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Comparison of nonlinear optical responses of periodic and quasiperiodic superlattices
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For one-dimensional superlattices consisting of unit cells with two films, one of which exhibits
nonlinear response to the electromagnetic field, the transmissivity as a function of incident intensity
and frequency is calculated for periodic and quasiperiodic structures. It is found that gap-soliton-
mediated resonances for periodic structures arise from the Fabry-Perot oscillations in the transmis-
sion band. Solitons in the stop gap are not found in the quasiperiodic case.

I. INTRODUCTION

The study of transport in and transmission through
one-dimensional superlattices with quasiperiodic struc-
ture has aroused significant interest in the last several
years, ' predating the discovery of quasicrystals. Mer-
lin et aI. synthesized the first one-dimensional semicon-
ductor quasiperiodic structure. The theoretical work of
Kohmoto et aI. and Ostlund et al. 1aid the ground
work for experimental studies of quasiperiodic potentials
involving phonon dispersion, classical wave transmis-
sion, and conductance Auctuations. Among a variety of
topics, these studies center on the transitions from ex-
tended to critical to localized states as the structure
varies from periodic to quasiperiodic to random. To
represent the quasiperiodic system, it is customary to use
a Fibonacci-sequence superlattice with a "Bravais" lat-
tice constant having two values with a ratio equal to the
golden mean, each component distinguished by a
different potential. On the theoretical side, a plethora of
techniques are brought to bear on this problem with the
central goal to determine a band structure for the system.
One arrives at a Cantor set of allowed energy levels and
eigenfunctions having self-similar representations. A11 of
these studies explore wave-propagation characteristics,
within a linear theory.

Another topic of interest in the study of transmission
in superlattices has been to include the effect of nonlinear
material layers whose response characteristics depend on
the amplitude of the incoming beam. " In this case the
structure is periodic and the transmission now varies
with the intensity of the beam. In a specific case, alter-
nating layers of dielectric (linear) and antiferromagnetic
(nonlinear) materials have been modeled to study

transmission phenomena. ' '" Among the interesting
results, one finds multistable solutions, the breakdown of
reciprocity (i.e., transmission from left to right is different
from right to left), gap-soliton-mediated resonances, and
regions of chaotic transmission, when viewed as a func-
tion of the beam intensity.

The purpose of this paper is to describe the combined
effect of nonlinearity and quasiperiodicity on the
transmission properties of superlattices. Our understand-
ing is that quasiperiodic superlattices can be fabricated
with little difhculty. A more serious concern is in gen-
erating systems which are suf5ciently lossless for some of
the effects described here to be observed. The paper is
structured as follows. In Sec. II a brief description of the
computational technique used for nonlinear systems wi}1
be given. Section III will describe the quasiperiodic su-
perlattice and make contact with previous work. Section
IV will compare the features of the quasiperiodic system
with the periodic system. And in Sec. V a discussion of
the distinctions between the two layers will be given.

II. COMPUTATIONAL TECHNIQUE

In the present paper we will limit ourselves to the dis-
cussion of a plane-polarized electromagnet wave propaga-
ting normal to the'interfaces of the superlattice; the ex-
tension to other transport phenomena follows similar
construction, with the main conclusions being unaltered.
The nonlinear material is modeled by an antiferromagnet,
assumed to be an easy-magnetization axis, two-sublattice
material with an easy axis normal to the interfaces. A
multilayer dielectric structure is easily treated within the
same framework. If no external field is present, then the
plane-polarized wave propagates through the material
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y=x, x=x',
with boundary conditions at interfaces given by

1 1(x' —x)= (x —y) .
E+

The following definitions have been employed:

x = [h(z„)/h; i Ti]

(2.1)

(2.2)

(2.3)

where h, is the incident magnetic field and h(z„) the field
at position z„. Here x' and y correspond to the
equivalent formula for h (z„ i) and h(z„+ i), respectively.
The quantity F is given by

E=E—a, —a, ih, i'
i
Ti'x, (2.4)

where

E= —2+E (2.5)

and K =kog with g the width of the interval in the basic
spatial grid and ko the wave vector in the vacuum. Final-
ly,

ao=K [1—(1+4vry)(sile)] (2.6)

and

a, =K 4myeiA, /e, (2.7)

where ez is the dielectric function of a layer in the plane
of the interfaces which is perpendicular to the easy axis
of the antiferromagnet, e is the dielectric function of the
vacuum, y is the frequency-dependent susceptibility of
the antiferromagnet, and A, describes the lowest order of
nonlinearity. Both of these parameters are functions of
frequency and are determined by the antiferromagnetic
material which is used. "

Each bilayer in our model superlattice consists of one
dielectric film ZnFz, a nonmagnetic dielectric, and one
antiferromagnetic film of FeFz. The parameters
representative of FeFz are e&=4, the anisotropy field is
200 kG, and the exchange field is S40 kG. We model
ZnF~ as the dielectric material for which a~=8. ' As a
result of the nearly equal lattice constants of these ma-
terials, bilayers show little deformation at the inter-
faces. '

The transmission (as well as the magnetic field as a
function of position) is found by starting at the output
end with initial conditions x =y =1 and iterating to the
incident side (in the linear region more efficient matrix
techniques can be used to replace the iterating scheme).
The resultant value of the incident intensity is then deter-
mined by continuing the procedure into the vacuum and
extracting the reflected intensity. The ratio of the

with no rotation of the plane of polarization. ' As was
shown in Refs. 9 and 11 when the energy per unit time
Aowing down the structure is independent of z, the direc-
tion parallel to the normal to the interface, then the
discretization of the resulting nonlinear Schrodinger
equation prescribes an iterated map given by

' 1/2
g2

x'=y+F x+2 xy ——sin (K)
g2

transmitted intensity (which is equal to 1 from the initial
conditions) divided by the incident intensity is the
transmission coefficient ~T~ . Note, however, that the
nonlinearity arising from F is essentially a. product of the

~ h; ~
and

~
T ~; therefore, to obtain

~
T

~
versus the

~ h; ~

one first obtains )T~ versus ho=h;)T(, which now serves
as an input parameter. This relationship has a single
valued nature. Knowing T and ho allows the calculation
of h; =

ho�/~

T
~

with the rescaling to the variable h; left to
the reader (see Ref. 11).

For the sake of comparison with our results for the
quasiperiodic case, a 30 plot of transmission versus ho
and der (measured from the antiferromagnetic resonance
frequency, in G), the periodic case is presented in Fig. 1.
Along the ho=0 axis, the usual stop gaps and transmis-
sion bands are seen. As ho increases, the location of the
bands moves to higher frequencies. Therefore, for con-
stant frequency, a scan of ho will traverse transmission
bands and stop gaps. This feature accounts for the peaks
and valleys seen in those constant den curves. The varia-
tions become increasingly dense as ho gets large. Note
also the relative fiatness of the structure (for constant co)

for small h 0; rescaling the h 0 axis by ~
T

~
in this region

will not lead to multistability. A threshold exists before
the nonlinear effects become significant. Constant
den=150 G curves are given in Ref. 11 and represent
cross sections of Fig. 1 for the appropriate number of lay-
ers.

III. QUASIPERIODIC LATTICE

The quasiperiodic lattice with which we will deal is one
constructed from a "Fibonacci sequence" of layers. The
(I+ 1)th-generation Fibonacci structure is formed by ap-
pending the (I —1)th-generation Fibonacci structure to
the Ith. This concatenating operation can be summarized
through the recursive rule S(l+1)=S(l)~S(/ —1) for
l ~ 2, with initial conditions S(1)= A and S(2)= AB, the
next few Fibonacci structures are S(3)=ABA,
S(4)= ABA AB, and S(5)= ABA ABABA. In the
present case, A = a dielectric layer with a thickness of
169.9 pm and B= an antiferromagnetic layer with a
thickness of 105 pm [the ratio of the thickness being ap-
proximately the golden mean, —,'(1+&5)]. The transmis-
sion side is the origin of the sequence. In Fig. 2 a corn-
parison is made among several superlattices in the linear
regime (ho «1): 2(a) a periodic alternating superlattice
( ABABAB. . . ) with equal layer thicknesses; 2(b) a
periodic alternating superlattice with alternating layers
having thicknesses of approximately the golden mean;
and 2(c) a Fibonacci superlattice. The eff'ect of unequal
thicknesses tends to narrow the transmission bands and
shift them to slightly lower frequencies. For the Fibonac-
ci superlattice, the lower end of each of the transmission
bands is split off from the rest of the band, creating some
spike resonances in what was previously a stop-gap re-
gion. The oscillations in the transmission regime arise
from the finite size of the superlattice, in this case 21 lay-
ers. As evident from Fig. 2(c), incremental changes in
frequency can cause strong Auctuations in transmission,
as previously noted in Ref. 7. In the linear case, substan-
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small oscillations of the potential or low-incident intensi-
ties. ' ' Neither of these approximations are appropriate
in the present case, and therefore, it is not surprising that
the conclusions vary.

In the case of a Fibonacci sequenced superlattice, no
evidence of solitons was found. The envelopes were irreg-
ular and the fast oscillations rejected the Fibonacci se-
quence in that in each dielectric layer a node in the mag-
netic field occurred. Since these spacings are not period-
ic, neither are the fast oscillations. It is also important to

note that the resonances which arise in the gap region are
much narrower when viewed as a function of intensity at
constant frequency. These resonances appear to be of
difFerent character from the soliton resonances.

V. DISCUSSION

The main focus of this paper has been to compare the
nonlinear effects of optical transmission in periodic and
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= 1.618d(FeF2) [d(FeFz) =21 ptn] for 21 layers ordered according to the Fibonacci construction.
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quasiperiodic superlattices. In general, the lattices share
a number of features in the linear regimes which have
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but in general have much less in common. As we have
seen in the periodic structure, gap-soliton-mediated reso-
nances evolve from Fabry-Perot resonances in the
transmission band. In the quasiperiodic structure, very
sharp resonances arise in the gap but do not appear con-
nected to the transmission bands. The resonances appear
as islands in frequency-incident field space. These reso-
nances are very sharp and do not, in general, yield the
near-perfect transmission seen in the periodic case. The
magnetic field intensity in the periodic case shows a well-
defined envelope of fast periodic spatial oscillations. No
such envelope is seen in the quasiperiodic case. While it
is possible to make some analytic progress in understand-

ing the soliton structure in the periodic case, at present
no aids such as Bloch waves (the wave functions are more
localized critical states) give insight to the quasiperiodic
nonlinear system. The origin of gap resonances in the
nonlinear quasiperiodic case remains an open question.

As mentioned in Ref. 11, our model of the nonlinear
antiferromagnetic material is only approximate. We have
assumed that the magnetization generated by the elec-
tromagnetic field may be written in the form

m =go"+go '~h
~

h

with higher-order terms ignored.
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