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We examine copper as a pressure calibrant for extended x-ray-absorption fine-structure (EXAFS)
measuremerits of solids under pressures ranging from O to 10 GPa. Great care must be exercised
both in the theoretical formulation of EXAFS and in the data analysis in order to achieve the high
precision required to make copper a useful pressure marker. From the first-shell k-space data,
phase and amplitude information is extracted both with the ratio method and from fitting parame-
ters with the help of theoretically calculated central-atom phase shifts [B.-K. Teo and P. A. Lee, J.
Am. Chem. Soc. 101, 2815 (1979)] and curved-wave backscattering phase shifts and amplitudes [A.
G. McKale et al., J. Am. Chem. Soc. 110, 3763 (1988)]. Both techniques yield practically identical
results confirming the reliability of the phase and amplitude tabulations. But both techniques suffer
from the ambiguity that the results depend on how many EXAFS parameters are kept variable. It
is shown that, for copper, only nearest-neighbor distances and second cumulants (EXAFS Debye-
Waller factors) have to be taken into account. Then pressures can be determined with an accuracy
of about 0.5 GPa. We also present two models for the pressure dependence of the second cumulant:
(1) a correlated Debye model along with simple parametrizations of the isothermal equation of state
and the Griineisen parameter, and (2) a model for the calculation of the moments of the nearest-
neighbor distance distribution from an expansion to third order of the potential energy. Both mod-
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els confirm our data analysis.

I. INTRODUCTION

Extended x-ray-absorption fine structure (EXAFS) has
been proven to be a valuable tool in various branches of
solid-state physics, but few attempts have so far been
made to use it in high-pressure physics. High-pressure
EXAFS is limited by the diamond anvils commonly used
to compress materials because at certain x-ray energies
Bragg reflections suddenly reduce the transmitted intensi-
ty, giving rise to spurious absorption peaks which cannot
satisfactorily be separated from the EXAFS."? For this
reason we replaced diamond by boron carbide (B,C) an-
vils which are polycrystalline but not transparent for visi-
ble light. In so doing we precluded use of the state-of-
the-art ruby-fluorescence pressure-calibration technique.
A new pressure maker was thus called for.

The most natural way of determining pressure in our
experiments is from the EXAFS itself by mixing with our
sample a material whose isothermal equation of state is
well known and whose compressibility is large. Also, its
EXAFS must be easy to measure (atomic numbers nei-
ther too low nor too high), must not interfere with the
EXAFS of the sample under investigation and must have
easily separable (in r space) first- and second-nearest-
neighbor shells. Some of the alkali halides fulfill all of
these criteria and have been found useful in our experi-
ments.>”> A detailed report on the EXAFS of alkali
halides under pressure will be written later. In this paper
we examine the canonical EXAFS substance, copper, as a
pressure marker. Even though it is relatively incompres-
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sible it has the advantage of being one of the best under-
stood materials.

After a short section on our experimental setup, the
EXAFS formula including third and fourth cumulants is
derived from a thermal average of the basic EXAFS func-
tion (k). The two standard data-analysis techniques are
then introduced: the ratio method and the fitting of pa-
rameters with help of theoretically calculated EXAFS
phases and amplitudes. These techniques are required to
estimate the errors incurred in the reduction of the ab-
sorption spectrum to a first-shell k-space data set.
Single-shell data thus produced are then subjected to the
ratio and the parameter-fitting routines which are intrin-
sically ambiguous because the results depend on the num-
ber of parameters considered variable. A careful analysis
of the differing results eliminates all but one method:
The pressure-induced phase change may be considered to
depend only on the nearest-neighbor distance, while the
amplitude change depends only on the second cumulant
(EXAFS Debye-Waller factor). This result must not be
generalized to other substances. But it shows the particu-
lar usefulness of copper as a pressure calibrant in EXAFS
studies. When the data analysis is thus done with the
greatest care, it becomes clear that pressure-induced
changes in nearest-neighbor distances can be calculated
with an accuracy of 0.002 to 0.003 A, thus yielding pres-
sures with an accuracy of about 0.5 GPa. Finally, we
present two theoretical calculations. The first one uses
Rehr’s correlated Debye model to predict the second cu-
mulant as a function of pressure. The second one starts
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from first principles and, with minor simplifying approxi-
mations, predicts the pressure dependence of the first and
second moments and therefore the first and second cumu-
lants, as well.
analysis.

Both calculations confirm our data

II. EXPERIMENTATION

The geometry of the high-pressure cell used in the ex-
periments has been shown previously.? The sample con-
sists of a fine powder of the material to be investigated
and a copper foil of 0.005 mm thickness, all embedded in
soft epoxy which acts as a pressure medium. The sample
has a diameter of about 0.8 mm and a thickness of about
0.4 to 0.6 mm and is radially confirmed by an inconel gas-
ket. Axially, the sample is sealed between two boron-
carbide anvil tips with flats of 2.0 or 2.5 mm diam. In our
axial cell geometry the x-ray beam passes through about
1 to 2 mm of boron carbide on each side of the sample.
The boron-carbide anvils are held by hardened steel pis-
tons which are moved by a hydraulic fluid which is under
a pressure of typically 10 to 20 MPa before one boron-
carbide anvil breaks and the high-pressure experiment is
terminated. The highest pressures we can achieve are
limited by the diameter and thickness of the boron-
carbide anvils. A reduction of the diameter by a factor of
R reduces the photon flux by a factor of R2 Increasing
the thickness of the anvils decreases the photon flux ex-
ponentially. With our present anvils we need an integra-
tion time of about one second for each monochromator
position, i.e., we can obtain one EXAFS spectrum in
about 15 min.

All experiments were performed at wiggler beamlines
of the Stanford Synchrotron Radiation Laboratory
(SSRL) as described in the literature.”® All experiments
were made in transmission mode. The most common er-
rors in such an experiment are known as the thickness
effect.”!® They include leakage of higher harmonics
which we try to minimize by detuning the monochroma-
tor crystal. Since the detuning has to be done several
times in the course of an experiment, two data sets are
not always completely comparable, affecting the ampli-
tude in particular. Another possibly serious error for the
amplitude results from the finite width of the energy band
that passes through the sample, or rather from the varia-
tion of this band width by means of the slits.!! Errors
due to pinholes and radiation leaking around the sample
are minimized by use of homogeneous samples (foils) to-
gether with a collimator of diameter 0.66 mm.

The copper data were obtained in eight different exper-
iments over a span of five years. In all experiments we
usually took two or three EXAFS spectra at zero pres-
sure and at each higher pressure. Therefore, we have
four or nine partially independent pairs of data sets for
each pressure, which allows us to plot error bars for each
individual data point.

III. CUMULANT EXPANSION

When only single-scattering processes are considered,
which is no limitation in nearest-neighbor analyses, the
EXAFS formula for K-shell absorption is given by
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where the summation is over the shells, k is the photo-
electron wave number, N f the coordination number,
F;(k, ) the backscattering amplitude, and r; the momen-

tary position of an atom (not to be confused jwith its aver-
age position R;) of shell j. ®;(k) is the combined
central-atom and backscattering-atom phase function of
that shell. The parameter A, usually denoted as mean-
free path, is meant to include all many-body effects which
have not already been included in the backscattering am-
plitude. In the literature,'? the mean-free path is taken to
be k dependent, with a wide minimum in the central re-
gion of a typical EXAFS spectrum. Since the k depen-
dence is rather weak and would require the introduction
of two new parameters, we choose to keep A constant in
all data analyses. But it must be borne in mind that, una-
voidable as it may be, the neglect of this k dependence
limits the accuracy of all amplitude-dependent parame-
ters.

The angular brackets { ) in Eq. (1) denote a thermal
average. This averaging produces the cumulant expan-
sion which is central to our study. Since there are only
brief derivations of this expression in the literature,'>!*
we produce it more fully here. The definition of cumu-

lants o0V, 6®, ... 0™, . is given by °
(2),2 (n)yn
exp o+ ! +--4+Z !
2! n!
2 n
t t
=1+W+”2' v+

2 n!

where u, denotes the nth moment of a distribution. The
first four cumulants, expressed in terms of moments, can
be obtained by taking the logarithm of (2), expanding the
right-hand side and comparing terms of like powers in #:

oM=p, , (3a)
oP=p,—ui, (3b)
oV =p3=3u +2u, (3c)
o' =py—dpyp, —3u3+ 12u,u] —6ut . (3d)

Replacing ¢ by 2ik, one can then write

i o$M(2ik)"

n=1

exp =(e™)y 4)

n!

as can easily be verified by expanding the right-hand side
of (4). Noting that ¢5"’=R; and ¢*’=02, the EXAFS
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Debye-Waller factor, one writes
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Introducing x jasa deviation from the mean, x =T —R;

J J?
vikr. - the bracket in (1) is written as
iy= ikR. —202
(e ) exp 2lkRJ 201k 1 —2R,/A 2ikR, 1 —2x, /A 2ikx,
xre e )
4 : /R
— oDkt 10Wkt— | s S _
which gives, after Taylor expansion to second order in x;,
J
1 —2R,/A 2ikR, |, 2ikx; 2 2 |1 d, ik, 2 4 3 1 d? , ikx,
—_ — _+_ —_ J + ___’__._._.__'.__._ J .« e
R e P S P PO ¥y R? | (20 dk> >

2ikx; 2ikr;\  —2ikR;
Upon noting that (e /)=(e " )e

/ and inserting (5) into the above expression one obtains a lengthy sum one

term of which is about one order of magnitude larger than all others. Neglecting the small terms yields

%exp( —2R, /M)exp(2ikR, Jexp
J

Since the imaginary part is small the bracketed term can
approximately be rewritten as

4i0'12-k
R

R;

A

exp

J
Finally, the EXAFS formula including second-order
corrections, i.e., third and fourth cumulants, becomes

x(k)=—3 A;(k)sin[¥;(k)] (6a)
J
with the amplitude
N,F;(k,m)
Aj(k)=—"—"—5—
kR;
Xexp(—2R; /A)exp( —2012~k2+ %0’;4)k4) (6b)
and the phase
_ 20} R
W;(k)=2k |R;— x|
—4o+ (k) . (6¢)

Henceforth we deal only with single shells, therefore
j =1 and the summation symbol as well as the subscript j
are omitted.

IV. RATIO METHOD AND PARAMETER FITTING

The most straightforward data-analysis technique is
the ratio method invented by Stern et al.'® It was ex-
tended to include higher cumulants by Bunker!’ and
Tranquada,>®!3 but it has never been presented with all
terms, including energy shift.

The ratio method starts with the decomposition of the
single shell x(k) [whose preparation from a multishell
x(k) is explained in the next section] into phase and am-
plitude by means of two successive Fourier transforms.!8
In dealing with two data sets at different pressures, it
must not be assumed a priori that the wave vectors k are
the same for both sets, 1 and 2, since the zero of the ki-

—203k2 = 2ok 4 3010k ‘

1—i +

1 2
I 40'jk

1
R,

netic energy of the photoelectron might shift with in-
creasing pressure. Therefore one writes

172
AE

2 AE k. —
T2 7,62k,

ki= 1k =377

7

where the subscripts denote the data sets and AE is the
energy shift between the two sets in eV. The unit of k is

A~!. Neglecting higher-order terms, the difference
between the phases of the two sets, AW(k,)
=W,(k,)—W,(k,), is then given by
AE 208 | Ry |1
AV(k)=——""+ - — ||
(k) 3.81 { 'R, MoK
12 |aR 2| L iAo
R, R,—AR A,
2 2
UI_AU
- k—2A (3)k3
A — AL Lo
(8)
with k=k,, AR=R,;—R,, etc. It assumes that

®,(k)=®,(k) which gives an error of about 15% in AE.
Even for AE =0 this assumption is not evident and will
be examined in Sec. VI. When a least-squares fit of the
form a_,k ~'+a,k'+a;k? is made, the three unknown
parameters AE, AR, and Ac‘® can be obtained provided
the parameters with subscript 1 are known and the A
terms in the right half of the second term are initially set
to zero.

In a similar way, the logarithm of the ratio of the am-
plitudes of two sets 1 and 2 is given by

A, (k) N{(R;—AR)?
n =In
A, (k) (N,—AN)R}?
R, R,—AR
-2 || — 21,2
N m—An | A0k

+2A0Wk* )
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FIG. 1. Example of a parameter fit. AE, R, A, and o2 were
variable. The crosses are the data, the solid line is the fit. (a)
The fit was subjected to forward and backward Fourier trans-
forms; (b) no Fourier transforms were applied. The goodness-
of-fit parameters are 4 and 175 (arbitrary units), respectively.

It assumes that F,(k,7)=F,(k,7) which will also be ex-
amined in Sec. VI. A least-squares fit"with a polynomial
of the form a,+a,k>+a,k* is made to obtain AN (if
Ny, A, and AA are known) or AA (if N;, AN, and A, are
known), Ac?, and Ac'?.

While for copper at zero pressure and room tempera-
ture N;=12 and R, =2.556 A are well known, o2 and A,
are not. Several theoretical and experimental investiga-
tions indicate that the former ranges between 7.3 X 1073
and 9.2X 1073 A% (Refs. 6 and 19-21), while the latter is
about 7-8 A.'62223 Here we take 03=7.7X1073 A?
and A;=8 A. Fortunately enough, AE and AR in (8) and
(9) depend very little on the input of 0 and A, and ex-
cept for the determination of AN and AA no error is in-
curred.

It is obvious that an iterative procedure is required to
solve for both phase and amplitude parameters, but the
results converge very rapidly. It must also be mentioned
that it is advisable to weight the fits with
[A,A,/(A,;+ A,)]? in order to deemphasize the low-k
and high-k regions which get distorted when the single-
shell data sets are prepared, as will be shown in the next
section.

The other major data-analysis technique is parameter
fitting. It is based on the assumption that an EXAFS
spectrum can be simulated perfectly well with theoreti-
cally calculated values for the central-atom and
backscattering-atom phase shifts and the backscattering

J. FREUND, R. INGALLS, AND E. D. CROZIER 39

amplitude. Central-atom phase shifts, calculated with
Herman-Skillman wave functions, were taken from Teo
and interpolated with the polynomial
ag+ak+ayk?>+a_;k 32 Backscattering-atom phase
shifts and amplitudes were taken from McKale’s?6 ™28 re-
cent calculations that make use of the curved-wave for-
malism and therefore extend the EXAFS analysis down
to lower k (about kK =2.0 A) than before.

In parameter fitting an EXAFS spectrum is calculated
with a trial set of numbers for the unknown parameters,
and the sum of the squares of the deviation between fit
and data, the goodness-of-fit parameter, is calculated.
This procedure is repeated with different choices of num-
bers until the goodness-of-fit parameter reaches a
minimum. Since this technique is inefficient when the
number of parameters is large the problem is split into
fitting the phase parameters AE and R and amplitude pa-
rameters N (or A) and o? separately. ¢'* and 0¥ are
kept fixed and each of the above-mentioned parameters
may also be kept constant, if desired. The best fitting is
achieved by setting up a grid of 3 X3 numbers for the two
phase parameters, calculating the nine goodness-of-fit pa-
rameters, selecting the smallest one, and continuing with
a smaller grid. When stable results are achieved the pro-
cedure is repeated for the two amplitude parameters. Fi-
nally, a four-dimensional parameter space is spanned and
a gradient search?>* is started which does not usually
change the results of the grid searches very much. A not-
able improvement in the goodness-of-fit can be achieved
when the fits are subjected to the same succession of
Fourier forward- and backtransforms that are used to
produce the single-shell data (see next section). Figure 1
shows that the improvement is particularly great at the
low-k and high-k ends of the spectrum.

V. PREPARATION OF DATA SETS

A recent review article on data preparation and
analysis has been written by Sayers and Bunker.’! Data
preparation of copper in particular has already been dealt
with by Lengeler and Eisenberger’? and Cook and
Sayers.’? It is desirable to go into greater detail here.
Analysis starts with background removal which is fairly
standardized: The arbitrary determination of the zero of
the photoelectron kinetic energy (e.g., the little peak in
the middle of the edge for copper) is followed by the
preedge background removal with an appropriate fit and
the postedge background removal with a cubic spline.
Variation of the number of knots (typically four) and the
weighting scheme (typically k) has little influence on the
results. Ideally, the EXAFS should be obtained from

H(E)—puy(E)

X(E)= 1ol E) )

(10)

where p(E) and po(E) are the actual absorption and the
background absorption, respectively, after subtraction of
the preedge background. But the preedge background
cannot reliably be extrapolated far beyond the edge. In
practice, therefore, one divides by p(Eq) in (10) where
E, is the edge position. This procedure poses another
limitation to the accuracy of amplitude parameters.
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TABLE I. Comparison between input and output of four EXAFS parameters: Ar, Ac?, Ac'®, and

A 0_(4'
Gaussian k window: 2.5-5.0 and 10.0- 12 5A
window of low-pressure set:

Goodness-of-fit parameters of phase- d}ﬁ'erence and amplitude-ratio fits in arbitrary units.
, as described in the text, weighted with k!5, Square
1.75-2.64 A, of high-pressure set as indicated, k range used for fitting;

4-10A
r-window (A): Ar Ac? Ac® Ac'¥ Goodness-of-fit
(high pressure) (A  (107*4%  (107*A) (1075 A%  Phase  Amplitude
1.75-2.64 input 0.020 1.00 1.00 1.00 2483 95
output 0.021 0.93 1.27 0.84
1.72-2.64 input 0.020 1.00 1.00 1.00 705 79
output 0.020 1.35 0.75 2.59
1.75-2.61 input 0.020 1.00 1.00 1.00 425 45
output 0.020 0.82 1.11 0.29
1.72-2.61 input 0.020 1.00 1.00 1.00 3338 72
output 0.019 1.23 0.59 2.04
1.72-2.61 input 0.050 2.00 3.00 2.00 1160 193
output 0.049 2.18 2.83 2.89
1.69-2.61 input 0.050 2.00 3.00 2.00 2630 230
output 0.049 2.55 2.44 4.50
1.72-2.58 input 0.050 2.00 3.00 2.00 787 536
output 0.048 2.08 2.58 2.47
1.69-2.58 input 0.050 - 2.00 3.00 2.00 5560 396
output 0.048 2.45 2.19 4.08

The next step in data analysis, the two Fourier trans-
forms from k space to r space and back into k space, are
potentially dangerous because of the well-known trunca-
tion effects. This is especially true for the backtransform.
In order to minimize transform artifacts EXAFS spectra
are simulated with the tabulated values for the phases
and amplitudes and subjected to the transform routines
and to the ratio- or parameter-fitting routines. Then the
difference between input and output determines the quali-
ty of the transforms.

The best k-space window and weighting scheme can be
found with an artificial spectrum consisting of only one
shell because then a very large r-space window can be
taken such that the backtransform does not affect the re-
sults. It is found that moderate smoothing at the low-k
and the high-k end (e.g., a Gaussian with 10% at
k=2.5A"", 100% from k=5.0 A"' to k=10.0 A7},
and 10% at k=12.5 A™!) does a better job than a boxcar
window. Weighting with k° or k'® does not make a
difference, except that in the former case the transform in
r space is a little wider. The same result holds for larger
exponents. In anticipation of the problems with the
backtransform it is highly preferable to have the nar-
rowest possible r-space transform, and therefore one
chooses a k!° weighting.

By gradually decreasing the width of the r-space win-
dow the fits become worse and the output starts to devi-
ate from the input, especially for the sensitive higher cu-
mulants. When artificial EXAFS sets consisting of
several shells are used, some further deterioration cannot
be avoided because the first and second shells partially
overlap. When artificial EXAFS data are finally replaced
with real data one is even forced to truncate the low-r
side lobe because that portion of the spectrum is contam-
inated with low-frequency background artifacts. It seems
that the best window is a boxcar from about 1.72 A to

about 2.64 A at p=0. For higher pressures the window
has to be moved to smaller values. Even though the
goodness-of-fit depends considerably on small variations
of the r windows, the results are relatively stable, as
demonstrated in Table I. In particular, the change in
nearest-neighbor distance can be determined within
about +0.001 A the changes in second, third, and fourth
cumulants can be calculated with accuracies of about
20%, 20% and 100%, respectively. We can therefore ex-
pect useful results, except for the fourth cumulant.

VI. RESULTS

In (8) and (9) the phase differences and amplitude ratios
are fitted with three parameters each. It is not always
advisable to do so because the parameters are strongly
correlated and, even though the goodness-of-fit parame-
ter decreases, the parameters themselves may become un-
physical. In this section the best way of fitting phase
differences and amplitude ratios is examined.

There are four physically reasonable ways of fitting the
phase difference: While the k! term must always be re-
tained, the k ~! and k3 terms can or cannot be discarded,
which allows determination of the following combina-
tions of parameters:

(P1) AR,
(P2) AE, AR,
(P3) AR, Ac®),

(P4) AE, AR,

Similarly, the amplitude ratio must always contain the k?
term whereas the k° and k* terms are not mandatory,
giving rise to four possibilities:
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(A1) Ac?, G A B I I B
L (=) ]
(A2) AXA, Ad? = I ]
A3 Ac?, Ao, o<t . ]
) 02, (4) ! = ]
(A4) AA, Ac% Ao, = - ]
= e ]
o ey
We choose AA rather than AN since the coordination ge T — + 1
number definitely remains constant under high pressure. iR —f— ; ]
The AR results are immediately coverted into pres- & s = ]
sures using the Murnaghan equation of state®? % - + —F—
Bo Ry | 1 Lf:::}: R amEee e
P~ B, | |[R,—AR He ab - (b) ]
where R, is the nearest-neighbor distance at zero pres- ‘i‘f 1 i —
sure and B, and B, denote the bulk modulus and its first o© I + - ]
pressure derivative at zero pressure. B, (141.5 GPa) and ° j% = e ]
By, (4.36) were determined from fitting (11) to the copper o o R R ]
compression values of the AIP handbook® in the range o | —t— —E g,
0-20 GPa. This fit is excellent, incurrring virtually no a i ——i bob 3 |
error. When (11), with the same values for B, and By, is ol -1 ]
superimposed on the compression values of Vaidya and °
Kennedy* and Xu et al.3® systematic deviations of up to | | | | ]
0.2 GPa at 4.5 GPa and 0.6 GPa at 8.4 GPa, respectively, SR P s 10
occur. So the possibility of a systematic error of up to 0.7 p (GPa)

GPa at 10.0 GPa exists. We do not want to investigate
this problem further since it is not related to EXAFS and
not limited to copper. It is rather a problem of all high-
pressure work.
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FIG. 2. Energy shift AE(p) calculated (a) with method (P2)
and (b) with method (P4).

FIG. 3. Change in third cumulant o*'(p) — o’ calculated (a)
with method (P3) and (b) with method (P4).

After having converted AR to pressure,

AE(p),

_AO'(:;)(p):O'(S)(p)"‘O'g” ,

—Ac¥(p)=c¥p)—a},
—AApP)=Ap)—Ay,

—“AO'M)(p):O'(d')(p)—Gg”
are shown in Figs. 2—-6. Of the 42 results only one-half
(with the smallest goodness-of-fit parameters) are plotted.

Figure 2 shows AE(p), calculated with methods (P2)
and (P4). It is evident that the variations are random, ex-
cept for a slight increase with pressure of AE (p) by about
(0.15 eV)/(10 GPa) with method (P4). Figure 3 shows
that o3 p)_oé)”, calculated with both methods (P3) and
(P4), is independent of pressure and exhibits only random
fluctuations. The random fluctuations are a result of the
strong correlations between the pairs of parameters
R<>AE and R<>a®.

The parameter-fitting routine can be used to calculate
the goodness-of-fit parameter of a simulated EXAFS set
with all parameters kept constant. When this is done re-
peatedly with slightly wrong values for R and AE, or R
and o'*, a two-dimensional array of goodness-of-fit pa-
rameters (parameter space) is created. The topography of
the parameter space R<>AE has a valley with almost
identical =~ goodness-of-fit parameters from R
(=2.554 A)/AE (=—0.4 eV) to R (=2.562 A)/
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AE (=1.0 eV), indicating that R and AE are inter-
changeable with a ratio of (0.006 A)/(1 eV). Similarly, R
and o) are interchangeable with a ratio of 0.004 As107¢
Al over a range of at least 0.008 A/2.0x107* A3, Ran-
dom oscillations of the order of 0.1 eV and
0.5X107* A3, respectively, can therefore easily be ex-
plained by the interchangeability of the three phase pa-
rameters. Should AE actually increase with pressure, as
suggested by method (P4), then the neglect of this pres-
sure dependence would result in an error of only 0.001 A,
or 0.2 GPa, at 10 GPa.

Thus, we conclude that both AE and ¢ are physical-
ly independent of pressure and, in order to avoid a spuri-
ous scatter, method (P1) is a legitimate way of determin-
ing AR in copper. This lucky circumstance makes
copper an ideal pressure marker in high-pressure EXAFS
experiments. It must be borne in mind that the legitima-
cy of this simplification has been demonstrated only for
copper. In general, pressure-induced energy shifts and
changes in third cumulants must be taken into account
until they have been proven to be negligible. Neglecting
them right from the beginning of data analysis could re-
sult in serious errors in AR, as can be seen from the

)
T
[

«—
ot
- i
g 2 d ]
o~ 45 ]
Ew oop ]
'E L 1
ao o L + 4
SE | t .
=5 ; ]
&~ o [
g r 2
E L
£ L
o, -3 ]
< ey by b
-3 -2 -1 0
2 2 : -3 32
o%(p)—o§ from Ratio Method (107" A®)

FIG. 8. Changes in the EXAFS Debye-Waller factor deter-
mined from the ratio method and from parameter fitting.
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correlations mentioned before.

Figure 4 shows o%(p)—o3, calculated with methods
(A1)-(A4). The dashed and the dotted lines indicate two
completely independent theoretical calculations for the
pressure dependence of the EXAFS Debye-Waller factor
which are discussed in detail in the next section. It is
clear both from the theories and from the small scatter of
the data points that method (Al) is best, and that
methods (A2)-(A4) must be discarded. There are two
reasons why only one amplitude parameter can be re-
tained. The amplitude, as opposed to the phase, is
affected by various inaccuracies in the experiment and
the data analysis, as explained before. Furthermore, the
amplitude parameters are also strongly intercorrelated:
02 and 7» are almost interchangeable with a ratio of
0.8Xx1073 Az/(l A) over a range of about
0.7X1073 A /0.9 A. Slmxlarly, o? and o are inter-
changeable with 0.2X107° A%/107% A* over a range of
1.1X107% A/5.0X 1075 A%

In choosing method (A1) we are, therefore, asserting
that both A and o* have negligible pressure dependence
and that the variations seen in Figs. 5 and 6 are spurious
and a result of these correlations. While for A such a be-
havior seems physically reasonable, no predictions can be
made regarding the fourth cumulant. But it must be
borne in mind that o and o*’ are unequal quantities be-
cause they are second- and fourth-order terms, respec-
tively. Neglect of o*’ should therefore have little conse-
quences for the other amplitude parameters. Noting that
o could not even be determined reliably from simulated
EXAFS data we are not surprised to find it nothing but a
source of error in real-data analysis.

Figure 7 presents a comparison between the pressures
determined from the ratio method and from parameter
fitting. To make the results comparable, method (P1) was
applied in the ratio program, and R was the only phase
parameter fitted in the parameter-fitting routine. Figure
7 demonstrates convincingly that both techniques yield
basically the same results, i.e., that the theoretical phases
®(k) and amplitudes F(k,) use in parameter fitting are
reliable and that the errors inherent in the ratio- and
parameter-fitting techniques are only about 0.2 GPa. It
must be mentioned here that no use was made of the
slight variation with nearest-neighbor distance of
McKale’s backscatter amplitude and phase. Therefore,
this makes parameter fitting comparable to the ratio
method which is based on the assumption of identity of
®(k) and F(k,7) in both data sets. When McKale’s
functions are made nearest-neighbor-distance dependent
(which requires an iterative fitting procedure) the pres-
sures increase by about 0.2 GPa at 10 GPa. We do not
make use of this possibility which would render the ratio
technique obsolete and make us rely entirely on parame-
ter fitting.

Figure 8 shows a comparison between Ac? determined
from the ratio program and from parameter fitting.
Method (A1) was used in the ratio program and o2 was
the only amplitude parameter fitted. Again the results
are very much alike. Use of McKale’s nearest-neighbor-
distance dependence of the backscatter amphtude has
only negligible influence on the fitting of o2. All 42 data
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points were plotted in Figs. 7 and 8, irrespective of the
goodness-of-fit parameters.

. Another type of parameter fitting was also attempted
where phases and amplitudes were extracted from the
zero-pressure data sets and used to fit the high-pressure
sets. This procedure yields results even more similar to
the ones from the ratio technique.

VIL. DISCUSSION OF ¢?

Figure 4 contains graphs obtained from two indepen-
dent theoretical calculations of the EXAFS Debye-
Waller factor as a function of pressure. The first ap-
proach starts with the definition of the mode-dependent
Griineisen parameter ¥,

__Odlnw
Yoo T 3y (12a)
In Debye theory all frequencies are just fractions of the
Debye frequency wp, thus

dlnwp
dlnV

This mode-independent Griineisen parameter still de-
pends on volume which, in turn, depends on pressure.
With a slight modification of a formula found in the
literature’”3® the simplest parametrization of the volume
dependence for copper can be written as

y(V(p)) _ ¥ Vo)
Vip) Vo

Vo™ V= (12b)

=const , (13)

where the subscript O indicates zero pressure. Following
the literature® 4! y(¥,) is taken to be 2.0. Integration
of (12b) gives

Y
0

op(V(p))=wp(Vydexp |y(V,)

] . (14)

wp(V,) is related to the Debye temperature, @, (V,), by
fiwp, =kp®p. Op(V,) is 315 K.* For [V(p)/V,] any
appr4c3>priate isothermal equation of state can be used,
e.g.,

3B, +1
Vip) _ 1_;111 _._O__p (15)
Vo 3B +1 3B,

Equation (14) together with (15) is then inserted into a
correlated Debye model calculation which expresses the
EXAFS Debye-Waller factor as a function of the Debye
frequency®

sin |C ) ]

®p(p) @p

0,2(p):_§3_ﬁ____~f b @ —_
MCOD(p) 0 C w
COD(P)
#iw
X coth
cot 2k, T do (16a)
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with

(6m%00)'°R
C= ——*‘W‘— (16b)
where p, and M are the density at zero pressure.and the
atomic mass, respectively.
The second approach starts from the definition of the
cumulants in terms of moments, i.e., Eq. (3). The nth
moment p, is defined by

drie
i

o T ASiP)/kg

—AS,(p)/kg

wn(p)= (17a)
i

r; denotes the momentary distance to the nearest neigh-
bor as before. AS;(p) is the difference between the
ground-state entropy and the entropy of a given state, i.
Pressure p is a parameter. The summation is over all
states. The system under investigation is one bond, i.e.,
% of the Wigner-Seitz cell for copper. Replacing the
summation by an integration over a six-dimensional
phase space (the two-body problem becomes a one-body
problem in c.m. coordinates) with three momentum vari-
ables p (not to be confused with pressure, p) and three
spatial variables q gives

ffrn(q)e~AS(p;p,q)/kB dpdq
ffevAS(p;p,q)/kB dpdq

The first law relates AS(p;p,q) to volume AV(q), poten-
tial energy AE,(q), and kinetic energy AE, (p) by

uy(p)= (17b)

AS(p;p,@)=7:[p AV(a)+AE, (@) +AE(p)] .

Obviously, the integration over p cancels and q can be re-
placed by r in this one-dimensional problem. Writing
x=r—R’, where R’ is the minimum of the potential en-
ergy (not to be confused with the average nearest-
neighbor distance at zero pressure R,), expanding the
changes in volume and potential energy in powers of x
and retaining only first-order terms in AV(x) (not valid
for very large p) and third-order terms in AE,(x), one ar-
rives at

—(apx+bx2—cx3)/kBT

J (R +x)e dx

-“(apx+bx2—cx3)/k T
fe B dx

wa(p)= , (17¢)

where a,b,c are positive, and so far unknown, parame-
ters.

The preceding ansatz that isolates one single bond and
neglects all others is based on four assumptions. (1)
Equation (17c) is a classical average and works only for
temperatures greater than about 1®,. This poses no
problem in our investigation. (2) Possible interactions
with higher shells are neglected. This is a good approxi-
mation for copper.***> (3) The ansatz is strictly applic-
able only if all bond angles are right angles. Then the dis-
placement of one bond is, to first order in x, independent
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of the displacement of all other bonds. Since in copper
there are 90° and 60° bond angles errors may be expected.
(4) The anharmonic terms in a Taylor expansion of the
potential energy generally contain multibody potentials,
i.e., three-body potentials for the third-order term, etc.
Moriarty*®*’ has shown from first principles that three-
body potentials are negligible in copper. Since nothing is
known about four-body potentials the potential energy
expansion must be terminated after the cubic term which
could result in a further deterioration of the results.

When the cubic term in (17c) is expanded to first order
the equation can be integrated. With (3) one obtains

3(kBT)C 3¢

1
(D(p)y=R" b 2
o (p)=R'+ e 2b(ap)+ 8b3(ap) )
(18a)
(kBT) 3(kBT)C
2 )= —
o (p) b e (ap) . (18b)
Since o' Y(p)=pu,(p)=R(p),
(h—p dR.=R'+ 3(kgT)c
oy o and R, b?
Equations (18) have the interesting property
(1
oHp)=(—k,T)22—2) (19)

d(ap)

The parameter a can be determined from (19) by noting
that

_ dp _dV(p) _3dR(p) _3da'"(p) (20)
B(p) V(p) R (p) R (p)
giving
(kgT)R
a=—E-0 @1
3Byog

o3 must be taken from the literature. The problem is
thus reduced to getting an appropriate formulation for
o'Y(p). Noting that

o Vp) _ [V(p) 1/3 o)
Ry Vo ’

the parameters b and ¢ can be obtained from fitting (18a)
to compression data, [ V(p)/V,], from the literature.
Figure 4 contains plots of —Ao%(p)=02(p)—o} from
the two theories just presented. They are in good agree-
ment with each other and with the data. From (18b) one
sees that Ao%(p) is a third-order term, determined by a
third-order coefficient ¢. It seems that high-pressure EX-
AFS contains information on third-order elastic con-
stants (TOEC). Further investigations are called for.
Everything that has been said cumulants so far refers
to thermal cumulants, i.e., those cumulants that result
from the thermal motion of the atoms. We must now ex-
amine the possibility of static cumulants which result
from a static disorder of the atoms. Neglecting the disor-
der due to point defects and along dislocations and grain
boundaries, there is one possibility for static cumulants in
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copper under high pressure: The pressure inside the sam-
ple is possibly nonhydrostatic or inhomogeneous. To es-
timate this effect we assume that the variation of pressure
inside the sample can be approximated by a parabola

2
p(x)zpmax 1———7 i (23)
p

where x is the radial distance from the center of the sam-
ple, p is the radius of the anvil flat, and p_,, is the pres-
sure at the center of the sample which is i of the pres-
sure averaged over the sample if the sample diameter is
of the anvil flat diameter. It can be shown in a straight-
forward calculation that, to first order, the nearest-
neighbor distance is also given by a parabola

2
R(x)=a+b>5, (24)
P

where a and b are constants that depend on the average
pressure. From the distribution (24) moments and cumu-
lants can be calculated in the same fashion as before. The
results are 02=2.4X10"% A% and ¢*’=0 at p =10 GPa.
Pressure inhomogeneity is therefore no possible source of
error in the preceding calculation.

We want to conclude this section by mentioning that a
similar investigation of the pressure dependence of the
EXAFS Debye-Waller factor has come to our attention.*®
Unfortunately, no calculational details were given.

VIII. CONCLUSION

Bragg reflections in the diamond anvils of our high-
pressure cell have produced serious interference with the
EXAFS signal. The diamonds were replaced by boron-
carbide anvils which are polycrystalline but, at the same
time, intransparent for light, so the ruby-fluorescence
pressure calibration had to be replaced. We have shown
in great detail that the EXAFS of a copper foil put on top
of the sample provides not only a reasonable but a very
good replacement for the rubies. We have also shown
that the EXAFS amplitude, even though it is less reliable
than the phase, contains useful information.

We now summarize the errors in the determination of
pressure from the EXAFS phase. (1) The Fourier back-
transform from r space to k space produces an error of
about 0.001 A, or 0.2 GPa, which must be taken into ac-
count. (2) The ratio- and parameter-fitting programs give
results that differ by about 0.2 GPa. This is the intrinsic
error of the routines and must be taken into account. (3)
Neglect of the nearest-neighbor-distance dependence of
the backscattering phase may introduce an error ranging
from 0.0 GPa (at 0 GPa) to 0.2 GPa (at 10 GPa). If this
nearest-neighbor-distance dependence is acknowledged as
correct the ratio technique becomes obsolete. We rather
chose to keep the ratio method and incur this possible ex-
tra error. (4) There is the remote possibility that AE does
depend on pressure and its neglect introduces an error of
0.2 GPa (at 10 GPa).

We take errors (1)—(3) into account and conclude that
the overall error in pressure determination is about 0.5
GPa. The ruby-fluorescence pressure calibration,*’ in
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comparison, supposedly produces errors from about 0.1
GPa (at 1 GPa) to about 0.8 GPa (at 20 GPa), i.e., about
0.1-0.4 GPa in our range of interest. In addition to that,
there is the possibility that we calibrate the pressures
with a wrong scale. This is not EXAFS-related or a spe-
cial feature of copper but common to all high-pressure
work.
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