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A simple analytic nearest-neighbor embedded-atom-method model developed for monatomic fcc
metals has been extended to study alloying. The two-body potential between different species of
atoms is taken as a function of the two-body potentials for the pure metals with a unique form
which yields alloy models with the same invariance to electron density transformations as mona-
tomic models. With several approximations, all model parameters are given by experimentally mea-
sured physical quantities. The dilute-limit heats of solution for all binary alloys of Cu, Ag, Au, Ni,
Pd, and Pt have been calculated, with generally good agreement with available experimental values
except for Pd, for which the calculated values are uniformly too high. The qualitative relationships
between the physical parameters of the solute and solvent and the heat of solution have been deter-
mined.

I. INTRODUCTION

Foiles et al. ' have developed fcc alloy models based on
the embedded-atom method (EAM) of atomistic comput-
er modeling. Numerical fitting is used to tabulate the
necessary EAM functions in a manner similar to that
used for their monatomic models. ' The nature of EAM
models for fcc monatomic metals has also been studied
with an analytic nearest-neighbor model for fcc metals.
Although overly simplified for detailed defect calcula-
tions, this approach contains the basic physical character
of the EAM and, for example, provides a useful mecha-
nisrn for studying the functional dependence of the model
on physical input parameters. In the present report, the
general requirements of EAM alloying models are dis-
cussed, a new form of alloy potential is derived, and the
results of applying a slightly modified version of the sim-
ple analytic model to alloying are presented.

II. THEORY

The basic equations of the EAM, ' in the notation
used by Johnson, are

E, =g F(p; )+—,
' g'P(r;, ),

where E, is the total internal energy, p; is the electron
density at atom i due to all other atoms, f(r,j )is the elec-.
tron density at atom i due to atom j as a function of the
distance between them, r,J is the separation distance be-
tween atoms i and j, F(p; ) is the energy to embed atom i
in an electron density p;, and P(r,~ ) is a two-body poten-
tial between atoms i and j. Although the physical inter-
pretation is difFerent, these equations are identical in
form to those developed by Finnis and Sinclair (FS).
The EAM is based on density-functional theory using

concepts given by Stott and Zaremba (quasiatom ap-
proach ) and Nr(rskov and Lang (effective-medium ap-
proach ), while the FS equations are based on the tight-
binding method. Jacobsen et al. have recently derived
general equations for crystalline energy as a function of
the positions of the ions using efFective-medium theory.
When approximations are applied to this formulation for
the purpose of evaluation, the same underlying equations
are obtained, while again the physical interpretation
remains distinct.

For an alloy model, an embedding function F(p) and
an atomic electron-density function f(r) must be
specified for each atomic species, and a two-body poten-
tial P(r) specified for each possible combination of atomic
species. Since the electron density at any location is tak-
en as a linear superposition of atomic electron densities,
and since the embedding energy is assumed to be in-
dependent of the source of the electron density, these two
functions can be taken directly from monatomic models.
As discussed below, the electron-density functions are
only determined to within a scaling factor from fitting to
monatomic properties, so the relative scaling factor be-
tween elements must be specified for an alloy model.

For a binary alloy with a and b type ato-ms, P"-and
are given by the monatomic models, and P'" and Pb'

are assumed to be equal. The alloy potential could be
determined independent of the monatomic potentials if
sufFicient data were available, but the assumption is com-
monly made that it is a function of the monatomic poten-
tials. For example, Foiles et al. ' tested both geometric
and arithmetic averages, and used geometric averages in
their reported calculations.

A monatomic EAM model is invariant to a transfor-
mation in which a term linear in the electron density is
added to or subtracted from the embedding function and
an appropriate adjustment is made to the two-body po-
tential ' (see Appendix). Thus, the reported forms for
monatomic EAM-model functions involve an arbitrary
choice and, with transformation, models which appear to
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be very different are, in fact, found to be similar. A prob-
lem with using a geometric or arithmetic average is that
the arbitrary choices in the monatomic models have a
significant effect on the alloy potentials. Indeed, the
geometric average is imaginary if one of the monatomic
two-body potentials is negative and the other positive.
This problem did not occur with the Sandia alloy calcula-
tions because their two-body potentials were always tak-
en as positive.

It has been suggested that all models with the EAM
format be transformed to a normalized form in which the
slope of the embedding function is zero at the equilibrium
electron density. " In this case, the two-body potential
becomes the effective two-body potential ' ' " that
controls the energy change for any atomic configuration
in which the electron density at atom sites is not
significantly altered. The effective two-body potentials
are negative in some range of distances, and so a
geometric average cannot be used.

As shown in the Appendix, if the form

(3)

III. HEATS OF SOLUTION

In the analytic model, both the electron density and
two-body potential were taken as decreasing exponential
functions requiring two parameters each:

f(r) =f,exp[ P(r/r, —1)], —

P(r) =P,exp[ y(r/r, —1)] . —
(4)

The embedding function is determined by fitting the mod-
el to a universal equation of state'" in the form of a Ryd-
berg function, resulting in

F(p) = E,(1—lnx)x —6g,y— , (6)

where x =(p/p, ) ~~, y =(pip, )r~~, and 3a(QB/
E, )' . The model parameters are determined from the

is used for all alloy potentials, then alloy models are also
invariant to transformations in the monatomic models
from which they are derived, and this invariance holds
for any number of different elements in an alloy. There is
no physical requirement for this invariance, but it yields
better results in the calculations reported below and has
been successfully applied in some Si-Ge alloy calcula-
tions. ' To avoid singularities, the cutoff distance for the
electron-density function for a specific element must be
equal to or greater than the cutoff distance for the two-
body potential.

As pointed out by Ackland, ' the Finnis-Sinclair mod-
el, although mathematically equivalent to the EAM for
monatomic calculations, is different for alloys. Unlike
the atomic electron densities in the EAM, the hopping in-
tegrals in the FS model depend on the type of atom at
each end of the interaction. Thus only the two functions
f' and f are required for EAM alloy calculations, while

f",f, f', and f ' are necessary for FS alloy calcula-
tions.

lattice constant a or atomic volume 0, the cohesive ener-

gy E„the unrelaxed vacancy-formation energy EU„, the
bulk modulus 8, the Voigt-average shear modulus 6, and
the atomic electron density evaluated at the nearest-
neighbor distance from quantum calculations. This last
input is used to specify P, but uncertainty about the ion-
ization state to use to approximate the solid electron den-
sity makes the result questionable. For a number of
cases, P is near the value 6, so this was taken as a starting
point for each element for fitting. Finally, the value of f,
is unspecified in a monatomic model: it cancels from all
calculations. However, relative values of f, for the
different elements are required for alloy models, and so
these ratios were also used for fitting.

Of the 30 possible heats of solution for binary alloys of
the six fcc metals Cu, Ag, Au, Ni, Pd, and Pt, data for 22
are available experimentally, ' which are the same data as
those used by Foiles et al. ' The dilute limit of the unre-
laxed heat of solution for atom type b as an impurity or
solute and atom type a as the host or solvent, for exarn-
ple, was calculated as follows.

(a) Remove host: E'(p,' ) ——12$"(r,').
(b) Add impurity: +F (p', )+12/' (r,').
(c) Adjust neighbors: —12E'(p,' ) + 12F'(p', +b p ),

bp = f '(r,')+f—"(r,').
(d) Adjust cohesive energy: E;+E,.—

Here, p, is the equilibrium electron density at an atom
site in a perfect crystal of a-type atoms and r,' is the equi-
librium nearest-neighbor distance in this perfect crystal.

Numerical fitting techniques were used to match the 22
heats of solution by varying the P's and f, 's, and the
overall fit to the data was reasonably good using the form
in Eq. (3), while quite poor using arithmetic averaging.
However, the results were not acceptable because the
model parameters were not robust with respect to minor
variations in the input data: including or eliminating cer-
tain heats of solution could cause large changes in the p's
and f, 's.

From the analysis of numerous variations in input, a
pattern did emerge which leads to a useful model. The
two adjustable parameters for each metal are determined
by the relationships f, =SE,/0 and P, =E, /6, where S
is an arbitrary scaling constant taken as 1 for conveni-
ence, and the second relation determines the P's. It is
physically realistic for the electron density to be propor-
tional to the cohesive energy and inversely proportional
to the atomic volume, and the g's determined with this
scheme are all near 6, as found from the atomic wave
functions. The input physical quantities Q, E„EU~, QB,
and QG and the model parameters f„P„a,/3, and y are
listed in Table I for all six metals.

The unrelaxed heats of solution for all combinations of
the six fcc elements Cu, Ag, Au, Ni, Pd, and Pt are given
in Table II, together with the available experimental
data. The general agreement excluding the values involv-
ing Pd is illustrated in Fig. 1 and the data with Pd are
shown in Fig. 2. The Pd results are seen to follow the
same trend in agreement, but are uniformly too high.
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o 3TABLE I. The input parameters Q, E„E„„,QB, and QG, and the model parameters f„P„a,P, and y. Q is in A and the other
inputs are in eV. The dimensions of f, cancel (i.e., it acts as a scaling factor), P, is in eV, and a, P, and y are dimensionless. The in-
put data are the same as that used by Foiles et al. (Ref. 1), except for EU„. They list Ef, and the values they give for Ni, Pd, and Pt
have been increased.

Atom
Inputs

EUF
Model parameters

a P

Cu
Ag
Au
Ni
Pd
pt

11.81
17.10
16.98
10.90
14.72
15.06

3.54
2.85
3.93
4.45
3.91
5.77

1.30
1.10
0.90
1.70
1.54
1.60

10.17
11.10
17.70
12.28
17.92
26.60

4.05
3.61
3.29
6.45
4.99
6.12

0.30
0.17
0.23
0.41
0.27
0.38

0.59
0.48
0.65
0.74
0.65
0.95

5.09
5.92
6.37
4.98
6.42
6.44

5.85
5.96
6.67
6.41
5.91
6.69

8.00
8.26
8.20
8.86
8.23
8.57

The heats of solution calculated with the present ana-
lytic model are unrelaxed values, and relaxtion of the sol-
vent atoms near the solute will give a decrease in energy.
From the details of the relaxed alloy calculations of
Foiles et al. ,

' it is found that the decrease in energy due
to relaxation E, is predominantly dependent on the size
mismatch and can be approximated by the relation
E„=[1.167(O; IQI, —1)),with subscripts i and h indicat-
ing impurity and host, respectively. The fitting values are
shown in Fig. 3, and the resultant heats of solution with
this approximation for relaxation are shown in Fig. 4.
Comparison to Fig. 1 indicates an overall improvement
for binary alloys of the five metals included in these
figures. Since all heats of solution involving Pd are too
high, relaxation changes are in a direction to improve the
agreement. The corrections are relatively small, howev-
er, because Pd is intermediate in size and therefore the
irnprovernent relative to Fig. 2 is minor and a replot is
not warranted.

IV. DISCUSSION

Even with the simplicity of the present EAM model—
nearest-neighbor interactions only and no adjustable
parameters —the agreement shown in Fig. 1 indicates
that it accounts for the basic physical character of alloy-
ing energies. To investigate the parameter dependence of
the heats of solution, a "standard state" is defined by
averaging each one of the five physical inputs over all six
metals. These were used as the solvent inputs, and 243
(3 ) unrelaxed heats of solution were calculated by in-
dependently varying each parameter for the solute to be
smaller, equal, and greater than that of the solvent. The
process was repeated by varying the solvent instead, but
this essentially gave no additional insight. The lattice
constant was varied by +5%, the cohesive and unrelaxed
vacancy formation energies by +25%, and the bulk and
shear moduli by +40%.

The details associated with the relationship between

TABLE II. Heats of solution for binary alloys of the six elements Cu, Ag, Au, Ni, Pd, and Pt. The
results of the unrelaxed calculations are listed first, the values with the approximation for relaxation
second, and the experimental values (Ref. 15), where available, are listed last. All energies are in eV.

Host
Impurity

CU

Ag

Au

Ni

Pd

Pt

0.85
0.58
0.39

—0.03
—0.29
—0.19

0.08
0.07
0.03

0.16
0.08

—0.44

—0.32
—0.42
—0.53

0.41
0.28
0.25

—0.04
—0.04
—0.19

0.77
0.59

0.31
0.28

—0.29

0.67
0.65

0.03
—0.10
—0.13

—0.07
—0.07
—0.16

0.34
0.17
0.22

—0.01
—0.03
—0.36

0.47
0.45

0.10
0.09
0.11

1.95
1.51

0.78
0.36

0.72
0.55
0.06

—0.27
—0.47
—0.28

Pd

0.11
0.06

—0.39

0.32
0.28

—0.11

—0.06
—0.09
—0.20

0.32
0.23

—0.09

—0.04
—0.04

Pt

—0.21
—0.27
—0.30

0.64
0.62

0.59
0.57

—0.11
—0.21
—0.33

—0.01
—0.01
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FIG. 1. The heats of solution with the unrelaxed calculation
vs the available experimental values for the binary alloys of Cu,
Ag, Au, Ni, and Pt, in eV. The diagonal line indicates perfect
agreement.

the physical parameters of the solute and solvent and the
heat of solution are complex. However, some general
qualitative features of the pattern were found.

The lattice constant and the cohesive energy are the
most significant parameters. If they are equal for the
solute and solvent, the heat of solution E, =O, indepen-
dent of the other parameters. If the size of the solute is

FIG. 3. The square root of the decrease in the heat of solu-
tion with relaxation for the binary alloys listed in Figs. 1 and 2
from the calculations of Foiles et aI. (Ref. 1) as a function of
0;/0, &

—1, with subscripts i and j indicating impurity and host,
respectively. The sign of the ordinate values is taken the same
as the abscissa values to yield a straight line rather than a V-

shaped line. The diagonal line is a least-squares At to the data
and was not constrained to pass through the origin.

0.0
5$
Q

-0.8 —0.4 0.0 0.4

Eexpt(eV)
0.8 -0.8 -0.4 0.0 0.4

Eexpt&eV)

0.8

FIG. 2. The heats of solution with the unrelaxed calculation
vs the available experimental values for binary alloys of Cu, Ag,
Au, and Ni with Pd, in eV. The diagonal line indicates perfect
agreement.

FIG. 4. The calculated results shown in Fig. 1 adjusted for
relaxation with the approximation obtained by a linear least-
squares fit to the data in Fig. 3. The diagonal line indicates per-
fect agreement.
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larger while the cohesive energy is less than the corre-
sponding quantities in the solvent, or vice versa, the heats
of solution are positive, independent of the other parame-
ters. However, if the size of the solute and its cohesive
energy are both greater or both less than the correspond-
ing solvent quantities, the heats of solution are negative
or, in several cases, positive but small. The effect of the
vacancy-formation energy of the solute is not very regu-
lar, but it contributes to a more negative heat of solution
when the heat of solution is initially negative if it varies
in the opposite sense as the cohesive energy. Increasing
the bulk modulus of either the solute or the solvent in-
creases the heat of solution, while increasing the shear
modulus of either generally decreases the heat of solu-
tion.

For the sequence 0:E,:EU„.B:6,and with + or —in-
dicating that the solute values are greater or less than
those of the solvent, respectively, and e indicating either
greater or less, the sequence ++ ——+ gave the most
negative E„with ++ —e e all being strongly negative.
The next most negative series was ——+ + e with——+ —+ being most negative. For large heats of solu-
tion, the series + —4 + —was greatest with + —+ +-
most positive, followed by the series —+e+ —with—+ + + —most positive.

V. SUMMARY

An analytic nearest-neighbor EAM model with no ad-
justable parameters has been developed for fcc metals
which uses the following physical input:

(a) equilibrium lattice constant,
(b) cohesive energy,
(c) unrelaxed vacancy-formation energy,
(d) bulk modulus, and
(e) Voigt-average shear modulus.

The electron-density functions [Eq. (4)] and the two-body
potentials [Eq. (5)] are taken as exponentially decreasing
functions, and a universal equation of state' is used to
determine the embedding functions [Eq. (6)]. An analytic
form for two-body aHoy potentials as a function of the
monatomic two-body potentials is given [Eq. (3)], which
yields an alloy model which is independent of arbitrary
electron-density transforrna, tions in the monatomic mod-
els.

The heats of solution for alloys of Cu, Ag, Au, Ni, and
Pt calculated with this model are consistent with avail-
able experimental data, while calculated heats of solution
involving Pd are too high. The most negative heats of
solution occur when the lattice constant and the cohesive
energy of the solvent vary from those of the solute with
the same sign, and the most positive heats of solution
occur when they vary with opposite signs. The effect of
varying the vacancy-formation energy of the solute is ir-
regular, but there is a tendency towards a decreasing heat
of solution if it varies in the opposite sense as the
cohesive energy. Increasing the bulk modulus of the
solute or the solvent increases the heat of solution, while
increasing either sheer modulus generally decreases the
heat of solution.
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6(p)=F(p)+kp, (Al)

and the concurrent transformation to the two-body po-
tential,

g(r) =P(r) 2kf(r), — (A2)

with k an arbitrary constant. This can be demonstrated
as follows. Substituting these two equations in Eq. (1)
gives

E, =g 6(p;) kgp;+—
—,
' g'P(r; )+k g' f(r, ). (A3)"

1 1 E,J EJ

The second and fourth terms on the right-hand side of
Eq. (A3) cancel by use of Eq. (2), giving Eq. (1) in terms
of the transformed functions. The constraint on alloy
two-body potentials such that an alloy model is invariant
to the above transformation to either or both of its con-
stituents is developed in this appendix.

In a binary alloy of type-a and type-b atoms, Eq. (1) be-
comes

E, =gF'(p;)+ —,
' g P"(r, ) + —,

' g P'b(r, , )+QFb(p, )

I a ~ a a b ~ b

ebb(r )+ y yb ( ) (A4
~ b ab b

with i' and i" indicating summation over type-a and
type-b atoms, respectively, and the transformed embed-
ding functions and two-body potentials are given by

G '(p ) =F'(p ) +k 'p,
6 (p)=F"(p)+k p,
P"(r)=P"(r) 2k'f '(r), —

P""(r)=P"'(r) —2k "f"(r)

Substituting Eqs. (A5) and (A6) into Eq. (A4) yields

E, =g G'(p;) —k'gp;+g 6 (p;) —k gp;
ia ib b

+ —,
' g g"(r, )+k' g' f'(r, )

1 jJ & J

+-,' y y"(r,, )+ ,' y ebb(r, ,)-
a b ~ b b

+kb g' f (r, )+—,
' g Pb'(r; ) .

b .ab .b

(A5a)

(Asb)

(A6b)

(A7)

APPENDIX

As has been shown, ' a monatomic EAM model is
invariant to the transformation to the embedding func-
tion,
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The condition for this to equal Eq. (A4) in terms of the
transformed functions is

(v)=P' (r) k—'f (r) k—f'(r),

2k'f'(r)M'(r)+2k f (r)M (r) —=k'f'(r)+k f (r) .

(A 10)

For independent k' and k, the M's must be

g f(v;, ) = g f(ri) )
b -aa b

where the relations P' (r) =P '(r), g'"(r) =f '(r), and
M'(r) =—"1 f (r)

2 f'(r) (A 1 la)

P' (r) =M'(v)P"(r)+M (r)P (r),
P' (r) =M'(r)g"(r)+M "(v )f "(r),

then the transformation property, Eq. (AS), holds if

(A9a)

have been used. Indeed, Eq. (AS) applies as well if a =b.
If the alloy potentials are taken as linear functions of

the monatomic potentials, i.e.,

(Al lb)

which gives Eq. (3) in the main text. No functional rela-
tionship other than this linear form was found which
could satisfy the condition for invariance and, by con-
tinuing the above development, Eq. (3) is found to main-
tain the invariance property for alloys with any number
of constituents.
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