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The spatial dependence of the effective mass occurring in mass-mismatched quantum wells leads
to a dependence of binding energy on transverse momentum. This "motional binding" has been ob-
served in accumulation layers on narrow-band-gap materials, where the nonparabolicity provides
the spatial dependence of the effective mass. To date, however, only a qualitative comparison has

been made between experiment and theory. Here we use a model surface potential and a self-

consistent potential to study motional binding in n-type InAs accumulation layers and find good
agreement with experiment. The calculation shows that subbands are occupied over considerably
larger ranges of surface-electron concentration than previously thought.

I. INTRODUCTION

Recently it was pointed out' that quantum wells with
mass-mismatched barriers possess subbands with unusual
dispersion properties for motion transverse to the
confinement direction. Depending on the sign of the
mass mismatch, either carrier binding or debinding can
occur at a particular value k, of the transverse wave vec-
tor k, . For "motional binding, " where a carrier is bound
only for k, )k„ it was found that accumulation layers on
degenerate, narrow-gap semiconductors provide an excel-
lent example. With a simple square-well model, it was
shown that the observed "pinning" of the
Shubnikov —de Haas (SdH) frequency Bf, at total carrier
density values N, below that expected for the threshold
occupancy, could qualitatively be explained by motional
binding. In this paper, we show that the experimental re-
sults for accumulation layers on n-type InAs cited previ-
ously as well as newer results for more heavily degen-
erate n-type InAs, can be understood using the motional
binding picture with more realistic surface potentials —an
exponentially screened potential and a self-consistent po-
tential.

II. THEORETICAL BACKGROUND

Our purpose in this paper is to investigate the motional
binding phenomenon beyond the simple square-well ap-
proximation of Ref. 1. We present this study in two
steps. First we use the two-band model to examine
motional binding with a non-self-consistent, exponential
potential function. Then, we examine motional binding
with a self-consistent potential in the semiclassical ap-
proximation. We expect that, particularly for accumula-
tion layers on degenerate semiconductors as discussed by
Baraff and Appelbaum, self-consistency is necessary to
properly take account of the interplay between bound
and extended states and their response to external fields.
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in formal analogy to the Dirac equation. The gap ener-
gy is denoted by Eg and the momentum operator by P.
The vector y= 8' u x+ WycTyy+ 8' O.,z is defined in
terms of the Pauli spin matrices o.; and the matrix ele-
ments IV; of the velocity operator. N and X are the (spi-
nor) envelope functions for the conduction band and
valence band, respectively. The 2X2 unit matrix is I.
We consider an ideal sample which occupies the infinite
half-space z & 0 with surface potential V(z).

We assume ellipsoidal, constant-energy surfaces in the
sample with rotation axis along the surface normal. The
wave functions are then separable:
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where k, =k, x+ k y is the transverse wave vector. With
the condition that @(z) and X(z) vanish at z=0 and
z = oo, the bound-state energies E (k, ) can be found from
Eq. (l) by eliminating X(z) and diagonalizing the result-
ing 2 X 2 matrix equation for @(z). The result is given by

A. Two-band model with exponential potential

We use the effective mass k.p method in the two-band
approximation, i.e., where only the light-mass bands per-
tain and thus the free-electron kinetic energy terms can
be neglected, where electron energies and wave functions
are described by the matrix equation
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where E =E——V(z)+E /2, and

@(z)= +,.k P+(z),1

with k+ =k +ik .

The coefficients P«are given by fi Eg /2mi'„where mr*

and m,' are the longitudinal and transverse effective-mass
components. These coefficients are related to the velocity
matrix elements by p~=A IV, and p, =A' (W + W' ). Ex-
pressions similar to Eq. (3) have been given by Ohkawa
and Uemura, ' by Reisinger, ' and by Takada et ai. "

We solve Eq. (3) numerically for V(z) = —V0e
The parameters Vo and A. are chosen appropriately for
the InAs data; we also take m~*=m,*=0.023m0 (free-
electron mass) and E =410 meV. For arbitrary values of
the energy E and k„ the solution of Eq. (3) was found by
using a fourth-order Runge-Kutta method to integrate
the wave function P+(z) from large z (bulk) values to the
surface. Starting values of P+(z) and its derivative in the
bulk were determined trivially from Eq. (3) with V(z) =0.
The acceptable eigenfunctions for subband j, P~+(z, k),

are those which satisfy the boundary conditions.
It is interesting to note the formal analogy between Eq.

(1) and the Bogoliubov equations which describe quasi-
particle dynamics in the Meissner layer of a superconduc-
tor. ' The quasiparticles occupy a quasidiscrete spec-
trum of states where the transverse kinetic energy dic-
tates the binding condition in a manner similar to the
motional binding considered here for a narrow-gap semi-
conductor.

E, —V(z)
(k, +k, )=[E,—V(z)] 1+ E

with m*=m&*=m,*, appropriate for InAs. The semi-
classical approximation was also applied by Radantsev
et al. to InAs, but motional binding solutions were ap-
parently not noticed. Below we use the Ando method to
focus on the motional binding regime in the InAs accu-
mulation layers.

III. RESULTS

E(meV)

For a sample in a magnetic field, the frequency, Bf, of
Schubnikov —de Haas oscillations is simply proportional
to the area of the electronic orbit on an extremal portion
of the Fermi surface. The observed "pinning" of Bf was
explained in Ref. 1 as due to the near independence of the
Fermi "surface" area ~kF on surface-electron density N,
in the motional binding regime. In this section we exam-
ine this regime with both a parametrized exponential po-
tential and a semiclassical self-consistent potential.

Figure 1 shows the situation we wish to study. For a
given range of bound-state surface-electron density N, ,",
the first-excited state, j= 1, will be motionally bound such
that its subband exists only for k, ~ k„. If the Fermi en-

ergy, determined from the bulk carrier concentration, n,
is larger than the energy corresponding to k„, the sub-
band is occupied. In the N," range where this motionally
bound subband is occupied, the SdH frequency, given by

B. Semiclassical self-consistent potential -- 40

The essence of a self-consistent calculation is to solve
the Schrodinger equation and Poisson s equation simul-
taneously. By using the classical approximation in which
the electron density is taken as

n (z)=kF(z)/12rr (4)

Z.

k d = J+—

where k~ is the Fermi wave vector, Ando' achieved
close agreement with more elaborate self-consistent cal-
culations for narrow-gap semiconductors. The
Schrodinger equation was solved in the WKB approxima-
tion:
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where z is the classical turning point and k, is related to
the subband energies E by the two-band relation, in the
same approximation as pertains to Eq. (1),

FIG. 1. Exponential potential well and subband dispersion
for an n-InAs accumulation layer under motional binding con-
ditions for the first-excited state. The bottom of the conduction
band (CB) in the bulk is taken as the zero of energy.
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(cR/2e)kF, for an isotropic, spin-degenerate system, is
not proportional to the subband occupancy, N„
=(k~, —k„)/2n. .

We first use the parametrized exponential potential to
analyze the SdH data of Ref. 2. To adjust the parameters
of the potential, —Voe ', we use the experimentally
determined intersubband spacings' for a degenerate n-
InAs sample with EF=30 meV above the conduction-
band edge. With A, =90 A, we find that the first excited
state (j= 1) is occupied and motionally bound for
120& Vo(139 meV. The subband structure of Fig. 1

corresponds to a voltage in this range ( Vo = 130 meV). It
is then straightforward to determine the predicted SdH
frequency as a function of bound-state electron density,
N,"=N,o+N„. The result, plotted in Fig. 2, is similar to
that found in Ref. 1 with a square-well potential. The
motional binding regime is characterized by a nearly Oat
dependence of Bf on N, with a discontinuity in slope
occurring when the subband becomes fully bound
(k„=O). The experimental data do not show such a
discontinuity, but the range of N, over which Bf is essen-
tially Aat is substantial as the model predicts.

The slope discontinuity is removed in the self-
consistent calculation, also shown in Fig. 2. This is due
to the nonlinearity introduced by the dependence of the
potential V(z) on the electron density N, which couples
kF and k, . The arrow in Fig. 2 marks the density at
which the subband becomes fully bound (k„=O). Again
we see the N, range of motional binding is well described
by the model. The differences in slope and onset N, value

for subband occupancy between the model curve and the
experimental curve may be caused by our neglect of the
contribution of the charge in the free (unbound) charge
density of N, . The experimental N, scale includes this
contribution. Furthermore, this same dependence of N, ,

on free charge density causes complications in experi-
mentally determining the zero of the N, scale. '

Because the range of N, over which motional binding
occurs for a given subband increases with EF, it is of in-
terest to examine the frequency Bf of the quantum oscil-
lations in a sample with higher bulk concentration. Fig-
ure 3 shows the experimental results of Radantsev et al.
for the ground-state subband in a sample with EF= 156
meV. To compare our calculation directly to the data,
we have replot ted the experimental points using the
dependence of bound-state density N, on total N,. given
in Ref. 5; for the ground state this simply involves an ex-
trapolation of the observed Bf values (outside the
motional binding regime) to N, =0. Our calculation pre-
dicts a substantially larger N, o range of motional binding
than the data suggest. It may be, however, that the oscil-
lations in the motional binding regime are difficult to ob-
serve because Bf becomes independent of gate voltage.
The existence of motionally bound carriers over such
large N, ranges means that the contribution of unbound
carriers to the surface screening is considerably less im-
portant than suggested previously. '

The independence of Bf on N, is nicely illustrated
when one calculates the Landau-level structure in the
motional binding regime. This is easily accomplished by
replacing k, in Eq. (3) with 2n /l, where I is the magnet-
ic length, l =

( Rc /eB )', and n is the Landau index. '

Figure 4 shows the lowest ten Landau levels for subband
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FIG. 2. Comparison of calculated to measured SdH frequen-
cy vs carrier density for the motional binding regime of the
first-excited subband in an n-InAs accumulation layer
(n =2X 10' cm ). The experimental data (Ref. 2) is plotted
against total, bound and free, gate-voltage-induced carrier den-
sity while the calculation is plotted against bound carrier densi-
ty only. The arrows mark the transition from motional to full
binding in the calculations.
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FICT. 3. Quantum oscillation frequency vs bound-state carrier
density in a heavily doped n-InAs accumulation layer (EF= 156
meV). The solid curve gives the prediction of the semiclassical
self-consistent calculation and the points are taken from the
data of Radantsev et al. (Ref. 5). The arrow marks the transi-
tion from motional to full binding.
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nonexistent in the motional binding regime. This is a
feature of the two-band model, in which the energy of the
n =0 level is independent of B and is at the subband bot-
tom E . Thus, it vanishes when motional binding occurs.
This effect should be observable in systems which are
well-described by the two-band model.

IV. CONCLUSIONS

FIG. 4. Allowed energy vs z-directed magnetic field of the
lowest ten Landau levels for a motionally bound subband. The
arrows indicate the energy, E„at which the Landau levels van-
ish for each Vo. Below E, the carriers are no longer bound.
The n =0 level does not exist in the motional binding regime.

j=1 calculated for the exponential potential described
above. The values of potential depth in the calculation
are both in the range where the subband is motionally
bound. Three aspects worth noting are seen in the figure.
First, the Landau-level spacing is the same for both Vo
values, reflecting the fact that Bf (which is proportional
to the spacing) is independent of Vo, whereas N, is not in
the motional binding regime. Secondly, the Landau-
levels vanish at an energy E, which is the electron energy
at k, =k, . This would not be the case in the absence of
motional binding. Finally, the n =0 Landau level is

The calculations discussed in this paper indicate that
motional binding occurs generally in narrow-gap systems
with surface potentials of finite depth, typical of
accumulation-layer potentials. In degenerate systems,
such as InAs, the motionally bound subbands are occu-
pied over significant ranges of surface-electron density.
Therefore, a reexamination of the fully self-consistent cal-
culation introduced by Reisinger' (in which motional
binding was not noticed) is desirable to clarify the role of
free carriers. The large X, range of motional binding also
suggests that the design of quantum-well devices based on
motional binding may be possible. For such devices, the
transition from bound state to extended state (at k, =k, )

should be abrupt and, at least for InAs, a preliminary
study of electron wave functions near k, indicates that
this is the case. ' It is also of interest in this connection
to note the sharp peak in ground-state scattering rate
near the population threshold of the first-excited subband
observed by Radantsev et al. , i.e., near the occupation
onset of motionally bound states (EF=E(k, )]. This
would be a particularly interesting regime to explore with
intersubband resonance. ' '

ACKNOWLEDGMENTS

We are grateful to H. D. Drew for useful discussions.
This work was supported by National Science Founda-
tion (NSF) Grant No. RII-86-10676.

R. E. Doezema and H. D. Drew, Phys. Rev. Lett. 57, 762
(1986).

2H. Reisinger, H. Schaber, and R. E. Doezema, Phys. Rev. B 24,
5690 (1981).

W. Zhao, F. Koch, J. Ziegler, and H. Maier, Phys. Rev. B 31,
2416 (1985).

4V. F. Radantsev, T. I. Deryabina, L. P. Zverev, G. I. Kulaev,
and S. S. Khomutova, Zh. Eksp. Teor. Fiz. 88, 2088 (1985)
[Sov. Phys. —JETP 61, 1234 (1985)].

5V. F. Radantsev, T. I. Deryabina, L. P. Zverov, G. I. Kulaev,
and S. S. Khomutova, Zh. Eksp. Teor. Fiz. 91, 1016 (1986)
[Sov. Phys. —JETP 64, 598 (1986)].

G. A. Baraff and J. A. Appelbaurn, Phys. Rev. B 5, 475 (1972).
P. A. Wolff, J. Phys. Chem. Solids 25, 1057 (1964).

8F. J. Ohkawa and Y. Uemura, J. Phys. Soc. Jpn. 37, 1325

(1974).
F. J. Ohkawa and Y. Uemura, Jpn. J. Appl. Phys. Suppl. 2, 355

(1974).
H. Reisinger, doctoral dissertation, Technische Universitat
Munchen, 1983 (unpublished).

' ' Y. Takada, K. Arai, N. Uchimura, and Y. Uemura, J. Phys.
Soc. Jpn. 49, 1851 (1980).
R. E. Doezema, J. N. Huffaker, S. Whitmore, J. Slinkman,
and W. E. Lawrence, Phys. Rev. Lett. 53, 714 (1984).

' T. Ando, J. Phys. Soc. Jpn. 54, 2676 (1985).
i4See, for example, V. Korenman and H. D. Drew, Phys. Rev. B

35, 6446 (1987).
'5J. Slinkman (unpublished).

H. Reisinger and F. Koch, Solid State Commun. 37, 429
(1981).


