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Quantum dynamics of a pulsed spin system: Long-time behavior of semiclassical wave functions
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Semiclassical wave-function patterns in a pulsed spin system are examined in the post
crossover-time regime. They show ergodic and nonergodic features possessed by the underlying
classical dynamics. Local dimensions (i.e., singularities) of their probability density functions
maintain enhanced Auctuations when the pulse strength lies in a transitional region leading to glo-
bal chaos.

The quantum mechanics of classically chaotic systems
constitutes a very active field of contemporary physics. '
Considering quantum dynamics, the coherent structure of
wave functions is greatly affected by quantum interfer-
ence, leading to the suppression of anomalous diA'usion

features characteristic of chaos and eventually to the van-
ishing of Kolmogorov-Sinai entropy and of other charac-
teristic exponents. If we examine a semiclassical regime,
however, new phenomena can appear, not present in either
the classical or quantum limit. In particular, semiclassi-
cal wave-function patterns may exhibit several distinctive
behaviors in a recurrent time regime beyond the crossover
time t, at which the classical and quantum correspon-
dence breaks down. [In the case of hyperbolic fixed points
of the corresponding classical motion, t, —(Lyapunov
exponent) 'i&in(h ') (see, e.g., Berry and Balazs. )]
But these behaviors have not so far been examined sys-
tematically; most previous studies on the dynamics of
wave functions have concentrated on the time regime
t & t, . For a study of longtime and semiclassical behav-
iors, quantum-large spin systems are especially advanta-
geous because the finite dimensionality of their Hilbert
space requires no artificial truncation of energy ma-
trices. ' Further, in the experiment of spin echoes in elec-
tron spin resonance, for instance, an assembly of spin- 2

systems behaves coherently and eA'ectively constitutes a
single large quantum spin.

In this Rapid Communication, we examine the long-
time behavior of wave functions in a periodically pulsed
large quantum-spin system whose classical limit exhibits a
transition from predominantly regular orbits to global
chaos as the pulse strength is increased. The eAect of
dissipation is omitted in the present treatment. We shall
attempt to characterize wave-function patterns in terms of
the singularity spectra f(a), which has proven very use-
ful recently in quantifying multifractal aspects of chaotic
systems.

The quantum dynamics for our spin system with

S-(S,S,S') is described by ih+ =H%', where
H-H +op„- V8(t —2trn) with Ho=A(S') and
V —EBS . A ( & 0) and pB( & 0) represent a planar
anisotropy and pulse strength, respectively. [Here we
have chosen a convenient model Hamiltonian. One may
make other choices, e.g., Ho =AS' and V = —pBS
&icos(cot), without changing the qualitative features of
the results below. ] We solve the above Schrodinger equa-
tion by rewriting it immediately in a matrix form; a set of
eigenstates of S' is chosen as basis kets. Then, the wave
function + just after the nth pulse is given by

with

+(2trn+0) = g C (2ttn+0)
~
m),

m —S

C(2trn+0) =+exp( —2trinE, /5) [Xt C,(+0)]X,.

Here [E,],[X ] are quasienergies and quasieigenfunctions
for the one-period propagator represented by the unitary
matrix

U-exp[ —(i/l'i) V]exp[ —(i/h)2ttHo] .

V and Ho are matrices for V and Ho, respectively. The
probability density function is given in terms of
SU(2S+1) coherent state representations as

P. (0,y) = [(2S+1)/4ttl
~
(8,y ( 2ttn+0)

~

',
where the first factor on the right-hand side is due to the
normalization over the surface of a unit radius sphere. In
the following, A.=1.0 sets the energy unit. Further, we

employ S=128 and choose ft =I/JS(S+ I ) so that the
observable spin magnitude maintains the scaled value for
the classical spin vector, i.e. , S S(S+1)6 =1.

In Fig. 1, very early stages (n =1,2, 3) of the temporal
evolution of initially (n=0) localized wave packets are
shown. For a weak pulse (pB:pB/A =0.01)P„(8,&)—

~9 12 422 Oc 1989 The American Physical Society



Q NTUM DYNAMICS OF A pULSED SpININ SYSTE,M. 12 423

v" v" ~ ~

(bi

I I I I I 1 I I

(b)

II
7

I
~III

II

FIG. 1. ContourFIG. . ontour map for very early stages of P„(()ages o „(),&): (o) Initial (n 0) wave acket a-
ion or p8 1.0. From the left, n 1, 2, and 3.

pac e; (a)-(c) time evolution for p8 0.01;

shows a simple unidirectional diffusion f F'
c)] corresponding to regular behavior in classical

dynamics. [Note that investigation of classical dynamics
in icates the presence of two characteristic fields 8

p 2=0.5, where the fraction of chaotic trajec-
tories increases strongly and the 1 t K 1'

rno - oser (KAM) torus disappears, respectively. ]
However, for a strong pulse (p8 1.0) remarkably isotro-
pic and irregular diffusions begin after the period of "clas-
sical" stretching- and folding-type d'ff . F'
in icates r, 0(1) for both the p8 0.01 and 1.0 cases.
The above results resemble a quantized version of abstract

unctions have been reported to exhibit highly irregular
o ing. so, certainpatterns after stretching and foldin .7 Al

eigenstates were found with anomalo 1 1'ous oca ization

sentati
eng s. Because of the difference of wave-f twave- unction repre-

sen a ions between us and Ref. 7 howev, 't d'ffiever, i is iNcult to
make quantitative comparisons.

We now proceed to examine P„(8 in large n regions
see Figs. 2). While the exact classical-

quantum correspondence has been lost in thisos in t is timeregion,
g res c early maintain some images of the underly-

ing classical dynamics: Figures 2(a)-2( ), ( '—

p . 1, of partial egordicity at p8 0.2, and of com-
plete ergodiclty at p8-1.0, respectlvel .8 I f

egu ar structures with large amplitudes keep a

quasiperiodic oscillation for p8 0.01 and fine structures
a amplitudes continue to occupy the lobal

space for p8 1.0. For 8or p8 0.2, fine structures continue
o occupy a limited portion of phase space.

We now try to quantify P„(8,&) in terms of m lt fu i rac-
, (() is already normalized to unity in the

u ari y spectra a8-P plane, the calculation of the singul 't

aig forward: for a linear scale l w
square l x/ mesh

e, we consi er the
mesh A; (l ) around the position (8,&) and cal-

Summin Pq (l&g, ; ) over all meshes, we obtain th t't'
function I l .

e partition

examined b chan
q, l . The scaling property of I ( l) hq, ist en

y c anging l according to l Io x 2
(m 0, 1,2, . . . ) with l 0(S ) Th
ponents i t

e scaling ex-

be noted how
p s rq thus obtairied are used to find f( ) I ha. ts ould

, however, that our numerical data P„(8, ) are
reliable only to the order of 10 . Usin

an obtain wide scaling regions for I"( l) '
h

u i is difficult to explore sufficiently wide scalin
regions in the case & 0. So

y wi e sca ing

wi e limited to the
q . o our analyses of f(a) below

q 0 case. This restriction does not
prevent us from studying the general tendencies of fiuc-
tuations of singularities or lo l d' ' . '

re
p

e n that Auctuations of a for p8=0.01
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FIG. 2. Time evolution of three-dimensional profiles of P„(g,p) for n »I: (a)-(c) pB 0.01; (a')-(c') pB 0.2; (a")-(c")
p8 1.0. From the left, n 70, 90, and 110.

and 1.0 fall into a narrow range and those for p8 0.2
extend over a much wider range. The large fluctuation in
the latter signifies the inhomogeneous distribution of mea-
sure I'„(H, rtp) in Fig. 2(b'), which reflects the coexistence
of classical KAM orbits and localized chaos in a transi-
tional region leading to global chaos. This large fluctua-
tion is reminiscent of the critical Auctuations at an equi-
librium phase transition. The relatively small fluctuation
for pB 1.0 signifies the uniform distribution of measures
in Figs. 2(b"). (Note that the above enhanced fluctua-
tions will not be observed in quantized K or C system
whose classical versions are homogeneously unstable and
have neither KAM torii nor a transitional region. )

Using our data for f(a) with q ~ 0, we now estimate

the eAective range of Auctuations a*;„~a ~ a*,„:a*,„
and a;„denote the value at which f(a) takes the max-
imum (i.e., fractal dimension) and the value at which
f(a) takes —, times its maximum (an arbitrary choice).
For pB 0.2 at n 90, for example, a,„1.98~0.02
and a;„1.35+'0.02. (The error bars apply for
n & 130.) In Fig. 4, the time dependence of the effective
ranges thus introduced are shown for the interval

2.0-

1.5-
I

I
I
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1.0 I I I I I I

30 50 70 90 110 130

0.0

FIG. 3. f(c) in q~ 0 regime at n 90. Squares, circles, and
triangles correspond to p8 0.01, 0.2, and 1.0, respectively.

FIG. 4. Time evolution of elfective range of f(a) (see text).
Dotted, solid, and broken lines correspond to p8 0.01, 0.2, and
1.0, respectively. Symbols (a,O, &) in each range denote the
fractal dimensions, i.e., peak values of f(a). [The range in the
case of p8 0.01 at n 110 is suppressed because of an acciden-
tal narrowing of scaling regions which makes it di%cult to ob-
tain reliable f(a) values. ]
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30~ n ~ 130 steps of 20. The features in Fig. 3, which
have now been quantified, are found to persist throughout
the temporal evolution. Careful examinations indicate:
(1) the effective range of a shows distinctive temporal
variations for pB 0.2; (2) on the other hand, it remains
almost unchanged for pB 1.0 (despite the absence of
dissipation in the present system), which reflects a well-
organized ergodicity in this case.

The mixing and ergodic features of classical chaos have
helped to establish relationships with the formalism of
equilibrium statistical mechanics. 9 In the field of quan-
tum chaos, most of the literal definitions of classical chaos
lose their significance. Nonetheless, we still find compli-
cated behaviors in the quantum mechanical treatment of
chaotic systems, as shown in this study. We believe that

the characterization given here will be a vehicle for more
profound understanding of these complexities.

In conclusion, despite the complete absence of classical
and quantum correspondence, the longtime behavior of
semiclassical wave functions maintains the ergodic and
nonergodic features possessed by the underlying classical
dynamics. The enhance fluctuation of their local dimen-
sions in a transitional region leading to global chaos per-
sists throughout the time evolution, which is reminiscent
of critical Auctuations at an equilibrium phase transition.

We acknowledge valuable discussions with M.
Feingold, P. Gaspard, A. Libchaber, S. A. Rice, and N.
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