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The effect of an impurity cell on the vibrational properties of superlattices is studied theoretically.
The continuous equation governing the elastic-wave motion in a superlattice is transformed exactly
to a discrete form which is analogous to the equation for the displacement in one-dimensional

discrete lattices. With the use of this equation isolated frequencies associated with the vibrations lo-

calized near the impurity cell are predicted in the band gaps at the center and boundary of the fold-

ed Brillouin zone of the host superlattice. Numerical calculation reveals further the existence of im-

purity states in the intrazone gaps due to intermode Bragg reflection. The calculated phonon
transmission rate shows local enhancements due to these localized states, suggesting their observa-

bility by phonon spectroscopic experiment with a quasimonochromatic phonon detector.

I. INTRODUCTION

Recently, there has been an accumulation of studies on
the vibrational properties of superlattices (SL's). '

However, they are mainly restricted to those in perfect,
periodic, ' ' and quasiperiodic systems. ' ' The vibra-
tions in disordered SL s should also provide an interest-
ing subject of both experimental and theoretical
researches. The lattice vibrations in disordered crystals
analogous to the corresponding problem for the SL's
have been studied for more than 20 years. ' It is well es-
tablished that even a small concentration of defects in a
crystal lattice can radically alter the frequencies of the
normal modes of vibration as well as the pattern of atom-
ic displacement associated with these modes. The same
kinds of effects are also expected to occur when the layers
with different thickness or different constituents, i.e., im-

purity cells, are embedded in an otherwise perfect SL.
More specifically, when a suKciently light-mass defect

is added substitutionally to a crystal, it causes a mode
outside the band of allowed frequencies of the perfect
crysta1. This is a local mode of the vibration whose am-
plitude is strongly localized in the vicinity of the defect.
In a SL with an impurity cell the similar local mode, if
any are present, should appear in frequency gaps pro-
duced at the center, boundary, and even inside the folded
Brillouin zone of the SL.

The purpose of the present paper is to analyze the ex-
istence and nature of the localized vibrational modes in
the "impure" SL with an isolated impurity cell. This
study will also provide a clue to investigating the vibra-
tional properties of intentionally disordered, random SL's
because the effects of a finite concentration of impurity
cells can be deduced rather well from a knowledge of the
effects of only one or two isolated defects.

Through this work we employ the continuum model
for lattice vibrations, ' which has successfully explained a
number of recent experiments on acoustic phonons in
SL's. ' ' '' The basic equations of this model can be
transformed into a discrete form which is more con-
venient for analyzing vibrations in an impure SL. Then,

the equation for determining the frequencies of normal
modes which are perturbed by the introduction of the im-

purity cell is derived. Generally, this equation can only
be solved numerically. However, in the particular cases
of practical interest it can be studied analytically and the
existence of localized modes of vibration is predicted in
the frequency gaps of the host SL.

One of the physical quantities readily accessible by
phonon spectroscopic experiments related to this subject
is a phonon transmission rate. The calculated transmis-
sion rate in the impure SL's with a finite number of cells
reveals sharp enhancement in the frequency regions cor-
responding to forbidden gaps of the host SL, i.e., the re-
gions with vanishing phonon transmission. The angular
dependence of the transmission shows the similar local
enhancement in the gaps due to intermode Brag g
reAection, ' indicating the presence of the localized
mode also within the frequency gaps inside the folded
Brillouin zone of pure SL's. Thus the observability of the
localized vibrational states by a phonon transmission ex-
periment will be possible.

II. FORMULATION

The SL system we shall consider is shown schematical-
ly in Fig. 1. An impurity cell denoted by X consisting of
generally different x and y layers with thickness d and
d (d +d =D') is embe—dded in the periodic array of al-
ternating a and b layers with thickness d, and db, respec-
tively. This means that the host SL is constructed by unit
cells denoted by 3 with the periodicity D=d, +db. We
can treat the case of a single impurity layer by assuming
that x and y are the same constituents, or by putting
d~ =0 or d~ =0.

In our formulation the continuum model for the lattice
vibration is assumed. ' For simplicity we shall consider
the case where the wave vector of the vibration (phonon)
is parallel to the growth direction of the SL. (The more
general case will be discussed in Sec. III.) In this case the
lattice vibration is conveniently described by a two-
component column vector W(z)=(U(z), S(z))', where U
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where a =k, d„and ~t is defined similarly with a and Z,
replaced by /3=kbdb and Zb, respectively. Explicit ex-

pressions for the elements of T„are given by
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and they satisfy detT„=A. „p„—o z(„=1.The transfer
matrix T~. related to the impurity cell is also defined simi-

larly as

~x Ox

kx px

where the matrix elements are written in the form of Eq.
(4) in terms of parameters relevant to the impurity layers.

Now, introducing W„=(U„,S„)':—W(z„), we can
write

FIG. 1. Schematic superlattice (SL) system. An impurity cell
X consisting of binary x and y layers occupies the n =0 site of
the otherwise perfect, periodic superlattice consisting of alter-
nating a and b layers. The width D =d, +db of the unit cell 3
gives the periodicity of the host SL. The vibrational amplitude
at the cell interface z=z„ is denoted by U„. U* indicates the
vibrational amplitude at the interface between x and y layers.

n+1 —n n

~n ~n

(6)

and S are the nonvanishing components of the displace-
ment and stress fields, respectively, and t represents a
transposition. ' Explicitly, U and S are written as

U( )
(+) j +c(—

)e rik z —ik z

I+) &klz ( ) tkrzS(z)=i~z, (c,'+Ie ' —c,' 'e ' ),
where I is the index specifying diff'erent layers (i.e. , I=a,
b, x, and y ), c +' (c ') is the amplitude of the
+z (

—z)-propagating wave, k is the wave number,
Z =pv is the acoustic impedance with p the mass density
and v the sound velocity, and co=kv is the angular fre-
quency.

At each interface of adjacent layers W should be con-
tinuous. With the use of this condition we find that W
changes to T„W (TxW) after the propagation of a pho-
non through an A (an X) cell. The "transfer matrix" T„
is unimodular, and defined by'

0 g
—b a=

g p—T =t t

with

W, =PC„,
where C =(cI+'e ' ", cI 'e ' " )'—= (c„'+',c„')' and
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In order to fix the index I in the above equations an
infinitesimal positive number may be added to or sub-
tracted from z =z„. Of course the result does not depend
on this choice because of the continuity of W at each in-
terface. Equation (8) allows us to rewrite Eq. (6) as

W, =R„C,+i,
where

(10)

R„=T, 'P

is obtained by combining Eqs. (6) and (8). Hence, from
Eqs. (8) and (10), we have

is the generalization of Eqs. (2) and (5), that is, the
transfer matrix T„ is related to the nth unit cell of the SL
and T„=T4 for n&0 and T„=Tz for n =0 (see Fig. 1).
Our goal is to derive the equation involving only U„'s,
i.e., the equation for displacement amplitudes at cell in-
terfaces.

At the interface z =z„, Eq. (1) takes the form

COSA
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U„=c„'+'+c,' =(R„)„c„'+',+(R„))~c„'+',
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These equations are summarized as

Vn = Y„)C, , (14)
5K„=6K6, 0=

ox
—1 5„0,

where V„=( U„, U„ i
)' and

1 1

Y„= (R„)„(R„),~

Eliminating C„ from (14) with the aid of Eqs. (8) and (10)
we have the equation for two consecutive V's,

~X
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o
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In order to solve Eq. (22) we formally express it as'

(23)

P Y, '= 1 0
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Eq. (16) is expressed explicitly as
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By noting that
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In terms of L„, Eq. (20) for the perfect, periodic SL
takes the form

—1/o „ U„
(18) gL„U =0 . (26)

Thus we have the discrete equation governing the dis-
placement amplitude at interfaces of adjacent unit cells, g L„,G~ =5„

I

(27)

Now, we introduce the Green's function Gn defined by
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(19) or equivalently,

G„~, +G„, —Q„(co)G„=5„ (28)

The above procedure for obtaining Eq. (19) is similar to
the one for transforming the one-dimensional
Schrodinger equation with multiple scattering potentials
to a discrete, tight-binding form. '

In the perfect, periodic SL consisting of only 3-type
cells, Eq. (19) is reduced to —:g„(Q„). (29)

Expanding G„ in a Fourier series, we have for the ideal
SL with an infinite repetition of 3-type cells,

1 y~ cos[(n —m )Q]
vr o 2 cosQ —0 „(co)

U +i+ U —i (~a+pw )U

Substituting Un =e'"~ into this equation, we obtain

2 cosQ =k„+p„—:A~ (co) .

(20)

(21)

The integration can be performed analytically and we
find2o

1

(II2 4)1 /2g„(Q„)=—

By putting Q=qD, this gives the well-known phonon
dispersion relation co=co(q) in the periodic SL. ' With
these results the study of the e6'ect of an impurity cell
embedded in a periodic SL becomes analogous to the cor-
responding problem for one-dimensional lattices.

For the following discussion it is convenient to write
Eq. (19) in the form

( 1+6K„)U„+i+ ( 1+5K„ i ) U„

=(fI „+6J„+6M„,)U„, (22)

where 5K„=(a„/cr„) —1, 6J„=[(A,„/o „)—(k ~ /
o „)]o„, and 5M„=[(p„/o „)—(p „/o ~ ) ]cr „. Note
that 5K„, 6Jn, and 6M„are nonzero only at the
impurity-cell site, or for n =0. Thus it holds that

(30)

where this result is obtained for real Az larger than 2.
Now, g„has a branch cut along a straight line
—2 & Q„&2 and, by analytic continuation, the resulting
expression for g„should be valid throughout the physical
sheet of the complex Q~ plane. Here, we note that for
II „which is real and satisfies

~
Q „~) 2, the modulus of

e'= [0„—(0 —4)' ]/2

is smaller than unity, and hence g„decreases exponential-
ly, i.e., g„—e ",with increasing

~
n ~.

Next, we consider the SL with N —1 A-type cells on ei-
ther side of the impurity cell and express the 2NX2N
matrices (G„) and (5L„) by G and 6L, and the 2N-

component column vector
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( U —N+1» U —N+2» ' . , UN )

by U. Thus, from Eq. (24), we have

(1+G 5L )U =0, (31)

(32)

and write 6L as

0 0 0

where 1 is the 2N X2N matrix. Because 6L has only four
nonvanishing components, we introduce the 2 X 2 matrix
6l defined by

where 1 is now a 2X2 unit matrix. Thus the normal-
mode frequencies perturbed by the presence of the impur-
ity cell and the vibrational amplitudes u at interfaces be-
tween the impurity cell and host cells are determined by
solving Eq. (37). Once these quantities are obtained, the
amplitudes v and w at other interfaces are calculated
from Eqs. (38) and (39). We explicitly write Eq. (37) as

1 —
gp 6J+g, 6K —g, 5M+gp 6K Up 0

g I 6J+gp 6K 1 gp 6M+g
~

6K U& 0

(40)

6L = 0 6I 0
0 0 0

(33) The solvability condition for this equation, i.e.,
det(1+g 61)=0 leads after a bit of algebra to

In Eq. (33) 6Loccupies (n, m ) components of 5L, where n

and rn are either N or N+1. For the coordination with
Eq. (33) we also partition the matrix G and vector U in
the same fashion,

1+6K=0,
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With the use of the quantities given by Eqs. (32)—(36), Eq.
(31) reduces to

C,
'1+g 6l )u=O,

v = f 6l.u, —

w= —h 6l.u

(37)

(38)

(39)

where f, g, and h are, respectively, (N —1)X2, 2 X 2, and
(X—1)X 2 matrices defined by

where we have used Eq. (23), and Qx(co)=A.x+tu, x. As
discussed by Maradudin et al. ' the solutions of Eq. (40)
should give the frequencies of only those normal modes
in a SL perturbed by the introduction of an impurity cell.
We shall consider these two solutions in more detail.

According to Eq. (23), Eq. (41) means that o A
=0 and

hence A. A@A =l. This leads to ~QA(co)~ )2, that is, the
perturbed frequency appears in the gaps of forbidden fre-
quency of the host SL. However, the frequency satisfying
o „=0must be excluded as a solution of Eq. (19) from
which Eq. (40) has been derived, because at this frequen-
cy at least one of a„and o „ I vanishes. Hence this solu-
tion should be considered more carefully. It is easily seen
that if n is a site of an A-type host cell det Y„=O holds at
this frequency, and accordingly the inverse matrix Y „
to Y„used in Eq. (16) does not exist. Taking this result
into account, we find that U„(n =0, +1,+2, . . . ) van-
ishes identically for o. „=O. Thus the perturbation in-
duced by the introduction of an impurity cell does not ex-
cite any vibration at the frequency predicted by Eq. (41)
in a band gap of the host SL.

For an arbitrary choice of the impurity cell, Eq. (42)
has to be solved only numerically. However, if we spe-
cialize to the following case of practical interest, a further
insight into the characteristics of the impurity mode will
be gained by analytic calculations. In view of the grow-
ing procedure of SL's the most easily obtainable impurity
cell may consist of the same kind of constituents as the
host cell, e.g. , x =a and y=b, but with different layer
thickness. The impurity cell consisting of layers with
different elastic properties from the host layers is general-
ly possible. Unfortunately, impurity layers with large
acoustic mismatch will also produce large lattice
mismatch with the host layers, and therefore they are
hard to grow properly. Accordingly, in what follows we
assume that x=a and y=b Equation (42) .is now re-
duced to
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go 2 cosy cos6—
Zb Zg+ siny sin5 =g, 2cos(a —y)cos(P —5)—
Zg Zb

Zb Zg+ sin(a —y )sin(p —5)
Zg Zb

(43)

where y =k~d„=k, d„and 6=k~d~ =kbd~. This equa-
tion is still too complicated to be analyzed as it stands.
The evaluation of Eq. (43), however, simplifies greatly in
the following two cases.

(a) d&=d» and d, &d„, i.e., p=5 and a&y. This
means that one of the layers comprising the impurity cell
is exactly the same as one of the constituent layers in the
host SL. Thus this is equivalent to assuming a single lay-
er as the impurity cell. Note that the structure of this
impure SL is symmetric with respect to the impurity lay-
er. Now, Eq. (43) is simplified as

goQ+ =2g, cos(a —y ) . (44)

Substituting Eq. (30) for go and g, into Eq. (44), we have

Qx(~)
cos(a —y)= «z, ~Q„(co)~ &2

Q„(a))T- Q~(co) —4 '

(45)

Q~(co) =0, (46)

since go =g, does not hold. It is easily proven that for co

satisfying this condition, Q„(~)( —2 and the perturbed
frequency appears only in the zone-boundary gaps of the
host SL. The absence of the impurity-mode frequency in
the zone-center gaps is also the consequence of the
Saxon-Hutner theorem. The conditions o.=2y and
p=25 imply that the width of the folded Brillouin zone
in the pure 3-type SL is a half of that in the pure X-type
SL. Accordingly, the frequencies in the zone-center gaps
in the host SL are always within the gaps of the pure X-
type SL, and they lie in the spectral gaps of any disor-
dered SL consisting of 3-type and X-type cells.

The displacement amplitudes at interfaces away from
the impurity cell are determined by Eqs. (38) and (39) in
terms of the impurity-mode frequency and amplitudes Uo
and U, given by Eq. (37). Explicitly, they are written for
n ) 2 as

where the negative (positive) sign is applied for Q„)2

(Q~ & —2). Because the modulus of the denominator of
Eq. (45) is smaller than 2 for co in a frequency gap of the
host SL, i.e., ~Q„(co) ~

)2, Eq. (45) has a solution only
when ~QX(co)~ (2 is satisfied. This indicates that the per-
turbed frequency cannot exist in a region that is a corn-
mon gap for both the pure A-type SL and the pure X-
type SL. This is exactly what the Saxon-Hutner theorem
states. '

(b) d =d, /2 and d =d&/2. In this particularly sim-
ple case the thickness of each layer in the impurity ce11 is
equal to one-half of the corresponding layer thickness in
the host cell, and hence y =a —y and 5 =p —5. Equation
(43) now leads to

U„=g„(5JUo —5K U, )+g„,( —5K Uo+ 5M U, ),
(47)

U „+,=g„(—5K Uo+5M U, )+g„,(5J Uo —5K U, ) .

As we have already noted, for co satisfying ~Q„~ &2,
Green's function g„depends on n as g„-e~"~. According-
ly, the displacement amplitude of cell interfaces which vi-
brates with frequencies in forbidden gaps of the host SL
decays exponentially with increasing distance from the
impurity cell. This localized characteristic of the dis-
placement amplitude is quite similar to that in a linear
chain with a defect atom. Note that the rate of exponen-
tial decay of g„, or U+„, is greater, the greater the dis-
tance of co is from band edges satisfying

~ Q~ ~

=2.

III. NUMERICAL RESULTS

A. Phonon transmission rate

In a perfect, periodic SL with an infinite repetition of
the unit ce11, the phonons with wave number at the center
and the boundary of the folded zone are Bragg reflected
and cannot be transmitted through it. This is related to
the occurrence of frequency gaps in the phonon disper-
sion relation at the center and edge of the mini-Brillouin
zone. For an actual SL with a finite number of periods
the exact periodicity is lost, but there still exist distinct
dips in transmission for phonons in those frequency gaps.
These dips in transmission have been observed by phonon
spectroscopy ' ' and phonon imaging. ' Hence, with
regard to the experimental observability of the localized
impurity states in SL's, we shall calculate numerically the
phonon transmission rate in SL's involving an impurity
cell. In Sec. II we have shown that isolated frequencies
should appear in the forbidden gaps of the spectrum of
the host SL, where significant dips are predicted in pho-
non transmission. Therefore, in a perturbed SL, we can
expect that the local enhancement in transmission should
occur in the corresponding frequency ranges, which evi-
dences the existence of the impurity states. If the magni-
tude of this enhancement is large enough we can observe
in principle the presence of the impurity mode in a SL by
acoustic-phonon transmission experiments with quasi-
monochromatic phonon detectors.

The numerical results for the frequency dependence of
transmission rate are shown in Figs. 2 and 3 for
longitudinal-acoustic (LA) phonons propagating in the
growth direction of (111)-A1As/GaAs SL's. The calcu-
lation of transmission rate has been published elsewhere.
Figure 2(a) exhibits a result corresponding to case (a)
given in Sec. II, where an A-type host cell consists of 15
monolayers (ML's) of A1As (a layer) and 6 ML's of GaAs
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(b layer), while an X-type impurity cell consists of 8 ML's
of A1As (x layer) and 6 ML's of GaAs (y layer). ' The
impurity cell is assumed to be sandwiched in between 30
A-type cells. Comparing with Fig. 2(b), which shows the
transmission rate in the perfect SL with the impurity cell
replaced by the host cell, the sharp enhancement in the
transmission can be seen in the frequency ranges exhibit-
ing strong dips. The frequencies calculated from Eq. (44),
i.e., v, =0.433 THz and v&=0. 901 THz, coincide exactly
with the ones at which those local enhancements in
transmission occur in Fig. 2(a}.

It is also recognized in Fig. 2(a) that no enhancement is
present at all in the small dip in transmission at about
1.35 THz. This is the result of the Saxon-Hutner
theorem. We note that for the layer thickness assumed in
this example the pure 3-type and X-type SL's have com-
mon frequency ranges in which their band gaps overlap
each other. This happenes in every third frequency gap
of the pure 3-type SL.

The example for the LA-phonon transmission rate in a

(111}-AIAs/GaAs SL satisfying criterion (b) of Sec. II is
given in Fig. 3(a). Here, we assume 12 and 14 ML's for
the thickness of a (AlAs) and b (GaAs) layers of the 3-
type host cell, and 6 and 7 ML's are assumed for the
thickness of x (A1As) and y (GaAs) layers in the X-type
impurity cell. The propagation configuration is the same
as that in the previous case and 15 3-type cells are as-
sumed on both sides of the impurity cell. Comparing
with Fig. 3(b), showing the transmission rate in the pure
3-type SL, we also recognize the local enhancements in
transmission at certain isolated frequencies in the first
and third dips. We have again confirmed that these
enhancements are really due to the impurity modes by
checking the coincidence of the frequencies v&=0. 342
THz and v2=1.032 THz calculated from Eq. (46) with
those at which the enhancement in transmission occurs.
It should be remarked that the absence of impurity-ce11
effects in the zone-center gaps, i.e. , every second dip in
transmission, observed in Fig. 3(a), is exactly in accord
with the prediction made in Sec. II.
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FIG. 2. Frequency dependence of LA-phonon transmission
rate in (111)-AlAs/GaAs SL, {a) with an impurity cell and (b)
without an impurity cell. The total number of cells is 31. The
host cell ( 2) consists of 15 ML's of A1As and 6 ML's of GaAs,
and the impurity cell (X) consists of 8 ML's of A1As and 6 ML's
of GaAs. In (a) the X cell is located at the rniddle of 30 3 cells.
Frequencies v, =0.433 THz and v, =0.901 THz are calculated
from Eq. (42) or (44).

FIG. 3. Frequency dependence of LA-phonon transmission
rate in {111)-A1As/GaAs SL, (a) with an impurity cell and (b)
without an impurity cell. The host cell ( A ) consists of 12 ML's
of A1As and 14 ML's of GaAs, and the impurity cell (X) con-
sists of 6 ML's of A1As and 7 ML's of GaAs. Cell
configurations are the same as those in Fig. 2. Frequencies
vl =0.342 THz and v~ = 1.032 THz are calculated from Eq. (42)
or (46).
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B. Amplitude profiles

In Sec. II we have discussed that for frequencies satis-
fying

~
0„~)2 the Green's function g„decreases as E "

(
~
e~ ( 1) with increasing

~
n ~, i.e., the site number of inter-

faces counted away from the impurity cell. This result
together with Eq. (47) leads to the localized nature of
impurity-mode vibration in SL s analogous to the case of
ordinary lattices. In order to see the localization charac-
teristics we have plotted in Figs. 4 and 5 the profiles of
the displacement amplitudes U„(as well as the ampli-
tudes at interfaces inside the unit cells) at perturbed fre-
quencies in SL's for which the local enhancement in
transmission shown in Figs. 2 and 3 is obtained. The
mode of the vibration is LA. Explicitly, those frequen-
cies are again v&=0.433 THz and v2=0. 901 THz for
Figs. 4(a) and 4(b), and v, =0.324 THz and v2=1.032
THz for Figs. 5(a) and 5(b). For all these frequencies the
localization of vibrational amplitudes near the defect cell
is evident. The decay rates of these profiles depend on
the distance of the corresponding frequency from the
band edges. Here we note that the spatial structure of
the SL for which Fig. 4 is obtained is symmetric with
respect to the one of the impurity layers, and hence the
amplitude profiles should be symmetric or antisymmetric
with respect to the center of this layer. However, no
such symmetry exists in the SL for which Fig. 5 is calcu-

lated, and as a result the amplitude profiles in this figure
do not reveal any symmetry as in Fig. 4.

C. Transmission rate at oblique propagation

So far, we have considered the effects of an impurity
cell on the SL vibration with wave vector perpendicular
to the interfaces of layers. For the vibration with wave
vector oblique to the interfaces the situation becomes
much more complicated, and it is generally difficult to
predict the effects by analytic calculations. This is main-
ly because both the displacement and stress fields have
three independent components, and the transfer matrix
corresponding to Eq. (2) becomes a 6 X 6 instead of a 2 X 2
matrix. Even in this case, however, we may still expect
the existence of localized vibrational states in the fre-
quency gaps of the host SL.

In order to check this expectation we have numerically
calculated the angular dependence of phonon transmis-
sion rate in a SL with an impurity cell. Here, we note
that for a fixed frequency the transmission rate in a
periodic SL exhibits certain characteristic features also in
its angular dependence. The condition for Brag g
reflection of phonons in a SL depends on their propaga-
tion angle as well as frequency. Hence the dips in
transmission should occur at several angles satisfying the
Bragg condition. The most interesting feature in the ob-
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FIG. 4. Profiles of vibrational amplitudes at interfaces in the
SL corresponding to Fig. 2(a). Frequencies are (a) vl =0.433
THz and (b) v2 =0.901 THz.

FIG. 5. Profiles of vibrational amplitudes at interfaces in the
SL corresponding to Fig. 3(a). Frequencies are (a) vi=0. 342
THz and (b) v2= 1 ~ 032 THz.
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lique phonon propagation in SL s is the possibility of in-
termode Brag g reflection in addition to ordinary in-
tramode Bragg reflection, which yields a frequency gap of
the spectrum inside the folded zone. This reflection of
phonons causes extra dips in transmission. Thus, by
scanning the propagation direction of phonons with a
fixed frequency, one or more dips in transmission are gen-
erally obtained.

Figure 6(a) shows the calculated angular dependence of
the transmission rate of 0.85-THz LA phonons in a
(001)-AlAs/GaAs SL. The thickness of both layers in the
3-type host cell is assumed to be equal, i.e. , 7 ML's. For
the X-type impurity cell 7 and 14 ML's are assumed for
the thicknesses of A1As (x ) and GaAs (y ) layers, respec-
tively. In Fig. 6 we denote by 0 the polar angle in the
plane rotated 22. 5' away from the (100) and (110) planes
in the real space of GaAs. The X cell is again assumed to
be sandwiched in between 30 3-type cells. For
comparison's sake we have also plotted in Fig. 6(b) the
corresponding transmission rate in the pure A-type SL
with 31 cells. The relatively narrow dip in Fig. 6(b) at
about tan0= 0. 8 is due to the first-order intramode Bragg
reflection yielding the zone-boundary gap in the disper-
sion relation of the LA mode. The broader dip in

transmission found at about tan0=1. 4 is due to the inter-
mode Bragg reflection of LA phonons into fast transverse
phonons. Comparing Figs. 6(a) and 6(b), we find that the
local enhancement in transmission similar to the ones in
Figs. 2(a) and 3(a) exists in both dips in transmission.
This result suggests that the localized vibrational mode
occurs also within the intrazone frequency gaps of the
host SL due to intermode Bragg reflection.

IV. CONCLUSIONS

An appropriately light-impurity atom added substitu-
tionally to a lattice is responsible for a spatially localized
vibration at a frequency above or in a gap in the host vi-
brational spectrum. In this paper we have examined the
presence of the same kind of localized vibrations in an
impure SL by deriving and exploiting a diAerence equa-
tion governing the motion of cell interfaces. In the
several cases of practical interest we have found that the
localized states appear in the frequency gaps of the host
SL as far as the condition for the Saxon-Hutner theorem
is not satisfied. Those frequency gaps are not restricted
to the ones at the center and edge of the folded zone orig-
inating from the intramode phonon-Bragg reflection.
The existence of the localized states in the intrazone fre-
quency gaps due to intermode phonon-Bragg reflection is
also suggested but only numerically by the presence of lo-
cal enhancement in transmission. The detection of the
enhancement in transmission predicted at frequencies in
the spectral gaps of the host SL should provide an experi-
mental verification of the localized modes in SL's. A
quasimonochromatic phonon detector is needed to
resolve the existence of the enhanced transmission in rel-
atively narrow frequency ranges.

For frequencies in the allowed bands of a host SL, the
impurity cell causes the scattering, or reflection of pho-
nons which are otherwise transmitted perfectly. In this
case g, is complex, and there is a possibility of the reso-
nance scattering of phonons. ' It should occur at fre-
quencies cu„ for which the real part of Eq. (42) vanishes.
Whether or not the actual resonance occurs depends on
whether or not the width of the assumed resonance is
much smaller than co, . For the combination of layers to
be allowed by the growth condition of the SL, the possi-
bility for the true resonance to occur would be small. In
fact, we cannot see any evidence of the resonance scatter-
ing in Figs. 2 and 3. The detailed study on this problem
is currently under way.

To conclude, the localized vibrational modes generally
exist in frequency gaps of the host SL irrespective of the
propagation direction and modes participating in the
Bragg reflection responsible for these spectral gaps.
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