao«i+

(31a)

(31b)

The strength of the E, /(E, + b, , ) transitions of
diamond-type (zinc-blende-type) materials can be theoret-
ically estimated with the simple expressions

B» (y )= 10.32—8.93y +6. 18y (32)

From the present and the previous works (Refs. 17—20),
we are also able to find an empirical relation between B,
and B» (B2 and B2, ): B,=B»/2 (B2 =82, /2) (see
Table III).

In Fig. 13 we show the variation of I (E, /(E, + b, , ) )
as a function of alloy composition y for
In, „Ga„As P, . The figure clearly suggests that I
varies in the quadratic form,

I (y ) =0. 14—0. 10y +0. 10y (33)

The damping effect should, in general, be inAuenced
not only by temperature (i.e., the thermal broadening
through emission and absorption of phonons), but also by
potential fluctuations resulting from random ato~ic
placement in the alloy (i.e., the alloy disorder) The.
thermal broadening ensures that the lower the tempera-
ture, the smaller the I value. If we assume that the de-
gree of alloy disorder is proportional to
x (1—x)+y (1—y), it becomes maximum at y =0.60 for
In& Ga As„P& . One can therefore expect that the
value of I increases with y, showing a maximum for
y =0.6, then decreases with further increase of y. Such a
simple consideration interpreted disorder-related effects
well, e.g.„on the lattice thermal conductivity in this ma-
terial. However, for the present case, I decreased with

1-X X y 1-yIn Ga AsP
12

10

CV

IXl

3
Cl

2—
82

9
6—

IS

0&

0 0.5
Y

1.0

FIG. 11. The strength parameters B, and B, [E, /(E, +6, )

transitions] as a function of alloy composition y for
In& Ga Asyp] —y The dashed lines are the calculated results
of Eq. (31).

In, „Ga„As„P,„

0 I I I I 1 l I I I

0 0.5 1.0
Y

FIG. 12. The strength parameter B» (E& transitions) as a
function of alloy composition y for In& „Ga„AsyP

&
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y to a minimum value of 0.11 eV for y =0.55, then in-
creased to 0.14 eV for y =1.0. This is a direct contrast to
that expected from the simple consideration above. One
should also note that some crystalline-imperfection
effects, e.g. , crystal qualities, may affect the dielectric sus-
ceptibility. Unfortunately, however, at present we do not
make clear the origin of the observed variation in
r(E, Z(E, +a, )).

The strength of the Eo (E2) transitions is represented
by C [see Eqs. (20) and (21)]. The variation of C and y
(damping parameter) as a function of alloy composition y
for Ini Ga AsyP& y is shown in Fig. 14. Like the 8's
and I, the variation of C and y can be fitted by the quad-
ratic equations

FICx. 13. The broadening factor 1 [E&/(E, +6, ) transitions]
as a function of alloy composition y for In, Ga Asy Pl C(y) =1.30+3.70y —2. 10y2,

)'(y) =0.093+0.256y —0. 124y

(34a)

(34b)

In, „Ga„As P&

-- —0.6

—0.5

—0.4

.Q3 &

The results of these fits are shown by the solid lines in the
figure.

The strength of the Es (indirect-band-gap) transitions
can be represented by D [see Eq. (27)]. We show in Fig.
15 the variation of D as a function of alloy composition y
for In& &Ga&AsyP] y The solid line represents fits of
the data to the quadratic equation

—0.2 D(y) =60.4 —83.9y+44. 2y (35)

—0.1

0 l l i ) i i l i l Q
0 0.5 1.0

V

FIG. 14. The strength parameter C and broadening factor y
[Eo (E~) transitions] as a function of alloy composition y for
In& ~ Ga~Asy P] —y ~

As mentioned in Sec. II, the dielectric function is ex-
pressed by the band-structure parameters (band-gap ener-
gies) and the corresponding strength and broadening pa-
rameters. In this section we have specified these parame-
ters in terms of y alone. By applying these results, there-
fore, we can easily calculate the spectral dependence of
the dielectric constants [e,(co) and e2(cu)] for optional
composition of In& Ga As P

&
lattice matched to

InP.

'70

60'
In, „Ga„As P

50

40

30

20

10—

0
0 0.5 ).0

Y

FIG. 15. The strength parameter D (indirect-band-gap transi-
tions) as a function of alloy composition y for
In& Ga„Asy P] —y.

IV. CONCLUSIONS

We have developed a method for calculation of the real
(e, ) and imaginary (e2) parts of the dielectric function of
In, „Ga As„P& quaternaries lattice matched to InP
(O~y ~1.0) at energies below and above the fundamental
absorption edge. The model is based on the Kramers-
Kronig transformation and takes into account the effects
of optical transitions at the Eo, Eo+60, E„E,+6, , and
Ez (Ez) CP's and indirect band gap (E' ). This model re-
veals distinct structures at energies of the Eo and Eo+ 60(3™cCP's), E, and E, +b, , (3D M, or 2D Mo CP's),
and Eo (E2) [DHO (broadened 2D M, )]. The Eg transi-
tions are assumed to yield a continuous ez(co) spectrum
obeying the well-known square power law [i.e.,
cc(A'co —Eg ) ]. The calculated results are in satisfactory
agreement with the experimental data over the entire
range of photon energies (0—6.0 eV). The compositional
dependence of the optical-transition strength and
broadening parameters at energies of each CP and in-
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direct band gap is also obtained and discussed. The
dielectric function of In& Ga As P& ~ can then be
specified in terms of y alone. This ensures that one can
easily calculate the spectral dependence of the dielectric
function for optional composition of In& Ga As~P&
Dielectric-connected optical constants, such as the re-
fractive indices and absorption coef5cients, are also easy

to obtain from the present study in the form of practical
functions.
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