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First-principles local-density-functional (LD) calculations on small clusters were used to con-
struct interaction potentials for iron and iron-nickel systems. The effective pair potential ¢;; of the
semiempirical embedded-atom method (EAM) was adopted for Ni-Fe and Fe-Fe interactions using
differences: A@'P=A@EAM and the Ni-Ni potential of Daw et al. The density-dependent
embedding-energy function F(p) of Fe was adjusted to conform to known scaling laws. The calcula-
tion of LD pair potentials was carried out for a number of Fe, Ni, clusters to determine suitable
procedures for extracting ¢. The effective potentials thus determined were applied to bulk and Fe-
Ni alloys in molecular-dynamics simulations to determine equilibrium surface and bulk structures,
and thermodynamical properties. The calculated bulk properties of Ni satisfactorily reproduce pre-
vious simulation results and experiment; those of bcc iron agree fairly well with experimental re-
sults. Moreover, certain properties such as vacancy-formation enthalpies are sufficiently sensitive to
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be useful in guiding further refinement of the potential.

I. INTRODUCTION

Over the past several decades the volume of scientific
research on transition metals and alloys has been growing
rapidly. Both theorists and experimentalists are seeking
a basic understanding of the properties that make materi-
als useful that goes beyond the traditional metallurgy
perspective to a more atomistic view.! The great value of
such materials in present manufacturing technology as
well as in the laboratory and the potential for the future
is evident; consequently, their electronic structure and
temperature-dependent dynamic properties are of funda-
mental interest. Advances in modern technology and
metallurgy have provided many ways to probe electronic
structures: energy-level spectroscopies, melting and cry-
stallization studies, defect structures and migration, and
so on.? Both experimental measurements and calcula-
tions based on theoretical models have already attained a
good degree of precision at the spectroscopic level. How-
ever, comparison between experimental bulk properties
at finite temperature and first-principles theory is not
common.

The substantial difficulties encountered in transition-
metal (TM) studies are due to their complex electronic
structure, due largely to interactions among the d elec-
trons. Many-body cluster expansions of TM bulk proper-
ties apparently converge relatively slowly because of the
electron correlation in these systems; at least it is general-
ly understood that two-body potentials alone are inade-
quate. In quantum theory, the many-electron interac-
tions in solid-state systems are traditionally dealt with ei-
ther by the Green’s-function method, 3 which becomes in-
tractable as the number of particles increases, or by solv-
ing single-particle Schrédinger equations with a self-
consistent effective potential. The latter is based on
mean-field theory with well-known approximations de-
rived from density-functional (DF) or, alternatively, by
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Hartree-Fock theory. The DF theory is usually used in
conjunction with the local-density approximation (LDA)
of Kohn and Sham* and provides much insight of
transition-metal electronic structure including spectro-
scopic, cohesive, and magnetic properties at zero temper-
ature. The advantages of DF theory over other theories,
e.g., the Hartree-Fock method, concern approximations
to both exchange and correlation energy, which then per-
mit practical application to multiatom systems with the
LD approach. The total-energy estimation in DF theory
has been successfully used to determine the crystal struc-
ture of both crystals and clusters of transition metals.

Physical methodology focusing on atom-level behavior
has penetrated into metallurgy as well as many other
fields. On one hand, first-principles calculations by both
band-structure and cluster methods mentioned above are
evidently powerful in determining the bulk, surface struc-
ture, and magnetic properties for virtually all metals in
the Periodic Table and their alloys at 7=0 K. On the
other hand, it has been long realized that there is a
tremendous gap between the quantum theory which typi-
cally deals with systems of high symmetry and the experi-
mental observation which reflects finite-temperature
effects with accompanying thermal disorder. The com-
puter time consumed in quantum-mechanical calcula-
tions increases considerably as the symmetry is lowered
and the size of the basic unit considered is increased.
Even for the simple metals, it is not very promising to
calculate geometry-dependent properties of low-
symmetry systems in detail with more than, say, five
atoms in the cluster. It is more forbidding for transition
metals.

Nevertheless, computer-simulation methods based
upon classical Newtonian mechanics provide a good tool
to fill the big gap between experimental activities and
theoretical descriptions. There is a tremendous amount
of existing research on the computer simulation of vari-
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ous perspectives of metallurgy, including surface
diffusion, interface diffusion, interface free energies, brit-
tle fracture, and phase transitions.” Computer-
simulation and, particularly, molecular-dynamics (MD)
methods are thus widely adopted for modeling ‘‘realistic”
problems at macroscopic time and distance scales. At
this stage a classical model is adopted and the principal
problems are concerned with the determination of the
potential-energy function. The resulting demand for
good model potentials which can describe real physical
phenomena quantitatively or even qualitatively leads to a
search for more rigorous methods.

The search for parameters defining potential-energy
surfaces is an arduous task.® Enormous efforts have been
made to explore the geometries associated with the de-
grees of freedom for a system with few (N =3-6) atoms.
In general, different experiments give information about
different parts of the surface, and a particular ab initio
technique may have different levels of accuracy for
different parts of the surface. It is still a major problem
to gather all available information into a functional rep-
resentation which can be used in computer simulations.
For a large system, to obtain the entire potential surface
geometry is not feasible with present and foreseeable fu-
ture experimental techniques. Computer size and speed
limitations dictate that various severe approximations
have to be made to obtain theoretical information on the
surface regions of interest. In crystalline material studies
the interactions between atoms are usually chosen to fit
force constants, bond lengths and cohesion, and lattice
vibration frequencies, usually in pairwise-potential form.

When cluster size is not very big, say, 3—10 atoms, the
number of independent coordinates is reduced in compar-
ison to the bulk system. However, the difficulties still are
serious, with no well-developed methodology. This is a
matter of concern since the small clusters are largely
relevant to processes controlling chemical reactions, ca-
talysis, melting behavior, and so on. In these phenomena
the energy surface is crucial in determining atomic trajec-
tories, e.g., in catalytic process small details of the sur-
face may play an extremely important role in determining
the whole direction of reaction. Over the whole Periodic
Table there are only a few elements, essentially the inert
gases, for which the interatomic interactions are known
to be essentially pairwise. The success of pairwise models
is understood to depend upon weak electron-electron
correlation. However, efforts made in the investigation of
complex materials such as transition metals have revealed
the need for more complex interaction models.

At this stage, first-principles calculations have been
successful in describing some static properties, and oc-
casionally a temperature-dependence of some parameters.
For example, under density-functional (DF) theory, the
equilibrium bulk and surface structures, cluster bond
lengths, and binding energies have been described for a
number of TM systems.’ The binding-energy—curve cal-
culations, however, are mostly limited to bulk uniform
dilation in the solid state and dimer bond lengths in clus-
ters. Thus the vast majority of the potential surface
remains to be parametrized, explored, and understood.
The embedded-atom method (EAM) is just one of several
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models being developed to satisfy that requirement.

In this paper we present a simplified method of con-
structing potential surfaces, using both first-principles
calculations and semiempirical data. In the EAM
scheme we develop a method of constructing a potential-
energy function of metal B from the potential energy of
metal A. The principal assumption is that a quantum-
mechanical potential can be used to provide a differential
correction to the empirical potentials, and if the metal- 4
potential has been optimized to fit experiment, a fair de-
gree of error cancellation will take place. Various possi-
ble choices of the quantum-mechanical pair potential are
discussed in order to give a reasonable description of the
pairwise interaction in the many-particle environment.
With this method a potential-energy function of a-Fe is
deduced from the known fcc Ni EAM potential, along
with the calculated Fe-Ni interaction. We apply these
functions to MD simulations on bulk, surfaces, mono-
layer films, and dilute alloys. Data on the Fe bulk prop-
erties and nickel bulk and film system are compared with
the experimental results as a general test of the model po-
tentials. Equilibrium geometry of Fe clusters in bulk
nickel, cluster structure on a Ni surface, and the alloy
phase for some dilute Fe-Ni systems are investigated.
Surface relaxation and clustering are detected for Fe-
covered low-index Ni surfaces.

II. METHOD

A. Embedded-atom method

Recognizing the difficulties in finding an accurate ex-
plicit representation of the interatomic interaction, an al-
ternate method, the embedded-atom method (EAM), has
been developed to estimate the energy of adding an atom
to a host by considering it to be immersed in an electron
gas of density n (7). The EAM is based on the idea of a
quasiatom, or effective medium, as originally suggested
by Ngrskov and Lang,8 and by Stott and Zaremba.® In
this model, the whole atom, nucleus or ion and its elec-
tron polarization cloud, is considered as a single unit or
“quasiatom” analogous to the concept of the quasiparti-
cle in liquid-helium theory. Since the ion or nucleus is
shielded by the electron cloud, it appears neutral at a cer-
tain distance and is unaffected by the charge distribution
beyond a certain region. Instead of focusing upon
orbital-by-orbital electronic response as in the pseudopo-
tential theory, the EAM concentrates on the “host,” the
effective medium and its influence on the entire atom.
The key parameter which affects the atom is identified as
the charge-density distribution of the host system. In
other words, the energy change caused by the presence of
an extra atom is predetermined by the undisturbed sys-
tem,

AE:gZ,R(nh(r))o (1)

In Eq. (1), ¥ stands for a functional of the density, the
subscripts Z,R are the atomic number and the coordi-
nates of the immersed atom, and 4 represents the host. It
is important to understand that the Stott-Zaremba hy-
pothesis [Eq. (1)] is not a means of solving for the self-
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consistent density distribution of the entire system as im-
plied by the Hohenberg-Kohn theorem. Rather, it is a
model based on the self-consistent calculation which is
therefore done implicitly.

The concept of a quasiatom provides a promising ap-
proach in estimating the energy of an atom which is im-
mersed in a host. In the application to metal or alloy sys-
tems, the method can be used to calculate the total ener-
gy by viewing each atom in the system as an impurity and
the total energy as simply the summation of all embed-
ding energies, i.e.,

E..= EF,-(P;.,,-) . (2)

The embedding energy F;(p, ;) in Eq. (2) is not trivially
related to the immersion energy defined in Eq. (1) as
pointed out by Daw and Baskes.” However, careful con-
sideration shows F differs from F only in the different
ways of presenting the total energy. Therefore we use the
same terminology ‘“‘embedding energy” to represent both.
Daw and Baskes suggested’ a modified scheme to im-
prove the total-energy expression:

Ew=% 3 &, (r)+ > Fipy;) - (3)
W I
The meaning of ¢;; in Eq. (3) is straightforward: it is
the effective two-body interaction between atoms. The
purpose of this additional term is to include the effects re-
sponsible for deviations from the uniform-density jellium
model. For complicated systems like transition metals,
the uniform-density approximation (UDA), and low-
order corrections really do not provide a satisfactory ap-
proach. The price which we have to pay in order to use
Eq. (3) is to choose a proper pair potential and embed-
ding energy by some other criteria. It is obvious that
there is no unique way to separate the two terms from
rigorous theoretical considerations. However, empirical
forms of ¢ and F can be obtained by fitting the calculated
physical properties to the experimental data.'°”'* One
can see from the global fitting processes used that the
choice of proper ¢ and F is somewhat arbitrary.
For example, once the form of ¢ is chosen, F can be
determined by the empirical universal scaling relation for
transition metals, 14

E(a*)=—E(1+a*)e ", @)

where E, is the absolute value of the sublimation energy
at zero temperature defined as the energy per atom need-
ed to separate the lattice atoms from their equilibrium
positions to infinity. Also, in Eq. (4) the scaled lattice
constant is defined as

a*=(a/ayg—1)/(Ey,/9BQ)'/?, (5

where a, is the experimental lattice constant, B is the
bulk modulus, and Q is the volume per atom. With this
definition E (a) is the energy per atom required to remove
all atoms from their lattice points (with lattice constant
a) to infinity.

In applications, the argument of F is the total host
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electron density at the position of the embedded atom.
Furthermore, as a plausible ansatz, p is chosen as the
summation of overlapping spherically averaged atomic
charge densities of the system. In the case of a system
with slowly varying density, this is a reasonable approxi-
mation. This approximation decouples the complex
many-body energy to the simple two-body interaction en-
ergy plus mean-field form and causes no substantial in-
crease in the time required for MD simulations.

The bulk properties commonly used in generating po-
tential parameters include lattice constant a,, sublima-
tion energy E;,, bulk modulus B, elastic constants {C;;}
and the vacancy-formation energy Euf . With this infor-
mation, potential parameters have been determined for
most fcc transition metals, including Ni, Cu, Pd, Ag, and
Pt.° It is known in general that EAM works well for fcc
transition metals and remains controversial in describing
bee transition metals. 1

B. First-principles corrections to EAM potential

In this section, we introduce a method developed from
cluster calculations by LD quantum theory to construct
new potential functions from the known and tested
empirical potential functions. To achieve this goal, we
make one simple assumption:

A¢EEM =403 | (6)

where ¢ is the pair-potential function. The superscript
represents the method by which ¢ is obtained; the sub-
script indicates different elements 4,B and A refers to the
difference of the pair potential. Equation (6) states that
the differences of pair potentials between material 4 and
B in the EAM and LD schemes are equal to each other.
This assumption introduces nothing new to the EAM
model since the pair potential concerned in the EAM is
certainly not assumed to be the “bare” dimer potential.
The task remaining is choice of a reasonable procedure to
select effective pair potentials from the LD scheme.

One straightforward selection is the LD dimer poten-
tial since it completely represents a certain two-body in-
teraction rather accurately. However, our application of
the dimer potential in the EAM gives overestimates of
the two-body interactions in bulk simulations in the sense
of the “energy per bond,” the vacancy-formation energy
being much bigger than experimental results. This is
hardly surprising in view of the many-body screening
effects in the bulk. Searching for other possible represen-
tations of the effective pair potentials, we have studied
triatomic and tetrahedral clusters which could describe
pair interactions within some more realistic metallic envi-
ronment. '® We may thus improve upon the ¢ part of the
EAM model, and this searching process can be continued
until we hit upon a (hopefully general) potential which
satisfactorily reproduces the physical properties of in-
terest. We apply the proposed potentials in computer
simulations on TM solids and films to evaluate their
effectiveness in reproducing dynamical and thermo-
dynamic properties.

Once we choose a ¢, for example, using the effective
pair potential from tetrahedral clusters, the present deter-



12 472

mination of the F(p) function is simple. We use the ob-
served universality of the metal cohesive energy E (a) as
described in Eq. (4) and obtain F(p) by a process of sub-
traction, using Eq. (3), keeping in mind that within EAM
theory, both F and ¢ are short-range energy terms. The
required total charge density p of the host at position r is
taken as the sum of atomic charge densities 3; p,(r—R;)
at the reference point. Decoupling the total charge densi-
ty into the sum of atomic charge densities makes the
problem simple, and is physically reasonable if we can
determine the effective atomic configuration by indepen-
dent (static) cluster or band-structure calculations, or ex-
periment. Lacking this possibility, we may calculate the
p of an atom in a square well by atomic LD methods to
simulate the crystal environment and at the same time
leave the parameters of the potential well adjustable. For
example, if one is interested in improving a surface poten-
tial function, there is some freedom to determine the
charge-density distribution function for different layers.

III. RESULTS
A. Simulation on bulk Ni and Ni surfaces

The first subject in our simulation is the pure-nickel
metal. The potential used is that produced by Daw
et al.'! and used by them in MD simulations. There are
two major reasons for repeating the simulation process.

(i) We wish to check the reliability of our choice of po-
tential functions as well as the validity of the Gibbsian
dynamics!? used in these calculations.!® We use both
direct temperature renormalizations and “variable-s”
method (Gibbsian dynamics) and find that the results are
consistent with each other.
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(ii) The nickel potentials, precisely fitted to extensive
experimental data, provide good starting potentials
which can be use to generate potentials for other metals,
e.g., iron.

The number of atoms in the MD cell was taken to be
256, corresponding to four fcc crystal cells in each direc-
tion of three-dimensional space. The temperature was
kept at 20 K for calculating the cohesive energy and lat-
tice constant and 300 K for most of the other properties
under investigation. The constant-pressure specific heat
C, is measured from the energy-temperature relation.
The pressure is chosen to be zero.

In Table I we give the values from our calculations
along with experimental data on the bulk nickel proper-
ties. One sees that our data essentially reproduce the ex-
perimental results. The cohesive energy E,, defined by
energy per atom needed to separate all atoms to infinity,
the lattice constant a,, vacancy-formation energy (we
refer to the energy here and in following sections as
enthalpy) E/, which is the energy needed to generate a
vacancy in crystal, the vacancy-migration energy E,
defined as the energy needed for an atom to jump into a
vacancy site, and specific heat C, compare favorably to
the experimental measurements.

To evaluate the vacancy-formation energy El,f we first
obtain the binding energy per atom. We note that this
value is obtained by dividing the total energy by, in this
particular case, 255 atoms for a MD cell with one vacan-
cy. For a perfect crystal, we would divide the total ener-
gy by 256. Now we have the energy per atom for both
systems and their difference times 256 is just the forma-
tion energy in our definition.

In estimating the vacancy-migration energy E.", we
follow the method suggested by Matthai'® and measure

TABLE I. EAM calculation and experimental results on Ni bulk and surface properties.

EAM calc. Expt.
Lattice constant a, (a.u.)° 3.52 3.54
Cohesive energy E, (eV)° 4.42 4.45
Vacancy-formation energy Ef (eV) 1.50 1.60
Vacancy migration energy E,)" (eV) 1.2 1.3
Divacancy E,, 2.89
Heat capacity C, (R) 3.0 3.0
Surface energy E, (ergs/cm?) 3028 (100)°

3228 (110) 2380%

1200 (111)
Surface relaxation A, (%) —1.0 (100 small

—3.7 (110) —4.1—-—38.3

—0.8 (111) small

A, 3 (%) +0.1 (100)
+0.2 (110)
—0.1 (111)

2Average over three surfaces.
b(hkl) face in usual crystallographic notation.

‘Properties calculated at simulation temperature T'=20 K. Others measured at 300 K.



the T-dependent change in the number of time steps
needed for an atom move into the vacancy region,
identified by a circle of radius equal to half of the dis-
tance between the atomic site and the vacancy. Accord-
ing to statistical theory, the dependence of migration en-
ergy on this number of steps is

1/4

)12, B /KT

N=C(kT (7)

After we tested the Ni potential on bulk potentials, we
applied this model to the studies of surface relaxation and
reconstruction of Ni (100), (110), and (111) surfaces, using
a unit cell of 992 atoms in 31 layers. We chose the size of
the MD cell with a minimum number of atoms consistent
with a relatively stable simulation structure. From test
runs we found that a cell with eight atoms in the x-y
plane and 101 layers is greatly affected by the thermal
fluctuations. Compared to the simulation on the nickel
bulk, it is obvious a larger number is needed to sustain
the stability of the dynamics under the influence of the
temperature because of the lack of symmetry in the z
direction. For all three surfaces we find little evidence of
reconstruction, consistent with experimental reports on
nickel low-index surfaces.?® Figure 1 shows the predicted
oscillatory relaxation of interlayer spacing. The (110)
surface has a 3.5% contraction with respect to bulk spac-
ing for the first layer, with a second-layer expansion of
0.1%. This compares well with the experimental results
of —4.0% to —8.7%, and +2.3% changes of first and
second interlayer spacing, respectively.?! The relaxation
of the other two surfaces, (100) and (111), is very small:
—0.03% and —0.8% for (100) first two layers and

1.00

0.00

1.00

-2.00

-3.00 4

RELAXATION (%)

~4.00

-5.00

~6.00 1

- 7.00 T T T T T T T

LAYERS

FIG. 1. Surface relaxation obtained by molecular-dynamics
simulations on (a) Ni(100), O; (b) Ni (110), O; (c) Ni(111), X.
The horizontal axis represents positions of layers in a finite-
thickness film; the vertical axis gives the percentage deviation
from the bulk value. J
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—0.1% and —0.2% for (111). This is also consistent
with previous measurements.?’ The slight systematic
shift in the calculated interior interlayer spacing relative
to bulk is found to be mainly due to thermal effects and
finite film thickness in our model.

We also estimate the surface energy E_, which is
defined as the energy per unit area needed to separate two
half-crystals to infinite distance. In our simulations E , is
derived from the difference between bulk energy and film
energy, i.e.,

E_ =[E,u(per atom)—E, (per atom)]

number of atoms in the film cell )
2 X (area of the cell)

The results obtained by the simulation are 3028, 3228,
and 1200 ergs/cm2 for nickel (100), (110), and (111) sur-
faces, respectively. We may compare these to the experi-
mental result of 2380 ergs/cm?, averaged over all three
surfaces.?? It is remarkable that such a simple model po-
tential is capable of producing both bulk and surface
properties so consistent with the experimental results.
The potential functions for the surface studies can be im-
proved, in general, by taking the electron-density relaxa-
tion into account in generating F(p), but in the present
film calculations on nickel we see that the bulk-derived
potentials are accurate enough within experimental sensi-
tivity.

X

B. Construction of Fe potential functions
and simulation on Fe systems

Our goal here is to construct Fe potentials, which have
not been previously obtained with much success (after the
present work was completed, a newly parametrized po-
tential was reported by Harrison!® which appears to be a
considerable improvement on previous efforts) and apply
them to the MD simulations. The effective pair interac-
tion function ¢;; is extracted from the LD (Ref. 23) calcu-
lations in the Fe and Ni tetrahedral clusters. In order to
determine ¢;; we calculated the total self-consistent bind-
ing energy as a function of the atomic separation and di-
vided this energy by the number of interatomic bonds.
The pair potential in the EAM scheme is then obtained
by Eq. (3); we have explicitly

— LD _ LD EA
¢Fe—Fe— Fe-Fe Ni-Ni+¢Ni-Ni ’ ©

where ¢ is the effective two-body interaction defined both
in LD theory and the EA method and the subscripts refer
to different materials.

The embedding energy F(p) is derived by combining
Egs. (3) and (4), as discussed above. We plot the func-
tions Pg..re>» Pniniy aNd P i in Fig. 2. The differences
between Fe and Ni are essentially that the pair potential
for Fe has a negative region representing attraction while
Ni is purely repulsive. The derived F function of Fe
given in Fig. 3 is positive at small p, while for Ni the F
function is always negative.!? Whether or not the slight
positive value of the iron embedding function at very
small densities relates to the real physical interaction is
not very important, because of the nonuniqueness of the
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FIG. 2. Effective pair potential (a.u.) for Fe, Ni, and
Fe,Ni,_, systems. (a), Fe-Fe interaction; (b), Fe-Ni interaction;
(c), Ni-Ni interaction. The horizontal axis represents the inter-
atomic distance.

¢, F representation. It also does not seriously affect the
bulk or surface simulation because such small p values
appear only for dilute systems.

By analyzing the data we see that the potential func-
tions generate bulk Fe properties consistent with experi-
ment and the accuracy of the data is about the same as
for bulk Ni (see Table II). For most of the simulation
runs on Fe bulk and surfaces the temperature is kept at
300 K to match the room-temperature condition and
zero external pressure. The vacancy-formation energy is
found to be 2.1 eV, slightly higher than the 1.6 eV found

CHARGE DENSITY (10 -3 a.u.)

FIG. 3. The embedding energy (a.u.) as a function of the lo-
cal charge density (a.u.) for iron obtained from the cohesive en-
ergy function of the bcc phase.

from previous theoretical estimates and some experimen-
tal measurements.?* However, Schepper et al.?® report
that for the ferromagnetic Fe crystal the value of E/ is
higher than that for paramagnetic Fe; their data show a
2.0%+0.2 eV vacancy-formation energy. In our studies,
the magnetic effects are only included implicitly through
A¢'P with no explicit dependence on spin in potential ex-
pressions. We measure the vacancy-migration energy E/
at the temperature 300 K and find a value of 0.65 eV [Eq.
(7)]. We also find that the number of time steps diverges
at 290 K, e.g., the migration is forbidden by the classical
dynamics. The experimental measurements on E." are
controversial, with values ranging from 0.55 to 1.2 eV.?*

TABLE II. EAM calculation and experimental results on Fe bulk and surface properties.

EAM calc. Expt.
Lattice constant a, (a.u.) 5.43 5.44
Cohesive energy E, (eV) 4.28 4.28
Vacancy-formation energy E;/ (eV) 2.04 . 1.60-2.0
Vacancy-migration energy E)" (eV) 0.65 0.55-1.2
Heat capacity C, (R) 3.0 3.0
Surface energy E, (ergs/cm?) 3550 (100)
4590 (110
12870 (111)
Surface relaxation A;, (%) 16.0 (100)
6.0 (110)
33.0 (111)
4,5 (%) 6.0 (100)
0.4 (110

18.0 (111)
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The simulation by Gibbsian dynamics on bcc iron sur-
faces were not very successful with the potential con-
structed from our method and the chosen atomic
configuration for the host density, which was taken as the
LD atomic Fe d®? state. The thin film is found to be
squeezed in the x,y direction and expanded in the z
(stacking) direction as a result of the Gibbsian dynamics
which allows the size of the cell to vary under the exter-
nal pressure P. We speculate that the causes of this
failure may be mainly due to differences between the po-
tentials derived from corrections to fcc bulk Ni for bulk
Fe and the requirements of the dilute bce surface struc-
ture. We recall that, in general, the empirical EAM po-
tentials have been found to work better in the fcc metals
than bcc metals. Improvements in Fe surface potential
can doubtless be made for future simulations, but for the
present we simply chose to freeze the box-size degree of
freedom.

The disadvantage of the fixed-volume simulation is that
some possible reconstruction on the surfaces may be
missed due to the constraints. The calculated relaxations
on all three surfaces—(100), (110), and (111)—are then
found to be larger than for nickel. The overall systematic
shift with respect to bulk is also quite large due to finite
size and thermal effects. A significant difference between
iron and nickel is that the first interlayer spacing in-
creases for Fe while it contracts for Ni (see Fig. 4). In
Table III we list the details of the calculated results.

We also treated the pair potential obtained directly
from the Fe dimer LD binding-energy calculations, mak-
ing corresponding adjustments to F(p). As was found

40.0 o
30.0 1
2
g
£ 200 A
<
x
<
]
w
o<
10.0
|
6 Xy
oo09288022LLER o0t 0g5
0.0 T T T T —T T T
0 5 10 15 20 25 30 35
LAYERS

FIG. 4. Surface relaxation obtained by molecular-dynamics
simulations on (a) Fe(100), @; (b) Fe (110), O; (¢) Fe(111), O.
The horizontal axis represents positions of layers in a finite-
thickness film; the vertical axis gives the percentage deviation
from the bulk value.
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previously for Ni, the results on the vacancy-formation
and -migration energies imply that the strength of the
pair interaction is overestimated by the dimer potential.
The calculated vacancy-formation energy is about 1.0 eV
higher than the one resulting from the tetrahedral cluster
two-body potential, which was already perhaps a bit
high. This suggests again that we can improve the
effective pair potential by considering large clusters, such
as the Fe,q bee fragment. However, the tetrahedral clus-
ters have already provided excellent accuracy for certain
properties, and it could be just as useful to refine the
mean field further by modifying the atomic density distri-
bution used in F(p).

C. Potential functions and simulations of Fe-Ni alloys

Next, we build up the potential functions of iron-nickel
alloys and impurity systems. By the EAM assumption,
the F(p) for Fe is invariant with respect to the host con-
stituents, i.e., we use the same F for Fe in a Fe-Ni alloy as
used in a pure Fe system. The pair interaction of Fe-Ni is
derived from the two tetrahedra, a Ni, and a FeNi; clus-
ter. The total binding energies are calculated versus the
interatomic distance for both clusters and the differences
between the two cluster binding energies are taken as the
total differences of the two effective pair potentials. After
dividing the energy difference by the number of Fe—Ni
bonds, 3, we get the differences of the pair potential as a
function of distance which is needed to obtain ¢EX; in
Eq. (9) (see Fig. 2).

TABLE III. Calculated interlayer spacing (a.u.) near (hkl)
surfaces for Ni, Fe, and Fe-covered Ni. The simulation temper-
ature was 7 =300 K.

Layer

Fe (100) (110) (111)

1 3.21 4.15 2.20

2 2.87 3.93 1.96

3 2.80 3.90 1.82

4 2.76 3.87 1.78

bulk 2.76 3.87 1.67

Ni (100) (110) (111)

1 3.31 2.29 3.85

2 3.34 2.38 3.87

3 3.34 2.37 3.88

4 3.34 2.38 3.88

bulk 3.35 2.37 3.88

Fe/Ni (100) (110) (111)
1 3.42 2.42 cluster®

2 3.29 2.33 3.91

3 3.35 2.36 3.89

4 3.34 2.38 3.88

5 3.34 2.38 3.88

bulk 2.35 2.37 3.88

*Iron is found to form irregular clusters on the surface of the Ni
substrate.
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FIG. 5. Typical distributions from different reference planes: Equilibrium atomic position for Fe, clusters embedded in bulk nick-
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With Fe-Fe, Fe-Ni, and Ni-Ni potentials, we investi-
gated various types of Fe-Ni alloys, mostly nickel-rich
cases. For such systems reasonably close to the fcc Ni
“calibration point” the EAM is expected to provide a
better description of the potential-energy surface than it
does in the bce structure. The tetrahedral clusters used
in our LD calculations also provide a nickel-rich environ-
ment.

1. Dilute Ni, ,Fe, alloy

In the first part of the calculations the iron atoms were
embedded in the nickel bulk with the concentration
4:252. We studied their equilibrium states and diffusion
in the bulk and found that at room temperature there is
no visible diffusion over a simulation interval of 2000
time steps. The cohesive energy per atom decreased to
4.39 from the pure bulk nickel value of 4.45 eV/atom.
The Gibbsian minimum-energy criterion determines the
most stable cluster configuration: four Fe atoms occupy-
ing one of the corners of the fcc lattice cell. This indi-
cates that the Fe atoms tend to cluster in bulk nickel at
room temperature. Figure 5 illustrates by a “snapshot”
some of the typical distributions found from different
reference planes.

2. Fe-Ni defect complexes

We also studied a series of Ni and Fe defect structures,
in bulk and dilute Ni;_, Fe, alloys with formation ener-
gies listed in Table IV. Again we calculated the forma-
tion energies by the subtraction procedure discussed be-
fore. In order to have a consistent comparison all the
simulations are done at zero pressure and T =300 K.
The results display a consistent trend from single vacancy
to substitutional structures. In the divacancy structure,
we let the two vacancy sites be initially separated by a
distance equal to the lattice constant at that temperature.
The energy needed to produce such a vacancy pair is
equal to 2.89 eV, almost twice the single vacancy energy.
The divacancy formation energy for Fe bulk is also ap-
proximately twice the single vacancy energy. It can be
seen that the energy required to generate a Vy;-Fe pair as
neighbors in Ni is larger than that for the Fe-Fe impurity
cluster, but less than that for a divacancy. This is reason-
able since Fe impurities will recover part of the interme-

TABLE IV. Calculated formation energies of various defect
structures (eV).

Bulk Ni
Single vacancy V 1.50
Divacancy V-V 2.89
Vacancy-Fe pair V-Fe 2.28
2 Fe atoms Fe-Fe 1.51
Bulk Fe
Single vacancy | 4 2.04
Divacancy 4.22
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tallic binding energy. The relaxation of the atoms around
the Ni vacancy site, Aa /a <0.1, is smaller than that pre-
dicted in pure bulk iron. This phenomenon is surely due
to the difference of the crystal structure of the two bulk
metals. The bcc structure is much more open than the
fcc structure and it is thus more flexible to relax around
the vacancy. There is no visible deformation around Fe
site(s) when it (they) replace Ni atoms in the fcc struc-
ture.

3. Fe overlayers, sandwiches, and ordered alloys

(a) Overlayers. Another aspect of our simulation ex-
periments on the Fe-Ni alloys is the investigation of a
monolayer iron film on the three low-index nickel (hk/)
surfaces (100), (110), and (111). The unit box in our simu-
lation contains 992 atoms. The top surface is covered by
32 Fe atoms which are initially located at the nickel sites
while the bottom surface of the thin film still consists of
nickel atoms. The temperature is kept at 300 K and the
external pressure is zero during the simulations. We ob-
serve that Fe atoms form monolayer films on both
Ni(100) and (110) surfaces and these films are commensu-
rate with the substrates. However, the Fe atoms do not
form a stable film on the Ni(111) surface at all but rather
cluster together (see Figs. 6 and 7). The presence of the
surface Fe atoms also influences the first and second nick-
el layers; Fig. 8 shows the resulting relaxation on the
three surfaces. The asymmetric patterns of the interlayer
spacing reflect the significant difference between pure-
nickel- and iron-covered surfaces. For each case the sur-
face structures rearrange themselves to lower the total
Gibbsian energy, and in order to understand these results
better we analyze the different contributions to the total
energy and illustrate the results in Table V. The first
column gives the Fe-Fe interaction on the surface layer.
It is clear that the Fe forms (100) and (110) surfaces with
Fe-Fe negative pairwise energies of —8.5 and —10.4 eV,
respectively, and that relaxation stabilizes the Fe-Fe in-
teraction energies further. The reason for the clustering
of Fe atoms on the (111) surface is now quite evident
since the unrelaxed surface has a very high positive value
of Fe-Fe potential energy. This part of the energy de-
creases from +6.2 to —27.2 eV as a result of the surface
atom rearrangement. The other columns include the
embedding energies of two elements and different layers,
and the strength of the interactions between different lay-
ers (note that the data given in the table refer to the total
energy, not energy per atoms). The embedding energy
F(p) in (111) planes regains part of the energy due to the
increase in local charge density, but the total Gibbsian
energy still decreases with respect to the unrelaxed lat-
tice. For all three types of planes the embedding energies
of the different nickel layers show a slight oscillation near
the surface. The interlayer spacing for the first few layers
and the center of the film have been given in Table III for
comparison to the pure-nickel surfaces.

The influence of four- and eight-Fe-atom coverage on
the nickel (100) surface (corresponding to surface cover-
ages + and 1) was studied by embedding Fe atoms initial-
ly at the nickel lattice sites. Their equilibrium structures
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on the surface were examined. We conclude that the Fe
atoms are stable in the nickel lattice sites on the (100)
plane. The surface energies are increased by 11% and
26% as shown in Table VI. In general, the presence of
Fe increases the surface energy, destabilizing the surface
and causing slight contraction of the lattice. This effect
scales uniformly with the Fe concentration in the alloys.
(b) Sandwiches and ordered alloys. The atom distribu-
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tion of an Fe monolayer within the bulk nickel (a
sandwich) indicates a good commensuration on the two
sides of the Fe layer. The energy cost of inserting the Fe
monolayer is estimated by comparing the total-energy
difference between the two systems. The concentration of
the alloy was chosen as Fe:Ni=32:224. In Table VI we
give the data on the lattice constants and “cohesive ener-
gies” of the above alloys.

"Fe(32)-Ni(32)-Ni(32)

(100)

Fe(32)-Ni(32)-Ni(32)  (110)

(c) Fe(32)-Ni(32)-Ni(32)

(111)

FIG. 7. Side view of Fe-covered Ni surfaces, Fe and two Ni layers are drawn. Fe forms a monomolecular film which is commensu-
rate with the substrate in (a) [100] and (b) [110], but not in (c) [111] directions.
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TABLE V. EAM energy analysis of Fe-monolayer covered Ni surfaces, obtained, layer energies in
eV. The asterisk denotes an unrelaxed surface model.

By layer-by-layer summed pair interactions: 3,;¢;; (atom in i,j layer)

b Fe Ni(1) Ni(2) Ni(3) Ni(4)

—8.5 38.1 —3.6 0.2 0.0 Fe on Ni (100)
Fe —10.4 43.5 6.7 20 0.2 Fe on Ni (110)
—27.2 24.6 —1.6 0.0 0.0 Fe on Ni (111)

352 73.8 0.6 0.0

Ni(1) 19.0 72.5 19.0 0.1

53.0 52.2 0.1 0.0

35.2 68.9 0.5

Ni(2) 19.0 70.3 17.2

53.5 51.7 0.1

35.2 69.2

Ni(3) 19.0 69.4

53.5 520

35.2

Ni(4) 18.8

53.4

'3y Fe Ni(1) Ni(2) Ni(3) Ni(4)

—6.5 46.0 —3.6 —0.2 0.0

Fe —10.2 47.8 8.5 2.0 0.3

6.2 30.2 —0.2 0.1 0.0

35.2 73.8 0.6 0.0

Ni(D) 18.9 72.4 19.0 0.1

53.4 55.4 0.1 0.0

35.2 68.9 0.5

Ni(2) 18.9 72.4 19.0

i 53.4 55.5 0.1

35.2 69.2

Ni(3) 18.9 72.4

534 55.4

35.2

Ni(4) 18.9

’ 53.4

Summed pairwise interactions between different atom types (eV)

(hkl) surface 2¢Fe-x=c 2¢Fe-Ni 2¢Ni-Ni

(100) —8.5 34.7 3084.5
(100)* —6.5 42.2 3232.2
(110) —10.4 52.7 3067.0
(110)* —10.2 58.6 3194.4
(111) —27.2 23.0 3110.6
(111)* 6.2 30.1 32123
Embedding energy F(p) for each layer (eV)
Layer
(hkl) surface 1 2 3 4 5
(100) —47.1 —266.2 —250.4 —246.9 —247.1
(100)* —47.1 —272.1 —253.8 —252.3 —252.3
(110) —37.7 —255.8 —255.2 —248.5 —246.6
(110)* —-37.2 —258.3 —258.8 —252.9 -—252.3
(111) —34.8 —254.9 —247.5 —247.4 —247.5

(11n)* —357.9 —270.7 —251.6 —250.1 —250.1
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In order to test the validity of the presently obtained
potential function further, we studied a 50%-50% Fe-Ni

bulk alloy in which Fe and Ni atoms are initially random-

ly distributed in the crystal. Both fcc and bcce structures
were tested and the results indicated that fcc is more
stable than bcc, with cohesive energy 4.21 and 4.19 eV,
respectively (Table VII). For a Fej,-Niy¢ alloy the
cohesive energy for fcc structure is 4.20 eV. A Fe, 5s-Nij 5
layer structure was also simulated by our model potential
in a fcc crystal array, formed by alternating Fe and Ni
slabs. We find that Fe atoms are quite stable in fcc sites,
with a cohesive energy and bond length of 4.19 eV and
6.78 a.u., respectively.

IV. CONCLUSION AND DISCUSSION

From the results presented here, we conclude that
methods of construction of the potential-energy function

TABLE VI. EAM calculated surface and interface energies
for various Ni,_ Fe, interfaces. T'=300 K.

Ni, _,Fe, E, (ergs/cm?) a, (a.u.)
Nigg, (100) 1488 6.67
NiggsFe, (100) 1654 6.65
Nigg4Fey (100) 1869 6.65
Ni960F632 (100) 5070 6.67
Ni224FC32 (100)? 4231 6.70
NigéoFe_u (110) 6.67
Ni960Fe32 (1 1 1) 6.67

2Fe monolayer sandwiched in bulk Ni.
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TABLE VII. Calculated lattice constant and cohesive ener-
gies of Fe-Ni alloys (7 =300 K).

Fe,Ni,_, a, (a.u.) Eg, (eV)
Felngilzga (fce) 6.72 4.20
Fe,gNijos* (bece) 6.67 4.18
Fe32Ni224 6.70 4.29
Felngilzg 6.78 4.19
Fe10,Ni s 6.71 420
Fe,Nips, 6.68 4.39
FezNi254 6.68 4.39
Fe,-VNips, 6.68 439
V-VNi,ss 6.68 4.39
V-VFeys 5.43 420

#Ni-Fe 50:50 alloy with substitutional disorder in sandwiches.

described in this paper provide a viable way to apply ab
initio methods to correct and extend empirical models.
Our potential functions produce a number of physical
properties which agree with experimental values to a
reasonable accuracy, when applied to various iron, nick-
el, and alloy systems. It is seen that this method does not
work as well on the Fe surface as on the Ni surfaces and
Fe-covered Ni surfaces, because of the relatively open
structure of bcc metals. The failure on Fe surfaces may
come from several sources:

(i) the well-known EAM tendency to produce better re-
sults for the more closely packed fcc structure;

(ii) the non-negligible relaxation of atomic charge den-
sity near the surface;

(iii) large MD cells are needed to reduce thermal
effects.

We believe that, in principle, we can improve the EAM
used in the present study by improving the charge-
density evaluation used as an input to the embedding
function. For example, instead of using p(r,) we can
average p(r) over a small region around each reference
point, and we can optimize the effective atomic
configurations. Concerning the second problem dis-
cussed above, we can parametrize the charge density as a
function of distance from the surface. The limitation on
cell size is straightforward, but the solution depends
greatly on available computer facilities. Fortunately,
modern supercomputers are well qualified to simulate a
system of 10* particles and time intervals orders of mag-
nitude greater than were treated here. Although our in-
vestigation does not yet address problems concerning
macroscopic dislocations, grain boundaries, and certain
ordered alloy structures, we believe that results obtained
justify further application of our model potentials to such
problems.

ACKNOWLEDGMENTS

This work was supported by the U.S. National Science
Foundation through the Northwestern University Ma-
terials Center under Grant No. DMR-85-20280. A part
of the calculations was carried out at the National Center
for Supercomputing Applications (Urbana, IL).



39 FIRST-PRINCIPLES POTENTIALS . . . OF Fe-Ni ALLOYS

'W. Rosehain, in An Introduction to Physical Metallurgy (Const-
able, London, 1914); The Sorby Centennial Symposium on the
History of Metallurgy, edited by C. S. Smith (Gordon and
Breach/AIME, New York, 1965); C. S. Smith, in Metallurgy
as a Human Experience (ASM, Metals Park, OH/AIME,
New York, 1977); Dictionary of Scientific Biography, edited
by C. C. Cillispie (Scribner’s, New York, 1970-1980).

20. G. Pettifor, in Physical Metallurgy, edited by R. W. Cahn
and P. Haasen (North-Holland, Amsterdam, 1983), Chap. 3;
H. Biloni, ibid., Chap 9; H. J. Wollenberger, ibid., Chap. 17.

3G. D. Mahan, Many-Particle Physics (Plenum, New York,
1981).

4P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964); W.
Kohn and L. J. Sham, ibid. 140, A1133 (1965).

SComputer Simulation in Physical Metallurgy, edited by Gianni
Jacucci (Reidel, Dordrecht, 1986).

6B. Delly, D. E. Ellis, and A. J. Freeman, Phys. Rev. B 27, 2132
(1983); G. F. Holland, D. E. Ellis, and W. C. Trogler, J.
Chem. Phys. 83, 3507 (1985).

73. N. Murrell et al., Molecular Potential-Energy Functions (Wi-
ley, Chichester, 1984); M. J. Stott and E. Zaremba, Phys. Rev.
B 22, 1564 (1980).

8J. K. Norskgv and N. D. Lang, Phys. Rev. B 21, 2131 (1980);
M. J. Stott and E. Zaremba, Solid State Commun. 32, 1297
(1979).

9M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984).

105, M. Foiles, Phys. Rev. B 32, 3409 (1985); ibid. 32, 7685
(1985).

11S. M. Foiles, M. L. Baskes, and M. S. Daw, Phys. Rev. B 33,
7983 (1986).

12M., S. Daw and S. M. Foiles, J. Mater. Res. 2, 5 (1987).

12 483

I3F, Voter and S. P. Chen, in Materials Research Society Sympo-
sium Proceedings (MRS, Boston, 1987), Vol. 82, p. 174.

143, R. Smith, J. Ferrante, and J. H. Rose, Phys. Rev. B 25, 1419
(1982); 28, 1835 (1983); 29, 2963 (1984); D. Spanjaard and M.
C. Desjonqueres, ibid. 30, 4822 (1984).

I5R. J. Harrison, A. F. Voter, and S.-P. Chen (unpublished).

16H.-P. Cheng and D. E. Ellis (unpublished).

17F. F. Abraham, S. W. Koch, and W. E. Rudge, Phys. Rev.
Lett. 49, 1830 (1980); D. J. Evans and G. P. Morris, Chem.
Phys. 77, 63 (1983); F. F. Abraham, W. E. Rudge, D. J. Auer-
bach, and S. W. Koch, Phys. Rev. Lett. 52, 255 (1984); S.
Nosé, Mol. Phys. 52, 255 (1984); W. G. Hoover, Phys. Rev. A
31, 1695 (1985).

18H..P. Cheng, Ph.D. thesis, Northwestern University, Evan-
ston, IL, 1988.

19C. C. Matthai, Philos. Mag. A 52, 305 (1985).

20See Refs. 9 and 11.

21p, L. Adams and L. E. Peterson, and C. S. Sorensen, J. Phys.
C 18, 1753 (1985).

22W. R. Blakely and G. A. Samorjai, Surf. Sci. 62, 267 (1977).

23W. Kohn and P. Vashishta, in Theory of the Inhomogeneous
Electron Gas (Plenum, New York, 1983); W. Kohn and L. J.
Sham, Phys. Rev. 140, A1133 (1965); D. E. Ellis and G. S.
Painter, Phys. Rev. B 2, 2887 (1970); T. Parameswaran and D.
E. Ellis, J. Chem. Phys. 58, 2088 (1973); E. J. Baerends, D. E.
Ellis, and P. Ros, Chem. Phys. 2, 41 (1975).

24physical Metallurgy, edited by R. W. Cahn and P. Haasen
(North-Holland, Amsterdam, 1983), Chap. 17.

251.. De Schepper, G. Kauyt, L. M. Stals, and P. Moser, Phys.
Rev. B 27, 5257 (1983).



