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Semiempirical tight-binding models have been widely used but the details of their relationship to
more fundamental theories have never been clear and so they have usua11y been treated as fitting
and interpolation schemes rather than as quantitative calculational tools. In this paper, we show
how simple tight-binding models can be understood as stationary approximations to self-consistent
derisity-functional theory and give prescriptions for calculating all the required potentials and ma-
trix elements. Some preliminary applications have given encouraging results.

INTRQ DUCTION

One of the central problems of theoretical solid-state
physics is to And ways of ealeulating the forces acting be-
tween the atoms in a solid. This is particularly important
near defects such as vacancies, dislocations, and grain
boundaries, since the interatomic forces affect the way
defects behave in response to externally applied stresses
and changes in temperature and hence determine many of
the macroscopic mechanical and thermal properties of
the solid. Despite their importance, however, interatom-
ic forces are hard to calculate. This paper describes an
attempt to improve one of the available methods, the
tight-binding method.

Methods for calculating interatomic forces may be di-
vided, roughly, into two classes: those which attempt a
proper quantum-mechanical treatment of the electrons
and those which do not. Into the latter category fall
most pair-potential methods (an exception, perhaps,
should be made for the volume-dependent pair-potential
description of weak pseudopotential solids' derived from
second-order pseudopotential perturbation theory) and
most methods using three- or higher-body interatomic
potentials (exceptions here might be made for some
embedded-atom methods ). Among the quantum-
mechanical approaches, the most accurate are based on
density-functional theory and include the standard
band-structure methods such as the linear muon-tin or-
bitals (LMTO) method, the linear augmented-plane-wave
(LAP') method, and the use of plane-wave basis sets
with norm-conserving pseudopotentials. Less accurate
approaches include the embedded-atom and pseudopo-
tential perturbation methods already mentioned, the use
of the Gordon-Kim model, and the tight-binding
method which is the principal subject of this paper.

Although the methods which are not based on quan-
tum mechanics are adequate in many cases, there is con-
siderable evidence that it is far from easy to find reliable
classical interatomic potentials for many important

classes of solids. An instructive example is provided by
the work of Biswas and Hamann on silicon. They at-
tempted to fit a three-body potential of a fairly general
form to a large number of properties of silicon in many
different crystal structures (most of these were purely hy-

pothetical and so the required properties were obtained
from accurate self-consistent density-functional calcula-
tions). The database was about the largest of its kind that
could have been collected, and the numerical work and
6tting procedures seem to have been of a high quality;
but nevertheless, as soon as the potentials derived were
used to study defects which had local arrangements of
atoms markedly different from any included in the data-
base, they were found to give unreliable and inaccurate
answers. The lack of "transferability" was particularly
pronounced when looking at highly undercoordinated
structures. This is a clear demonstration that the physi-
cal laws governing the interatomic forces in silicon are
not well represented by simple interatomic potentials and

suggests that more sophisticated approaches, presumably
based on quantum theory, are needed.

Among the quantum-mechanical approaches, only full
self-consistent density-functional calculations with a good
basis set seem capable of giving interatomic forces which
can be trusted quantitatively in most solids. However,
most self-consistent density-functional calculations are
cast in reciprocal space and so rely on the periodicity of
the arrangement of atoms in the solid. They are inapplic-
able when this periodicity is disrupted, as happens near a
defect (point, linear, or planar) or in a glass. For defect
calculations, the periodicity can be restored by the
artifIcial device of considering a periodic array of identi-
cal defects, but to ensure that the defects in such an array
are far enough apart to be treated independently it is
often necessary to use very large unit cells. Although
great improvements have recently been made in the sizes
of unit cells which can be treated, such "supereell" calcu-
lations are still time consuming, computationally inten-
sive, and rather limited as to the sort of questions they
can answer. There is no doubt that supercell calculations
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provide an invaluable benchmark and are becoming rap-
idly more Aexible but there is still room for simpler and
less accurate approaches, both because they can deal with
more complicated arrangements of atoms and because
they are often easier to interpret and provide more physi-
cal insight.

Among the less accurate quantum-mechanical
methods, the semiempirical tight-binding (SETB) method
is probably the most widely used and generally useful. Its
successes have been many and varied, but the method is
far from reliable. There is no doubt that SETB calcula-
tions are easy to do and that the results, expressed in
terms of quantities such as local densities of states and
chemical bond orders, are easy to interpret and give a
very physical description of what is going on in the solid.
However, since even simple qualitative results are not al-
ways reliable, it is often very dificult to know whether to
trust SETB calculations or not. A couple of examples
will illustrate both the strengths and the weaknesses of
the SETB approach.

An example of a successful SETB calculation is the
work in which Chadi predicted the buckling (asym-
metric dimerization) of the silicon (100) surface. Subse-
quent self-consistent density-functional calculations
disagreed about whether this reconstruction occurred or
not, but more recent experimental and theoretical work'
on both Si and Ge has tilted the balance back in favor of
the original SETB results.

Examples of some of the problems which can arise
when using SETS are provided by the work of Hashimo-
to" and of Sayers, ' who both looked at the problem of
impurity-induced intergranular embrittlement in metals.
Both came to the conclusion that embrittlement resulted
from a decohesion mechanics. According to Sayers, the
weak bonds are those between the impurity atoms at the
grain boundary and the neighboring host metal atoms
(first-layer decohesion), whereas Hashimoto attributes the
embrittlement to a weakening of the bonds between pairs
of host metal atoms which happen to lie near the
impurity-contaminated grain boundary (second-layer
decohesion). However, a recent self-consistent pseudopo-
tential calculation' seems to rule out both these con-
clusions, and Goodwin, following an earlier suggestion of
Haydock, ' believes that embrittlement arises not because .
of a decrease in cohesion at all, but because the impuri-
ties like to form covalent and directional bonds which are
not easily broken and remade. This means that atoms at
the boundary are less able than those in the bulk to dissi-
pate local concentrations of stress by ductile Sow (so
blunting a crack tip, for example) and so the boundary
becomes more prone to brittle fracture.

The problems exemplified in this work arise, at least in
part, from the excessive Aexibility of SETS models as
fitting schemes. In a typical tight-binding calculation
there are between five and ten unknown functions of the
interatomic distances which must be fitted to the results
of experiments or to more accurate calculations. It is not
surprising, therefore, that there is usually little difFiculty
in finding parameters which reproduce the chosen data
with reasonable accuracy. Unfortunately, just as hap-
pened in the case of the Biswas-Hamann potential for sil-

icon, this does not ensure that the derived parameters are
physical or transferable. This can only be guaranteed if
the meanings of the parameters and the relationships be-
tween them are understood in more detail, and if ways
are found of calculating them directly using a more fun-
damental theory. The most obvious choice of fundamen-
tal theory is density-functional theory.

The relationship between SETS theory and density-
functional theory is straightforward enough on a rough
intuitive level, but the details are only just beginning to
become clear. ' ' The sorts of questions which must be
answered are the following. Why are most tight-binding
calculations non-self-consistent? How do they include
the double-counting energy present in self-consistent cal-
culations? Can one sensibly assume that the tight-
binding basis functions are orthogonal? Is it reasonable
to take the Hamiltonian matrix elements to be simple
pairwise functions of the interatomic distances? And can
one ignore all crystal-field terms as is usually assumed?

This paper is intended as the first of several in which
we hope to answer some of these questions and to show
how to derive reliable and transferable tight-binding pa-
rameters from density-functional theory. These can then
be applied, in conjunction with the recursion method, to
study the behavior of complicated defects in real solids.
All the calculations can be cast in real space ' and so
this approach avoids the need to impose an artificial
periodicity by using supercells. Many real-space tight-
binding defect calculations have already been done, of
course, but they have almost all suffered from uncertainty
about whether the parameters involved are sensible and
trustworthy or not; the aim of our work is to help remove
this uncertainty.

The rest of this paper is organized as follows. In Sec. I
we describe and compare the density-functional and sem-
iempirical tight-binding approaches to calculating total
energies in solids. We show how the questions which
must be addressed in attempting to relate the two fall nat-
urally into two groups: questions concerning the form of
the tight-binding expression for the total energy; and
questions concerning the form of the tight-binding secu-
lar equation. We restrict ourselves to considering ques-
tions in the first of these groups for the remainder of the
paper. In Sec. II, we derive a rather unusual stationary
principle in density-functional theory, and in Sec. III
show how it leads to an expression for the total energy of
the form assumed in simple tight-binding models. This is
tested on some simple examples in Sec. IV. Finally, we
conclude by reiterating what has been accomplished and
discussing what is still to be done.

I. DENSITY-FUNCTIONAL THEORY
AND SKMIEMPIRICAL TIGHT-BINDING MODELS

We start this section with a brief summary of some
parts of Hohenberg-Kohn-Sham density-functional
theory (DFT). Then we describe what we mean by a
semiempirical tight-binding (SETB) model and discuss
the points of similarity and difference between SETB
model calculations and full self-consistent DFT calcula-
tions.
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A. Density-functional theory

Once the Born-Oppenheimer approximation has been
made, the ground-state electronic energy of a solid (for
any given arrangement of the nuclei) can be obtained by
solving the Schrodinger equation for the interacting elec-
trons moving in the fixed external potential due to the
frozen nuclei. According to DFT, this ground-state ener-
gy is the minimum value of a functional, E[n (r)], of the
electron density, n(r). The functional is defined for all
normalized densities n (r), but takes its minimum value
when the density is the ground-state density no(r)

It is useful to divide the total-energy functional into
two parts,

E [n]= T, [n]+F[n],
where T, [n] is the kinetic energy of an imaginary nonin-
teracting (except via the Pauli exclusion principle) elec-
tron gas moving in that external potential which induces
a ground-state density equal to n (r). [Since not all densi-
ties are possible ground-state densities of a system of
noninteracting electrons, the functionals T, and, hence, F
are not always defined (although, see Levy' ). Densities
which do correspond to possible noninteracting ground
states are called "wave-function noninteracting v

representable" and these are the only densities for which
Eq. (1) makes sense. ] T, [n] is not the same as the kinetic
energy of the real interacting system, but the hope is that
it is roughly similar in magnitude.

F[n] must contain some simple electrostatic terms and
so we write

F[n]=f V„„„(r)n(r)d r

V„„,&(r) is the Coulomb potential due to the nuclear
charges and this equation acts as a definition of the ex-
change and correlation functional, E„,[n (r)]. If we now
define the Hartree and electron-nuclear Coulomb energy
functionals by

So, to evaluate E[n (r)] at a given density, n(r), the
procedure is as follows.

(a) Find the one-electron potential V(r) (unique to
within a constant) which gives the imaginary system of
noninteracting electrons a ground-state density equal to
n (r). The Schrodinger equation for the noninteracting
system separates to give one-electron equations of the
form

(b) T, [n (r)] is then given by

N

T, [n (r)]= g f P,*(r)(
2 V —)P, (r)d r (7a)

= g c,; —f V(r)n (r)d3r . (7b)

(c) Within the LDA, it is straightforward to evaluate
F[n (r)] from n (r) and so we get E [n (r)]= T, [n (r)]
+F[n (r)] as required.

In fact, step (a) is not simple and so the first part of this
procedure is usually reversed: one starts with a one-
electron potential V(r) and uses it together with Eqs. (5)
and (6) to calculate the density at which the electronic en-
ergy functional is then evaluated.

We now know how to evaluate the functional at a
given density, but to determine the ground-state energy
and density we must And its minimum value. For densi-
ties n (r) which make E f n (r)] stationary, we have

5E [n (r)]=E [n (r)+5n (r)] E[n (r)—]

for all small fluctuations, 5n (r), satisfying

n r r=O.

[—
—,'V + V(r)]g, (r)=e, g, (r),

and the required density, n (r), is the sum of the densities
associated with the lowest N (equal to the number of elec-
trons in the system) one-electron spin eigenfunctions:

n(r)= g g,*(r)g, (r) . (6)

E,~ „„d[n (r)]=f V„„,&(r)n (r)d r,
then Eq. (2) becomes

F [n (r)]=E,
& „„,&[n (r)]+EH [n (r)]+E„,[n (r)] .

The exact form of E„,[n] is not known, but it is usually
well represented by a local-density approximation (LDA),

E[n (r)]=f E (n (r„,)}n (r)d r, (4)

where E„,(n) is the exchange and correlation energy per
electron in a uniform electron gas of density n. Good
parametrized versions of s„,(n) have been obtained using
diagrammatic 9 and Monte Carlo2o, 21 methods and these
can be used in combination with Eq. (4) to provide
surprisingly reliable estimates of E„,[n(r)] in real calcu-
lations.

Consideration of the independent-electron problexn used
to generate T, [n (r)] shows that

5T, [n(r)]= —f V(r)5n(r)d r+O([5n(r)] ),
and hence,

5E [n (r)]=5T, [n (r)]+5F[n (r)]

—V(r) 5n (r)d r
5n „(„)

+O([5n (r)] } .

From this, it follows that E [n (r)] is stationary whenever

'6F = V(r)+const .
5n „()
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The value of the constant is arbitrary for a closed system
and can be set to zero.

The functional derivative of F[n] can be written in the
form

6I' = V„„,)(r)+ VH[n (r)]+p„,[n (r)], (10)

6E„,
p„,[n (r)]=

5n r
(12)

The condition [Eq. (9)] for a stationary point is seen to
be a self-consistency condition: it relates the potential
V(r) in the independent-electron equation (5) to the den-
sity n (r) generated by solving that equation. This is ex-
actly as in Hartree theory and the procedure for finding
self-consistent solutions is similar. Of course, finding a
self-consistent solution means only that one has found a
stationary point of E[n(r)] and not necessarily the
minimum value. In practice, however, the possibility of
converging to stationary points other than the minimum
causes little difhculty and one can usually assume that a
self-consistent solution will give ground-state properties
(or perhaps properties of the lowest-energy state of a par-
ticular symmetry). Once the self-consistent ground-state
density, no(r), and one-electron eigenfunctions, P;(r),
have been found, the ground-state energy is given by

Eo = T, [no]+F [no]

= g f g,*(r)( ,'V )g;(r)d r+—F—[no(r)]

(13a)

(13b)

1V

E, +F[no(r)] —f no(r)d r
i=1 5n .,(,) '

e; —EH [no(1)]+E [no(r)]
i=i

f@wc[no(r)]no(r)d r .

(13c)

(13d)

B. Semiempirical tight-binding models

Semiempirical tight-binding calculations, at least as
they are defined in this paper, start from the assumption
that the total electronic energy of a solid can be written
in the form

E= g E+-,'y g U(~R. —R~~),
a P (Wa)

(14)

where the e s are the eigenvalues of some non-self-
consistent Schrodinger-like equation,

Hg, (r)=[—
—,'V + V(r)].g;(r)=s;1(t,.(r),

and U(~R —
R&~ ) is a short-range pairwise repulsion be-

where VH [n (r)] is the Hartree potential,

VH[n(r)]= =f, d r',5EH n (r')
5n r r —r'

and p„,[n (r)], the exchange and correlation potential, is
defined by

where

H.,= &y.~8~y, & (17a)

s.,= &y. ly, & . (17b)

The most common approach is to treat the matrix ele-
ments, which are assumed to extend only to first or
second neighbors, as disposable parameters and to fit
them to experiment or other calculations. In addition, it
is often assumed that the basis functions are orthogonal
(that they are Wannier functions, for example) and so
the overlap matrix S is taken to be the unit matrix.

Using the two-center parametrization of Slater and
Koster, there are then at least four functions (sso. , spo,
ppcr, and ppn) of interatomic distance to fit for an sp-
bonded solid and at least ten (ss cr, sp cr, sd cr, pp o, pp n,
pd o, pd m, dd cr, ddt, and dd5) for a solid with s, p, and d
electrons. In certain theories (e.g. , canonical d-band
theory, and Harrison's tight-binding theory ) there are
relations between these diferent parameters and rules ex-
pressing how they should vary with interatomic distance
which serve to cut down the many fitting parameters to a
more reasonable number. An alternative approach,
favored by Bullett, is to estimate the one-electron po-
tential V(r), choose a basis set, and then do the integrals
necessary to evaluate the matrix elements properly. [In
fact, Bullett uses the chemical pseudopotentials method
and calculates approximations to the D matrix elements
(D =S 'H) rather than to those of H and S but this is a
matter of detail. ] His usual estimate for the one-electron
potential is obtained by substituting a superposition of
atomic densities into the Kohn-Sham form,

tween the atoms at R and R&.
The origin of Eq. (14) is not at all clear. It looks rather

like Eqs. (13c) and (13d), but the double-counting (and
nuclear-nuclear repulsion) terms are now assumed to be
pairwise and short ranged (which is certainly not the case
if charge transfer leads to long-range. interatomic
Coulomb forces) and the E,.'s are now the solutions of a
non-self-consistent Schrodinger equation rather than a
self-consistent one. It seems, therefore, that Eq. (14) ig-
nores self-consistency and assumes that all the important
nonpairwise behavior in the interatomic forces comes
from the sum of the one-electron eigenvalues. In fact, as
we will explain, neither of these conclusions is quite right
and the approximations behind Eq. (14) are rather more
subtle and sophisticated than they appear.

Since the basis of Eq. (14) is not clear it is hard to know
how to choose U( ~R —

R&~ ). It is usually chosen to fit
experiment (phonon frequencies, bulk moduli, etc.) and
often assumed to have some simple functional form—
perhaps an exponential or a power law.

Equation (1S) is solved variationally within a basis of
localized atomiclike functions, tP I, and so leads to a
secular equation

iH —sS/=0,
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A third approach, the linear muffin-tin orbitals (LMTG)
tight-binding scheme of Andersen, is not in any sense
semiempirical and has no adjustable parameters or func-
tions to be fitted to experiment; however, it is rather
more sophisticated than the simple sorts of tight-binding
models considered here and cannot easily be related to
the framework which has just been presented.

Once choices have been made for the unknown func-
tions it is a straightforward matter to solve the corre-
sponding TB model even for complicated arrangements
of atoms. The Hamiltonian matrix can be written
straight down and the secular equation treated using the
recursion method or by working in k space (if there is
translational symmetry) or by standard matrix-
diagonalization methods. The dimension of the secular
equation (number of basis functions per unit cell) is much
smaller than in most of the standard (self-consistent)
density-functional methods and there is no need for self-
consistent looping. Once the secular equation has been
solved, the sum of the eigenvalues is added to the pair-
potential repulsive energy to give the total energy for that
particular arrangement of the frozen atoms.

Changes in total energy as the atoms are moved
around (i.e., interatomic forces) and other essentially lo-
cal quantities can always be cast in terms of local densi-
ties of states ' and these can be calculated as functions
of the local arrangement of atoms using the recursion
method. This approach avoids the need to diagonalize
the Hamiltonian matrix for the whole solid and has been
successfully used by Sutton, Finnis, Pettifor, and Ohta.
It is clearly satisfactory and sensible that local quantities,
such as the force on one particular atom, are thus ex-
panded in terms of the local environment.

C. The relationship between density-functional theory
and semiempirical tight-binding models

In this section so far, we have given brief introductions
to DFT and SETB. Now we proceed to identify the sorts
of questions we must answer before we can relate the two.

One obvious group of questions is about the TB
energy-functional equation (14), and the non-self-
consistent independent-particle equation (15), from which
the eigenvalues c.; are obtained. What has happened to
the self-consistent nature of the Kohn-Sham equation,

I

(5)? Can the double-counting energy,

+[no(r)] —f no(r)d'r,
no(r)

in Eq. (13c) reasonably be represented by a simple short-
range repulsive pair potential? And what is the appropri-
ate one-electron potential to use in the tight-binding
Hamiltonian, (15)?

The other main group of questions concerns the reduc-
tion of Eq. (15) to the TB secular equation (16). What
basis functions should one use? Can one assume that
they are orthogonal'? What about the complicated three-
center terms involved in calculating the Hamiltonian ma-
trix? And why should the tight-binding matrix elements
be assumed two center and transferable?

In the rest of this paper, we will concentrate on the
first of these two groups of questions. In the process, we
will also make some headway in understanding the
second group, but a fuller discussion of these will be left
for a future paper. It turns out that the physics behind
Eqs. (14) and (15) can be made much clearer with the use
of a little known stationary principle in DFT. This will
be derived and explained in the next section.

II. A STATIONARY PRINCIPLE
IN DENSITY-FUNCTIONAI. THEORY

SETS calculations are clearly not self-consistent and so
the best that can be hoped is that they give a variational
estimate of the ground-state energy of the solid. In this
section we discuss the usual variational principle of DFT
and also introduce a less well-known stationary principle
which turns out to be a useful starting point from which
to try and understand SETS theory. The stationary prin-
ciple was first used by Wendel and Martin in the course
of a non-self-consistent plane-wave and pseudopotential
calculation and has since been reintroduced independent-
ly by Harris' and the present authors. '

The total-energy functional in DFT is minimized at the
ground-state density no(r). It follows that if 5n (r) is any
small normalization-conserving Auctuation in the density,

f 5n (r)d r =0,
then

5EE[no+5n]=E[no]+ ,' ff—,5n(r)5n(r')d r d r'+(terms of higher order in 5n) .
5n (r)5n (r') n,

(18)

The second-order term, which will be written schemati-
cally as

,'f f —5n5n

from now on, is always greater than or equal to zero.
This is the usual variational principle in DFT. It says

that if E[n (r)] is evaluated at a guessed ground-state

density then the energy obtained will be greater than the
ground-state energy by an amount which is second order
in the small (we hope) difference between the guessed and
exact ground-state densities. The estimated ground-state
energy is thus better than the original guess at the
ground-state density.

If we look back at Eq. (7), we see that the value of the
energy functional at a given density (called n 0„, for
reasons which will soon become clear) can be found from
the following equations:
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E [n,„,]= T, [n,„,]+F[n,„,] (19a)
N

f f,'(r)( ,'—V—)P,(r)d'r +F[n,„,], (19b)
i=1

N= g E; —f V;„(r)n,„,(r)d r+F[n,„,], (19c)

V;„(r)= 5F
5n n.

in

where V;„(r) is the potential which makes n,„, the
ground-state density of a noninteracting electron gas and
g;(r) is one of the single-particle eigenfunctions of the
corresponding independent-electron Hamiltonian.

As has already been mentioned, the usual procedure is
to start with an input potential, V;„(r), rather than with a
given density. Solving the independent-electron problem
then produces the density, n,„,(r), at which the function-
al can be evaluated. If n,„, is to be close to the ground-
state density, then the input potential must have been
close to the self-consistent potential and one way of
ensuring this is to choose

which coincides with E[n (r)] at the ground-state density
and which is also stationary about that density. Unlike
E[n (r)], however, C[n (r)] is not strictly variational and
so A[no+5n] may be either greater than or less than
@[no] ( =E [no]=ED). For non-self-consistent calcula-
tions, the stationary principle (which ensures that the ap-
proximate energies are better than the approximate den-
sities from which they were obtained) is the important
thing and it does not matter in the least whether the func-
tional is minimized at the stationary point or not. So, un-
settling though it may seem, there is no reason to object
to the fact that C[n] is not strictly variational and no
reason to expect that energy estimates obtained using
6[n] should be worse than those obtained using E [n].

Now that the usual DFT variational principle has been
explained, the stationary functional is very easy to obtain.
We will give two derivations which point out different as-
pects of the physics involved.

The first deviation starts from Eq. (2la). We write

b, n (r) =n, „,(r) —n;„(r),
and then expand F[n,„,] about n;„ to get

= V„„,(ir) +VH[n;„(r)]+p„,[n;„(r)], (20)

where n;„(r) is a guessed ground-state density.
So the procedure for evaluating E[n,„,(r)] is as fol-

lows.

N 5FE[n,„,]= g e, +F[n;„]—f n;„
i=1 5n

5F+ —,'f f b,nb, n+
5n n,.„

(22)

(a) Make a guess, n;„(r), at the ground-state density.
(b) Construct the input potential V;„(r) according to

Eq. (20).
(c) Solve the separable independent-electron problem to

find the density, n,„,(r), at which the functional is to be
evaluated.

(d) E [n,„,] is then given by Eq. (19). With the particu-
lar choice for V;„(r) given by Eq. (20) this becomes

N

E[n,„,]= g E; — n,„,+F[n,„,]
n,.„

If we now define a new functional, 6'[n;„],by

N

A[n;„]= g E, +F[n;„]—f n;„
i=1 5n

(23a)

(23b)

then Eq. (22) becomes

52F
g[n, ]=E[.n.„,] ,' f f—, b, n b, n

5n

= g E, EH [n;„]+E„,—[n;„]—fp„,[n;„]n;„,

+(higher-order terms) . (24)
+—,', +E„n,„, (21b)

Equations (21) give a strictly variational expression for
E [n,„,] and have often been used in large self-consistent
calculations. However, they involve both n;„and n,„,
and are rather more complicated than is convenient for
our purposes. It is possible to believe that V;„(r) as given
by Eq. (20) is an appropriate potential for use in the
tight-binding Hamiltonian [Eq. (15)];but the output den-
sity, n,„,(r), does not seem to appear anywhere in the
SETS formalism and so there is no immediately obvious
relation between Eq. (21b) and the tight-binding estimate
of the total energy as given by Eq. (14).

This finishes the discussion of the usual variational
principle in DFT. What is not so widely realized is that
one can define an alternative energy functional, C[n (r)],

@[n;„] is the functional we want: it difFers from
E [n,„,] by terms which are second order in b, n and is

clearly stationary about the ground-state density; and
when evaluated at that density, it is the same as the usual
Hohenberg-Kohn functional, E [no], and so is equal to
the ground-state energy. In addition, Eq. (23b) shows
that 6"[n;„]does not depend explicitly on n,„,; the eigen-
values are the solutions of a non-self-consistent
Schrodinger equation with a potential constructed using

n;„alone,

t
—

—,'V + V„„,i(r)+ VH[n;„(r)]

+p,„,[n;„(r)]If,(r) =e, g, (r);
and the "double-counting" terms also depend solely on

n;»
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E—H [n;„]+E„[n;„]—fp„,[n;„]n;„.

A[n;„] can therefore be evaluated without needing to
know the one-electron eigenfunctions or the output densi-
ty and is obviously a sensible starting point from which to
attempt a derivation of something very similar to the
SETB equations, (14) and (15).

An alternative derivation of the stationary functional
starts from the Hohenberg-Kohn variational estimate
evaluated at n;„,

n;„ the ground-state density of the noninteracting system
and so cannot evaluate T, [n;„]. However, if we expand
T, [n;„]about n, „, and use Eq. (8) we get

T, [n;„]=T,[n,„,]+f V;„bn

62T
+ ,'f—f Xnan+

6n

Using Eq. (7b) for T, [n,„,] in terms of the one-electron
eigenvalues and the input potential then gives

N

T, [n,„]=g E; —f V;„n;„

E[n;„]=T,[n;„]+F[n;„].
The difhculty in evaluating this functional stems from the
fact that we do not know the potential needed to make and hence

6 T,+ —,
' hn hn+ .

6g &QUI

62T
E[n;„]=g e,. +F[n;„]—f V;„n;„+,' f f—2 bn ~n+

i=1
ln ln ln

N 6F 6 Ts= g E;+F[n;„]—f n;„+—,
' f f '

An An+ .
i =1 6n 6n

6 T,= A'[n;„]+—,
' f f b, n b,n+ .

6n

6F6'[n;„]=E[n,„,]——,
' f f b, n b, n

6n n,.„
(25a)

So we now have two alternative expressions for C[n;„]
correct to second order in An:

The functional derivative here is the derivative of the or-
dinary Hohenberg-Kohn functional evaluated at the
ground-state density and so Eq. (26) invites comparison
with the corresponding expressions for the Hohenberg-
Kohn functional at n;„and n,„,:

6 T,
=E[n;„] ,' f f——bnbn .

"out
(25b)

6EE[n;„]=ED+—,
' f f 2 hn;„b, n;„+

6n no

6E
A[n, „]=ED+,' f f —b,n;„An, „,+

6n n,
(26)

To derive the erst of these we expanded the double-
counting part of E[n,„,] to second order in n,„, n;„, —
whereas to derive the second we expanded the kinetic en-
ergy part of E[n;„] to second order in n,„„n;„Th—e.
equivalence of Eqs. (25a) and (25b) is not immediately ob-
vious, but follows from the fact that n „, satisfies a nonin-
teracting Schrodinger equation with an input potential
constructed using n;„.

Equations (25a) and (25b) can be combined to give a
third expression which shows, perhaps more clearly, the
nature of the approximation being made. Let us write

in + in El 0 and

Then b n =b,n,„, b, n;„. Adding (25a) —to (25b) and
working to second order in the small quantities 4n, „, and
An;„gives

E[ n,„,]= Eo+,' f f —2 b.n, „, b,n, „,+
6E
6n n,

Both E [n;„]and E[n,„,] are greater than or equal to Eo
because the second functional derivative of the
Hohenberg-Kohn functional is non-negative. However,
6'[n;„] differs from Eo by a term depending on both hn;„
and b,n,„, and so this is not enough to ensure that 6"[n;„]
is also greater than Eo. This shows clearly why 6[n]is a
stationary functional but not a variational one. In fact,
since it is common to see "overshoot" during the first few
iterations of a self-consistent calculation (so that the er-
rors in n;„are more than compensated in n,„,), we expect
that B[n;„]may often be less than the ground-state ener-
gy. This will be demonstrated in an example later on.

We finish this section with one final observation. In
the second derivation of the stationary functional, it was
assumed that V;„was constructed by substituting n;„ in
to the usual Kohn-Sham form, Eq. (20). However, it is
clear that this was not a necessary assumption: all that
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then it is always stationary. This extra freedom may be
helpful in some applications (whenever it is necessary to
make some sort of shape approximation for the potential,
for example), but will not be used here. The equivalent of
Eq. (26) for this more general functional is

@[n,„,V,„]=EO+—,
' f f b,n,„,hn;„

5E
5n n,

n j/

where V[n;„] is the usual Kohn-Sham potential as given
by Eq. (20).

III. THE TIGHT-BINDING ENERGY EXPRESSION

In this section, we show how the use of the stationary
principle with an appropriate guessed input density leads
directly to an energy expression of the sort assumed in
SETB theory.

The value of the stationary functional at a density n (r)
(the subscripts "in" and "out" are no longer needed as
the stationary functional only involves n;„) is given by

N 5F6[n]= g c., +F [n (r)]—f n (r)d r
i=1 6n „(„)

N= g s; EH [n (r)—]—fp„,[n (r)]n (r)d r

(27a)

+E„[n(r)], (27b)

where the eigenvalues, c;, are the solutions of a non-self-
consistent independent-electron problem of the form

[——,'V + V(r)jg;(r)=s, g, (r), (28)

and the input potential, V(r), is constructed from n (r)
according to

V(r)= = V„„,i(r)+ VH[n (r)]+p,„,[n (r)] . (29)
n(r)

Before doing anything else, let us discuss the frozen-
core approximation, which turns out to be particularly
simple when expressed in terms of the stationary func-
tional and enables us, if we choose, to get away without
considering the core electrons explicitly. The assumption
is that the core-electronlike solutions, 1t;„ofEq. (28) are
very close to linear combinations of nonoverlapping un-
perturbed atomic core functions, P, . Since the core
functions are well localized around the nuclei, and since
the core electrons in the deep potential well near one nu-
cleus "feel" the effects of the other atoms as comparative-

mattered was that n,„, was the density obtained by solv-
ing the independent-electron problem with an input po-
tential equal to V;„. It is only when V;„ is related to n;„
according to Eq. (20) that the stationary approximation
takes the form given in Eqs. (23a) and (23b), but if we
define 6'[n;„, V;„]according to

N

6[n;„,V;„]= g s;+F[n;„]—f V;„n;„,

ly weak perturbations, this seems a sensible enough ap-
proximation. At any rate, the frozen-core approximation
underlies all pseudopotential calculations and its accura-
cy has been well demonstrated in practice.

Suppose the difFerences between the core states, f;„
and appropriate Bloch sums of nonoverlapping atomic
core orbitals, P „are of order k, where I, is small. Then
the ordinary variational principle of one-electron quan-
tum theory tells us that

i, e L7C

A, C

=T, +fn, V +O(k ),

Writing n =n, +n, (since n, is known, this equation
defines n„given n or vice versa), adding the nuclear-
nuclear terms, and using the fact that n, is a sum of
nonoverlapping spherically symmetric atomic core densi-
ties then gives

N[n]= g s;, EH[n„]——fp„,[n]n„+E„,[n]
l, U

ZvaZvp
+-,'g g

~

~+c, (30)

where C is a structure-independent constant (except for
the exchange and correlation terms, C is just the sum of
the free atomic core energies) and will be ignored from
now on. Z, is the number of valence electrons on the
atom at R and the rest of the nuclear-nuclear repulsion
has been screened out by the frozen-core electrons. The
evaluation of the left-hand side of Eq. (30) requires only
the valence eigenvalues and these are the solutions of an
independent-particle equation of the form

I
—

—,
' V + V„„,~(r)+ V~[n, (r)]+V~[n„(r)]

+p„,[n, (r)+ (nr)]If, , (r) =
gE;, (r) . (31)

Equations (30) and (31) together comprise the frozen-core
approximation.

We can now replace the one-electron potential due to
the frozen cores by a sum of norm-conserving ionic pseu-
dopotentials. The independent-electron problem is then

—
—,'V + g Vi, + VH[n„]+p„,[n„] gp, ,„=s,,gp, ,„,

(32)

where T, is the total kinetic energy of a set of unper-
turbed atomic cores within DFT and n, is the corre-
sponding sum of atomic core densities. Equation (27b)
then becomes (ignoring terms second order or higher in
A, )

A[n]= g E,„+T, + f n, V EH[n]—
E, U

p„, n n+E„, n
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and the corresponding energy expression is

A[n]= g E;, E—H[n, ]—fp,„,[n, ]n„
L, V

a p (Wa) I a p
(33)

The approximations involved in this step (the replace-
ment of the full frozen-core potential by a pseudopoten-
tial and an implicit "linearization" of the exchange and
correlation functional) are not straightforward but are
well established and have been discussed by Louie, Froy-
en, and Cohen ' among others.

So, the frozen-core approximation tells us that as long
as we replace the nuclear Coulomb potential by a sum of
frozen-core potentials (or pseudopotentials) and
remember that the frozen-core electrons screen out most
of the nuclear-nuclear Coulomb interaction, we can ig-
nore the core electrons altogether (to second order in A. )

and only need to solve the Schrodinger-like Kohn-Sham
equations for the valence electrons. This simplification is
particularly useful when the frozen-core potentials are re-
placed by norm-conserving pseudopotentials, since the
valence eigenenergies are then the lowest eigenvalues of
the independent-electron problem and can be calculated
without prior knowledge of the core functions. [In fact,
explicit calculations show that the assumption that the
core densities are frozen is not a very good one. The
frozen-core approximation only works because the sta-
tionary principle acts effectively (i.e., A, is small even
though A, is not so small) and forces the frozen-core ener-
gies to be better than the frozen-core densities from
which they were generated. ]

In the rest of this section, we will assume that we are
working within a pseudopotential framework and will not
consider the core electrons. To regain the all-electron re-
sults from the ones given here, just replace n, by n, Z, by
Z, and V~, by V„«, th~ougho~t.

It is now necessary to choose n„(r), the input valence
density from which the input potential in Eq. (32) will be
constructed and at which the stationary functional will be
evaluated. As explained earlier, we seek an input valence
density close to the true ground-state valence density.
There are many different possible guesses for n, ( r ) and
the choice must be made on physical grounds and will de-
pend on the solid studied. For a weak pseudopotential

metal, such as aluminum, it might be best to generate n,
by treating the e6ect of the pseudopotential on a uniform
electron gas in the linear screening approximation. For
nickel, it would probably be better to use a superposition
of atomic densities. For carbon, a superposition of typi-
cal molecular bond densities might be sensible. Note that
because 6[n] is stationary about the ground-state densi-
ty, one can leave a few variable parameters in the form of
the input density and adjust them during the calculation
to find the stationary point and, hence, optimize the den-
sity.

Overall, it should be possible to come up with plausible
approximate densities for most cases of interest. Some
knowledge of the solid is needed but this can be obtained
from molecular calculations or full self-consistent DFT
calculations. Whether the stationary principle will then
prove eftective enough to produce reliable ground-state
energies from these fairly crude guessed densities remains
to be seen.

For the rest of this paper, we will work with input den-
sities which are simple superpositions of spherical atom-
iclike (not necessarily atomic) densities. These seem to
work fairly well on the whole, but it is important to stress
that they are just the first and simplest approximation
and that it is possible to do considerably better in many
eases. It is clear that attempting to superpose atomic
densities might not be a sensible idea in highly ionic
solids, for example (although see the work of Polatoglou
and Methfessel on NaCl).

At any rate, let us suppose for now that the guessed in-
put valence density is in the form

n„(r)= g n, (r),

where n, (r) is a spherical density on the atom at R and
has probably been obtained from some sort of atomic cal-
culation. Given this choice for the input density, the first
thing to notice is that the "double-counting" contribution
to the stationary functional is very nearly just a simple
pairwise function of the interatomic distances and is
straightforward to calculate.

The "electrostatic" part of the double-counting energy
plus the nuclear-nuclear repulsion is strictly pairwise and
is short ranged if the input density is chosen so that the
atoms are neutral. It is given by

(34)

where the constant A is just minus the intra-atomic Har-
tree energy. If charge transfer is allowed, there is a long-
ranged contribution in the form of a standard Madelung

sum.
The exchange and correlation (xc) contributions are

not quite so simple. Within the local-density approxima-
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tion they can be written

D„,[n„]=f [c.„,(n„(r))—p„,(n, (r))]n„(r)d3r . (35)

This is not exactly reducible to a pair potential because

c.„and p„, are nonlinear functions of their arguments.
However, if there are only small regions in the solid
where the overlap of densities from three or more atoms
is appreciable, D„can be approximated by a cluster ex-
pansion

D„, gn„ = QD„,[n, ]+—,
' g g (D„,[n, +n„p]—D„,[n, ]—D„,[n„p])

a P (&a)

+(three- and higher-body interactions) .

Estimates suggest that the errors involved in truncating
this expansion after the second (two-body) term are usu-
ally very small and so the xc double-counting contribu-
tions are also well represented by a simple pair potential.

So we reach the happy conclusion that it will be a good
approximation to replace the double-counting and
nuclear-nuclear repulsion energy as a whole by a simple
sum of one- and two-body interatomic potentials: the
double-counting energy is equal to

pc.+-,' g g U.&(IZ. apl), —
a P (Wa)

(37)

where C is the double-counting energy for an isolated
monomer and U & is a pair potential which can be found
from a dimer calculation. As long as the input density is
a superposition of spherical atomiclike densities, both C
and U & are easily calculable (it is necessary to evaluate a
few three-dimensional integrals to find them) and are
completely transferable. They can both be calculated
once and for all (from monomer and dimer calculations,
respectively) and stored for future use.

The other contribution to the stationary total energy,
Eq. (33), is the sum of the one-electron eigenvalues ob-
tained from the independent-particle Schrodinger equa-
tion (32). If the input density is a superposition of spheri-
cal atomiclike densities, then the one-electron potential in
this equation is of the form

l

about the forms of the SETB energy expression, Eq. (14),
and independent-electron equation, (15), have been
answered. It has been shown why it is possible in many
cases to approximate the double-counting part of the sta-
tionary functional as a simple sum of transferable ope-
and two-body potentials [Eqs. (34)—(37)]; and an explicit
construction [Eqs. (38)—(40)] has been given for the one-
electron potential to be used in the independent-electron
equation. We have not answered all the questions about
the reduction of Eq. (15) to a secular equation, but at
least the prescription for generating the input potential
implies that the value of V(r) at any point depends only
on the local environment. This is a prerequisite if we are
to end up with Hamiltonian matrix elements depending
on the positions of just a few atoms, although it is not
enough to ensure that they are simple pairwise functions
of interatomic distance and does not tell us how to
choose an appropriate basis set. We return to consider
these questions in the concluding section of this paper.

All the results in this section rely, of course, on the as-
sumption that we will be able to guess the input density
well enough to make the energy estimates obtained using
the stationary functional accurate enough to be useful. If
we are to attempt defect calculations, we will have to be
able to do this for a wide variety of different arrange-
ments of the atoms. In the next section we make some
preliminary tests of this assumption.

V(r)= g V (r)+U(r), (38)
IV. TESTS OF THE STATIONARY EXPRESSION

FOR THE TOTAL ENERGY

V (r) = V, (r)+ VH[n„(r)]+@„,[n„(r)], (39)

and U(r) is a small extra potential due to the nonlinearity
of the xc functional,

U(r)=p„, g n„(r) , —g p„,[n, (r)] .
a a

(40)

So as well as leading to a double-counting energy
which is almost pairwise, superposing atomiclike densi-
ties produces an input one-electron potential of a particu-
larly simple form. Other choices for the input density do
not lead to quite such simple results, but their analysis
and implementation is not much more di%cult.

Looking back, it can now be seen that all the questions

where V is the full screened [i.e., including the Hartree
and xc contributions from the valence density n„(r)]
atomic pseudopotential on the atom at R

In this section, we test the stationary energy expression
with superimposed atomielike input densities in a few
simple cases. The simplest interesting cases are dimers
and we will look at a selection of these involving hydro-
gen, helium, and germanium atoms. In fact, dimers make
better test cases than might at first be imagined: al-
though each atom has only one neighbor, the bond to
that neighbor is often strong, the interatomic distance
often small, and the difference between superposed atom-
ic densities and the true density is often comparable to
that in a solid. Harris' has also looked at some dimers
using the stationary functional and it is interesting to
compare his results with ours.

Given an input density which is a superposition of
spherical atomiclike densities for the two atoms, it is easy
enough to work out the double-counting terms and the
effective one-electron Hamiltonian (we use the parame-
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trization of Perdew and Zunger ' for the exchange and
correlation functional in the local-density approximation)
for the dimer. We then solve the independent-electron
problem variationally in a basis of localized atomiclike
orbitals. Given that our overall aim is to calculate
transferable sets of tight-binding parameters (sso, spo,
etc.) for later use in calculations of the properties of
solids, it is clearly necessary that we use such a basis and
that the physics be not too sensitive to the exact basis
functions chosen. Hence, this aspect of the calculation
also provides a useful test (although not of the functional
itself). Note that there is no need to relate the basis func-
tions to the input density used in the stationary function-
al, and so although we may choose to use exact atomic
densities in the functional this does not mean that the
basis functions must also be atomic. Plane waves would
be equally acceptable and may well be better in many
cases. Note also that the choice of a finite basis set at this
stage is a strictly variational (and not just stationary) ap-
proximation and so the better the basis set the lower the
sum of the occupied one-electron eigenvalues.

Once the basis functions have been chosen, the evalua-
tion of the Hamiltonian and overlap matrices for the di-
mer is a simple matter of doing a few three-dimensional
integrals (reducible to two-dimensional integrals by sym-
metry). Most of these are in the form of convolutions
and may be evaluated by using the convolution theorem
to rewrite them in terms of one-dimensional spherical
Hankel transforms and Gaunt coefficients. [The 8th
spherical Hankel transform, /&(k), of a one-dimensional
function f (r) is given by

jz(k)= f f(r)jr(kr)r dr,
0

where j& is a spherical Bessel function. A Gaunt
coefficient is an integral of a product of three spherical
harmonics. ] In our use of this technique, the Hankel
transforms were evaluated numerically with an accuracy
of around 10 hartree and the Gaunt coefficients were
obtained using a standard library subroutine. The matrix
elements of U ( r) (the part of the potential due to the non-
linearity of the exchange-correlation functional) and the
corresponding terms in the double-counting energy can-
not be evaluated using the convolution trick and so a
two-dimensional Gauss-Chebyshev quadrature method as
developed by Nex was employed.

Once the Hamiltonian and overlap matrix elements
have been evaluated, the secular equation can be written
straight down and, of course, is block diagonal in the az-
imuthal quantum number, M, It is easily solved using
standard matrix eigenvalue routines or by hand in many
cases. The sum of occupied eigenvalues is then added to
the nuclear-nuclear Coulomb repulsion and the double-
counting "pair-potential" energy to give the value of the
stationary functional at the input density. The calcula-
tion is repeated at different interatomic spacings (and
possibly at different input densities and with different
basis sets) to find the dimer energy as a function of intera-
tomic spacing and hence the equilibrium bond length,
binding energy, and vibrational frequency.

In comparison with accurate local-density (pseudo-

potential) calculations, this scheme involves two extra ap-
proximations, one of which is stationary and one of
which is variational. There is the use of the stationary
functional evaluated at an input density which is a super-
position of atomiclike densities; and there is the use of a
finite basis of localized functions in the solution of the
eigenproblem.

A. The hydrogen atom

This is almost the simplest quantum-mechanical sys-
tem imaginable and the simplest on which we can sensi-
bly test the stationary functional. There are no core elec-
trons and little point in attempting to construct a pseudo-
potential. The Schrodinger equation is

—
—,
' V ——P(r) =Eg(r),1

(4l)

E [no(r)] =so —E~[no(r)]+E„,[no(r)]

p "o" "o "d ~

where

In exact density-functional theory these would give exact-
ly the same density and energy as Eq. (41) and so, in this
simple case, the exact exchange and correlation function-
als must be given by

E„,[no(r)] = E~[no(r)]-,

@„,[no(r)]= —V~[no(r)]+const .

Within the LDA these equations are far from satisfied
and so it is perhaps surprising that self-consistent LDA
calculations give sensible results for the hydrogen atom.
They do, however, as was demonstrated by Gunnarsson,
Lundqvist, and Wilkins, who found a total energy of—0.492 hartree and an electron density very little
different from the exact one.

Before going on to discuss the results obtained using
the approximate functional, it is necessary to point out
one complication which arises in atomic calculations.
Hund's first rule says that the electrons in an atom will
occupy the one-electron energy levels in such a way as to
maximize the total spin S. This means that most atoms
show some spin polarization and, because the Pauli prin-
ciple only keeps apart electrons with the same spin, this
affects the total exchange and correlation energy. As a
result, it is necessary to go beyond the LDA and use the

and this has a ground-state wave function

1

7r

with ground-state energy —0.5 hartree.
The density-functional theory equations for the H

atom are
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spin-dependent version, the local-spin-density (LSD) ap-
proximation, in most atomic calculations. This is rarely
necessary in (nonmagnetic) solids, however, and so LDA
calculations will suKce in most cases of interest to us.
Here we content ourselves with including spin-dependent
effects in a very approximate way which we now describe.

Within the Hartree-Fock (i.e., exchange-only) approxi-
mation, the exchange energy density of a uniform elec-
tron gas with spin-up and spin-down densities n+ and
n is given by

] /3

2ir3(„4r~ + „~z3 ) (42)
L

In the spin-compensated case, when n+ =n =n l2, the
corresponding local density approximation would be

1/3

[n]= ——— n
3 3 ]/3

xc 4
(43)

Equation (42) says that the exchange energy in a perfectly
spin-polarized electron gas (n+ =n, n =0) is 2' times
that in a spin-compensated gas of the same density. So
an approximate way of taking account of the spin polar-
ization in the hydrogen atom is to multiply the LDA xc
energy by 2' . This is a crude approximation, of course,
but since we are not really very interested in spin-
polarized situations it will do for now.

Using this approximation, an input density equal to the
exact hydrogenic ground-state density, and a single exact
hydrogenic 1s wave function as the basis set, gave a bind-
ing energy of 0.507 hartree. That this is slightly different
from the result of Gunnarsson et al. could be due to the
approximate handling of the spin-polarization energy or
to the fact that the input density, although exact for a
real hydrogen atom, is not exact for a self-consistent
LDA hydrogen atom. For comparison, a similar calcula-
tion without the approximate correction for spin polar-
ization gave a binding energy of only 0.378 hartree.

3/2

n (r)= '
e '+ '

(1—0 4)e

Figure 1 shows a graph of input densities 1 and 2 and
of the accurate dimer density along the internuclear
axis at the equilibrium spacing of 1.4ao ( lao = 1 Bohr ra-
dius). It is worth noting that the superposition of atomic
densities is almost 40%%uo smaller than the true density at
the center of the bond and so we are putting the station-
ary energy functional to a severe test with these calcula-
tions.

Numerical experiments showed that an adequate basis
set consists of just two nodeless s functions on each hy-
drogen atom. One of these is an atomic s function ( Y& is
a spherical harmonic),

P&(r) =2e "YII(r),

and so ensures that (bar the spin-polarization problem)
the calculation gives good answers as the two atoms are
pulled far apart; and the other is of the form

Pz(r)=2(1. 3)' 'e ""Yoo(r),

which is the variationally best simple exponential 1s-like
orbital at the equilibrium interatomic spacing. It was
found that adding 2s and 2p hydrogenic orbitals to this
basis set made little difference to the results of the calcu-
lations.

The results for the binding energy, interatomic spac-
ing, and vibrational frequency of H2 are shown in Table I.
Included for comparison are the almost exact
configuration-interaction results of Kolos and Rooth-

ELECTRON DENSITY [(Bohr radii) ]

B. The hydrogen molecule

As two hydrogen atoms are brought together, the spin
polarization of each gradually decreases until, well before
the equilibrium spacing is reached, the bonding s orbital
contains one up and one down electron and the spin den-
sity is zero. The properties of the dimer -near the equilib-
rium spacing should therefore be calculable within the
LDA and there is no need to worry about spin polariza-
tion.

In order to check the reliability of the stationary ener-
gy functional several different input densities were tried.

Density 1: A superposition of exact atomic densities.
Density 2: A superposition of spherical densities of the

form
3/2

n (r) = e "+ '
(1—0.61)e

Density 3: A superposition of spherical densities of the
form

D

EX
DE

DENSI

l & I I I I t I I I I I I I I I I I

2.0 1.6 1.2 0.8 0.4 0.0 0.4 0.8 1.2 1.6 2.0
DISTANCE FROM BOND CENTER (Bohr radii)

FIG. 1. Comparison of the exact electron density and the
diFereet input densities along the molecular axis for a hydrogen
dimer at equilibrium spacing (for definitions of densities 1 and 2,
see text).
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TABLE I. Results of various calculations of the binding en-
ergy, Eb, the equilibrium interatomic spacing, R„and the vibra-
tional frequency, w„ for H&. -1.08

Kolos
and Roothaan'

Gunnarsson
and Johansson"

Painter'

Density 1

Density 2
Density 3

' Reference 36.
Reference 37.' Reference 38.

Eb (ev)

4.75

4.79

4.90
(approx. )

5.11
4.89
5.24

R, /ao

1.40

1.44

1.44

1.38
1.49
1.50

w, (cm ')

4410

4000

4220
3830
3830

~ -1.10

-1.12
C9
LL
UJz -1.14
UJ

LJJ -1.16
Cl

-1.18

-1.20—

I I I l

1.1 1.5 1,5 1.7 1.9
INTERATOMIC SPACING (Bohr radii)

aan and the accurate DFT calculations of Gunnarsson
and Johansson (GJ) and of Painter.

Gunnarsson and Johansson use the form of the LDA
due to Gunnarsson and Lundqvist (GL), whereas
Painter uses that due to Vosko, Wilk, and Nusair
(VWN). As demonstrated by Painter, the calculated
binding energy is slightly larger with the VWN xc poten-
tial than with the GL one. The xc potential used here,
due to Perdew and Zunger, ' is based, like the VWN one,
on the electron-gas Monte Carla calculations of Ceperley
and Alder, and so we might expect that our results will
be closer to those of Painter than to those of GJ. Since
we did not do a proper spin-polarized calculation for the
atoms, our binding energies were calculated as the
difference between the total energy of the dimer at the
equilibrium spacing and twice Painter's value of the
atomic energy.

As Table I shows, the results are very encouraging.
The binding energies lie within about 10% of Painter s
values and the interatomic spacings and vibrational fre-
quencies are within about 5%. Considering the very
large differences between the various input densities and
the exact density, the effectiveness of the stationary prop-
erty of the approximate functional is clearly demonstrat-
ed.

Graphs of the total energy against interatomic spacing
are shown in Fig. 2 (the results of other workers were
copied from diagrams in papers and are, therefore, not
very accurate). As one might expect given the stationary
but not variational nature of the approximate functional,
it is possible to obtain total energies either greater than or
less than Painter's accurate value calculated with a very
similar xc potential. It is reassuring to see that the errors
due to the use of the approximate functional are no
bigger than those due to the use of the LDA, although
they are considerably more dependent on interatomic
spacing and so affect the physical properties more.

C. The helium dimer

Having looked at Hz, which is a strongly bound open-
shell system, it seems sensible next to look at a closed-

FIG. 2. Total energy as a function of interatomic spacing for
the hydrogen dimer.

shell system such as He&. The binding energy of He~ is
only about 1 meV and since the binding is the result of
the van der Waals interaction one should not expect to
calculate it accurately using a local-density approxima-
tion (although, see Harris' ). However, the strong
closed-shell repulsion at smaller interatomic distances
should be calculable and it is this at which we will look.

It was decided to use input densities in the form of sim-
ple exponentials with decay rates chosen by comparison
with the results of self-consistent Xa calculations for the
helium atom (Herman and Skillman '). Two different de-
cay rates were tried:

2(1.94) ~(] 94) pn (rj= '
e)( )—

—z(&.ss)r

Density 1 was chosen because it has about the right decay
rate in the region r =0. lao to r =0.5ao, and density 2
because it gives more or less the right electron density
near r =0. In neither case is the fit to the Herman-
Skillman density very good, but it turns out that the sta-
tionary principle acts very e%ciently in this case and even
these rather poor input densities are quite satisfactory.

For both input densities, the basis set consisted of just
one s orbital per atom and this was chosen so that, when
doubly occupied, it gave rise to the corresponding input
density. There are no core electrons and so the full po-
tential was used rather than a pseudopotential.

The results were compared with the configuration-
interaction calculations of Phillipson, as no DFT calcu-
lations extending over a wide enough range of interatom-
ic spacings were found.

The atomic energies differed quite considerably in the
three calculations. Phillipson's value is about —2.875
hartrees, density 1 gave —2.73 hartrees, and density 2
gave —2.80 hartrees. This shows that the input densities
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and basis functions were not very good. However, as
shown in Fig. 3, the repulsion between the two atoms is
remarkably similar in all three cases (the attractive well is
not visible on the scale of this figure) and so it seems
again that the stationary functional gives reasonable
physical properties even with very poor input densities.

D. The HHe molecule

f 0.2
L

U

rid Kemmey4~

tion

H2 and He2 are both homonuclear molecules and so it
seemed sensible to look at HHe as a first example of a
heteronuclear molecule.

For the H atom, the spherical input density chosen was
the exact atomic density and the basis set was the same as
for the H2 calculations. For the He atom, the input den-
sity was

2(1.55) —2(1.55)r

z 0.1
LLI

0.0
1.0 2.0 3.0 4.0 5.0

INTERATOMIC SPACING (Bohr radii)

6.0

which, of the two densities used in the He2 calculation,
was the one which gave an atomic energy closest to
Phillipson's value. The He-atom basis set was just one s
orbital,

P(r) =2(1.55) e " )"Yoo(r),

exactly as in the He2 calculation.
The results are shown in Fig. 4 and, for comparison,

the results of the Hartree-Fock calculation of Fischer and
Kemmey are also plotted. The sum of the total energies
for the separated atoms differs by a few percent from the
Hartree-Pock value, but the interaction energies agree
very well. As before, the calculated forces between the
atoms are sensible even when the input densities are not
very accurate.

FIG. 4. Total energy HHe molecule as a function of intera-
tomic spacing relative to the energy of the separated atoms.

al with a pseudopotential, it was decided to look at Ge2.
The advantage of dealing with germanium is that it can
be well represented using a local pseudopotential of the
Starkloff-Joannopoulos (SF) form with parameters (see
SJ for definitions) r, =1.052ao, A, =18.5ao ', and Z„=4.
Although this pseudopotential is only approximately
norm conserving, it produces excellent results for the
solid, and calculations of the bulk modulus and lattice pa-
rameter give values very close to the experimental ones.
As far as we know, it has not yet been tested on mole-
cules. In fact, a very similar but even simpler pseudopo-
tential of the form

E. The germanium dimer

As an example of a rather more complicated molecule,
and to test the implementation of the stationary function-

V (r)=-
PS

Z. A. T

A,(r —)1+e

0.6—

0.5

~ 04
O

~ 0.3
C5

LIJz 0.2

0.1

1.0
I I I

2.0 3.0 4.0 5.0
INTERATOMIC SPACING (Bohr radii)

w'ith r, =1.05ap A =18~ Oap, and Z, =4, gives almost
identical results, at least for the dimer, and was used in
the calculations described here.

It was decided to use superposed pseudoatomic LDA
densities as input densities and these were calculated us-
ing a self-consistent atomic program written by Froyen.
The atomic program was not used in a spin-polarized
mode and so the results are not very accurate for the free
atoms; however, there is no reason to believe that super-
posing exact atomic densities is, in general, a particularly
good thing to do and so the small errors in the atomic
calculation are not important. (Indeed, as crystalline Cxe

is not spin polarized, one could even argue that superpos-
ing these imaginary non-spin-polarized atomic densities
should be better than superposing exact atomic densities
for the bulk. ) The atomic calculation also produced 4s
and 4p pseudoatomic wave functions and these were used
as the s and p parts of the basis set. For the d orbitals,
when included, we used the simple analytic form

FIG. 3. Total energy of helium dimer (relative to the energy
of the separated atoms) as a function of interatomic spacing.

Pd(r) ccr e

with a=1.175. This value of cz was found by Smith " to
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produce the best fit to the Cohen-Bergstrasser empirical
pseudopotential calculations of the band structure of
crystalline germanium. Smith also used s and p orbitals
which were simple exponentials and a different pseudopo-
tential from the one used here and so there is no reason
to think that his value of cx is in any way an optimum one
in this case. However, it was found that small changes in
a made little difference to the results of the dimer calcu-
lation and so Smith's value seemed as good a one to take
as any.

Experimenting with the s and p functions by scaling
them,

p, (r)~p,' 'p, (p, r), pp(r)~pp 'p~(ppr),

Harris and Jones'

This work
s and p orbitals
(configuration 4s24p2 )

This work
s, p, and d orbitals
(configuration 4s24p2 )

R, /ao

4.75

4.90

4.73

(cm ')

240

240

240

E„
(hartrees)

0.0724

0.154

0.141

TABLE III. Results of di8'erent calculations of the equilibri-
um interatomic spacing, R„ the binding energy, Eb, and the vi-
brational frequency, m„ for Ge2.

showed that p, = 1 and p = 1 are very close to the (varia-
tionally) best values for the dimer. It is not worthwhile
using swollen or contracted atomic orbitals as has been
observed in some other cases. The effects of scaling the
atomic input density,

This work
s, p, and d orbitals
(configuration 4si. 2s p2. 7s )

' Reference 48.

4.65 280 0.162

TABLE II. Total energy of a germanium dimer (interatomic
spacing of 4.8 Bohr radii) as a function of y, the parameter scal-
ing the input density.

Energy (hartrees)

0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25

—7.9119
—7.8182
—7.7482
—7.7015
—7.6734
—7.6635
—7.6700
—7.6903
—7.7319
—7.7899
—7.8578

n(r)~y n(yr),
were also examined. Table II shows the total dimer ener-
gy when the interatomic spacing was 4. 8ao (which is
close to the equilibrium value) as a function of the param-
eter, y, defining the input density. It can be seen that the
stationary point is near y = 1 (atomic input densities) and
at the total energy there is a maximum. This is a clear
reminder that the functional being used is stationary but
not variational.

The atomic program used to generate the density and s
and p wave functions allows one to choose the electronic
configuration of the atom. For an isolated atom, the
ground state is 4s24p2, in solid germanium, which a
chemist would describe as sp3 hybridized, one might ex-
pect something closer to 4s, 4p3 (in fact, the configuration
in the solid is somewhere between these two extremes).
For the dimer calculations we tried a density and wave
functions generated using the configuration 4s& z54pp 75 as
well as those for the free-atomic configuration (in the in-
vestigations of scaling mentioned above the free-atomic
configuration was used).

The results of these calculations are compared in Table
III to the LMTO LSD calculations of Harris and Jones

(HJ). Unfortunately, HJ only quote values for the bind-
ing energy Eb, the equilibrium spacing R„and the vibra-
tional frequency tL)„and so these were the only quantities
we could compare. The inclusion of d functions was
necessary to obtain a good interatomic spacing but had
little effect on the binding energy or the vibrational fre-
quency.

The agreement is excellent except for the binding ener-
gies. These were calculated by subtracting the dimer en-

ergy from the energy of two isolated spin-zero germani-
um atoms and the problem, of course, is that a real ger-
manium atom is spin polarized with a spin of 1. On aver-
age, three of the four valence electrons are up and only
one is down, n+ =3n/4 and n =n/4. Using the same
"exchange-only" approximation as was used for the H
atom, this suggests that the xc energy in a real Ge atom
will be approximately

(
3 )4/3+ (

1 )4/3

(
] )4/3+( 1 )4/3

= 1.057
2 2

times that in a spinless one. The unpolarized xc energy
was —0.96 hartree per atom (for the 4s24p2
configuration) and so the total energy of a spin-polarized
atom should be roughly 0.055 hartree lower than that of
a spinless one. Since there are two atoms in the dimer,
this is about the right size to explain the discrepancy in
the binding energy.

Apart from these familiar and unimportant problems,
the results obtained using the stationary functional and
pseudoatomic input densities are not appreciably
different from those obtained by Harris and Jones with
the much more accurate self-consistent LMTO method.

In Fig. 5, we have shown that part of the stationary
functional (the double-counting terms evaluated at the in-
put density plus the nuclear-nuclear Coulomb repulsion)
which we claim gives the pair potential in the tight-
binding energy expression. As can be seen, it is repulsive
and roughly exponential in form —very similar to the pair
potentials used in most semiempirical tight-binding
schemes.
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FIG. 5. Sum of double-counting energy and internuclear
Coulomb energy for germanium dimer.

V. CONCLUSIONS

In this paper, we addressed some of the questions
about the relation between the various parameters in
non-self-consistent SETB calculations and self-consistent
DFT. We saw that these questions fall into two
categories: general questions about the forms of the TB
energy expression, Eq. (14), and the corresponding non-
self-consistent independent-electron equation, (1S); and
rather more specific and technical questions concerning
the reduction of Eq. (15) to a simple secular equation
with short-range and transferable matrix elements. With
the use of a stationary principle in DFT, we showed how
the questions in the first group can be understood and
gave a prescription for calculating all the quantities ap-
pearing in Eqs. (14) and (15) (including the pair potential)
direct from DFT.

Since this prescription produces a one-electron poten-
tial which is strictly local (in that the potential at any
point depends only on the positions of the atoms near
that point) it is in principle a straightforward matter to

obtain the secular equation for any arrangement of
atoms. All that is necessary is to choose a basis set and
evaluate a set of three-dimensional integrals. This was
done for a selection of dimers and the stationary func-
tional performed excellently, producing good results even
for very poor input densities. In addition, it turned out
that very simple basis sets, consisting of just a few atom-
iclike orbitals on each atom, were adequate, which is
another encouraging sign.

Assuming that the use of the stationary functional with
simple input densities proves successful in solids (and
some recent work by Polatoglou and Methfessel sug-
gests that it will) and that similarly unsophisticated basis
sets will suffice, there seems no reason why one should
not be able to derive equally accurate and reliable tight-
binding parameters for real solid-state applications. The
only obvious remaining hurdle is the evaluation of the
three- (and four-) center integrals necessary to find the
Hamiltonian matrix in a solid. These involve the poten-
tial near one atom and the basis functions from two oth-
ers and are numerous and difficult both to calculate and
to parametrize (so that they can be stored for future use).
Unfortunately, they are not negligible as became clear
when we attempted to calculate the properties of crystal-
line germanium without including them. Although the
total (valence) energy at the experimental equilibrium
spacing was accurate to considerably better than 1%
(with s, p, and d orbitals as used in the dimer calculations
and the same pseudopotential), we did not get a good lat-
tice parameter and the calculated bulk modulus was far
from the experimental one. We are convinced that these
problems are mainly due to the neglect of the three-
center integrals and have some ideas as to how to im-
prove matters, but the topic is sufficiently complicated
that we leave it for a future paper.
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