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The magnetotransport due to edge states in a two-dimensional (2D) system smaller than the ap-
propriate phase coherence length is considered. For a 2D "quantum dot" driven by two narrower
leads and a Fermi energy in the edge-states regime, we find Aharonov-Bohm —type oscillations in
both the longitudinal and the Hall conductances. The latter oscillations are superimposed on the
quantized value (e'/h) for single-channel leads. The oscillations survive a substantial amount of
disorder. Next, the strip geometry is examined and conditions for Hall quantization are formulated.
These conditions are far less restrictive than previously published ones.

I. INTRODUCTION

Surface states in strong magnetic fields' and the
currents associated with them are known to have
significant effects on both thermodynamic [e.g. , the Lan-
dau diamagnetism and the de Haas —van Alphen (dHvA)
oscillations] and transport [including the Shubnikov —de
Haas and the quantum Hall (QHE) effects] properties. In
the semiclassical picture these states correspond to the
"whispering gallery" trajectories, grazing the sample's
boundary. In some geometries (e.g. , a disk) this results in
an effective ring topology which may lead, in analogy
with experiments in superconducting and normal rings,
to an Aharonov-Bohm (AB) type of oscillations in singly
connected samples. In fact, such oscillations in the weak-
field limit and for extremely pure samples were predicted
by Bogachek and Gogadze (thermodynamic quantities)
and by Peschanskii and Sinolitskii (magnetoresistance).
They were later demonstrated in a series of beautiful ex-
periments in pure, single-crystal bismuth cylinders by
Brandt et al. Recently, Sivan and Imry' have shown
such oscillations in the magnetization of a finite disk,
shorter than the phase coherence length in a strong-field
limit (QHE regime). In particular it was demonstrated
that these oscillations survive a rather strong disorder
(comparable to fico, ) and that their period corresponds
indeed to approximately one flux quantum threading the
whole sample. The purpose of the present paper is to
deal with a similar AB type of oscillations in transport
phenomena and in particular in the extremely interesting
"quantized" Hall conductance. ' '

In Sec. II we present the model to be studied numeri-
cally (consisting of a 2D square fed by two ideal single-
channel leads connected to its vertices) and explain the
method employed in the calculations. Section III is de-
voted to the spectrum of an isolated "quantum dot" and
in particular to the edge states. A simplified "ring" mod-

el for the transport, predicting many of the numerical re-
sults, is presented in Sec. IV. The conductance is ob-
tained in a Landauer-type picture' while the Hall con-
ductance is calculated using a formula given by Entin-
Wohlman et al. ' The results of the numerical calcula-
tions, including disorder, are given in Sec. V for the lon-
gitudinal resistance and in Sec. VI for the Hall resistance.
A particularly interesting result is an AB oscillation su-
perimposed on the QHE. Finally, in Sec. VII we discuss
the Landauer multichannel strip model, suggested recent-
ly by Streda et al. ' Their sum rule is corrected, an in-
teresting asymmetry is pointed out, and conditions for
the QHE are formulated, including its general existence
in the case of single-channel edge states —in agreement
with the results in Sec. VI.

II. THE MODEL

The model considered (Fig. I) consists of a 2D square
of L XL=N sites, fed by two semi-infinite 1D perfect
leads. ' A tight-binding Hamiltonian with diagonal dis-
order (Anderson model) is assumed:

a=atE, ~i &&i~+ g V,, ~t &&j~,

where the c, are zero on the leads and distributed ran-
domly in an interval [ —W, W] on the square. The cou-
pling constants V, in the leads are V for nearest neigh-
bors and zero elsewhere. For a magnetic field pointing
out of the page, in the Landau gauge A = ( yB, O, O), —the
nearest-neighbor coupling constants in the square take
the form Vk = exp[2tri(x —xl, )ykgigo] (in all numeri-
cal results presented later, we set V=2 to guarantee
equal bandwidths in the leads and in the square). The
disorder is restricted to the square alone (excluding the
vertices). The effect of the magnetic field on the atomic
orbitals is neglected.
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FIG. 1. The tight-binding model studied numerically. A 2D
square of L XL sites, fed by two semi-infinite 1D perfect leads.
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Determination of the chemical potential on a given site
involves two scattering experiments, ' from the left-hand
side and the right-hand side. A scattering state on the
left-hand side (LHS) lead, for a particle impinging from
the LHS, is P„=exp(ikn)+r exp( —ikn), n =0,
—1, —2, . . . , where r is the reflection amplitude and k is
the longitudinal k vector satisfying the dispersion relation
E =2Vcos(kci) (ci being the lattice constant). A scatter-
ing state on the right-hand side (RHS) for a particle imp-
inging from the LHS is given by P„=t exp(ikn),
n =0, 1,2, . . . . Similarly, for a particle impinging from
the RHS, the scattering amplitudes on the LHS and RHS
are g'„=t' exp( —ikn) and it'„= exp( —ikn)+r'exp(ikn),
respectively. t, t ', r, and r ' are related by t = t ' and
t/r = —t*/r*. Substituting t and 1+r for the wave-
function amplitudes on the opposite corners, it is possible
to eliminate the 1D leads from the Hamiltonian and ob-
tain the following equation for the wave-function ampli-
tudes:

(H' E)%I=C, —

with H,
' =H, —(6, &5 &+5;"~5 &)V exp( —ika), H being

the Hamiltonian of an isolated square. C is different
for left and right scattering. For the former, C

&= Vexp(ika), Cz= VI „CI+&= —1, and C, =0 for
i&1,2,L+1. For the latter case, the nonvanishing ele-
ments are C& L, =Cz &

= —1 and C~ = V. The
transmission (t) and reflection (r) coefficients are then
given by 1t~ and it&, respectively. Similarly, t' and r' are
given by P& and QIv. Notice that the wave-function am-
plitudes in the different sites are not normalized.

III. SPECTRUM OF A "QUANTUM DOT"
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FICs. 2. The lowest 50 levels of a 10X10 tight-binding An-
derson model as functions of the flux through a unit cell, in
units of Po. The absolute value of the nearest-neighbor matrix
element is unity and W=O. OI. 3, B, C, and D correspond to
the different regimes (see text).

implies LH )L, where LH = &2n +1LH and LH= &fic leB is the magnetic length.

B. Bulk Landau levels

C. Magnetic barrier

For energies 1ower than the first Landau level, the den-
sity of states vanishes. Later on we show that if the Fer-
mi energy is set to that region, the transmittance of the
sample depicted in Fig. 1 is exponentially small.

The nth Landau level forms for LH smaller than L.
The semiclassical trajectories pertaining to these states
are limited to the bulk and do not intersect with the
boundaries. For not too strong magnetic fields, their en-
ergies are given in the effective-mass approximation (up
to small finite size modification) by M = h /2 V, fico,
=4rrVctplctpo, and E„=fico,(n+ —,'). At stronger mag-
netic fields, when LH is not much larger than a, this be-
havior changes dramatically and becomes very complicat-
ed."

The spectrum of an almost ordered ( W =0.01) isolated
10X10 square, in the tight-binding model is shown in
Fig. 2 as a function of Pleo (see also Ref. 17). The energy
is measured in units of V. The various zones, A, B, C,
and D, correspond to four different regimes.

A. Weak-field regime (Refs. 2 —4 and 7 —9)
The cyclotron radius is large compared with the linear

dimensions of the sample and the quantization is mainly
due to finite sample size. For the nth Landau level this

D. Edge states (Refs. 1—4 and 7—14)

This regime is the main subject of the present work.
Surface (or edge, in the 2D case discussed here) states
correspond to the quasiclassical "whispering gallery"
states, that is, eigenfunctions whose semiclassical tra-
jectories are confined to the vicinity of the edges. For
n —1 these states appear for LH ~ L and consist of a frac-
tion LH/L of the total number of states. Their energies
reside in the gaps between Landau levels and the average
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energy spacing between consecutive edge stat hge s ates, in the
dau level, is of the order of Ace, L~/L. The
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cial geometry in Fig. 1 and b th d'.

igs. 3 a) and 3(b)].
y e tsorder [compare

)~. Since these states exist near the
edges, small chanchanges in the magnetic flux aftect them like
an Aharonov-Bohm flux thro h
approximately periodic oscillations of both thermo-

o t e magnetoconductanee oscillations demonstrat d
'

the next sesection and the oscillations in the Hall conduc-
tance discussed in Sec. V.

Edge states (and hence the AB oscillations considered)
survive a substantial amount of d'

cu, in our model' ). This robustness is due to the
separation in both space and energy betwe theen em and

u andau levels. It follows also fr th
'

1

sica, strong-field approximation, where the guiding
center travels along equipotential lines

, i a es bulk impurities with energies of the order of
A~, to create a percolating equipotential line connecting
the upper edge to the lower one.

It is instructive to follow the th f
~ ~

e pa o a given occupied
state in Fig. 2 as a function of flux. For ver s.„.fild h
trons. U on
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Upon reducing the magnetic field the de

of that level d
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ae a a time
urface state. Its energy increases as the flux is
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reduced until it bececomes finally degenerate with the next
Landau level and that electron starts to populate the
latter level. A further decrease th fl

usual bu kusua, bulk energy level decrease until the decreasing de-
generacy of that Landau level can 1

a electrons and it becomll
ve can no onger accomodate

ecomes again a surface electron. The
smooth transition between bulk 1 1 hu eve s t rough surface
states smears the sharp bulk oscill ti a ions in t e magneti-
zatton (de Haas —van Alphen) and in the ma neto

IV. A MODEL FOR TRANSPORT VIA EDGE STATES

For 8'«Ace
bulk La

Ace, and a Fermi energy in the be gap etween
u Landau levels, the transport through the system de-

o" chemical o 2,

ig. ~ e ring is driven by two particle reservo
f p tentials p &

and p2, connected b two
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infinite, perfect 1D le
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( igs. 3). For stronger disorder (W~A' ~, , edge states on
opposite corners are coupled via bulk states and the mod-
el considered is no longer valid.

For a particle impinging from th LHSe we denote the
wave functions amplitudes i th pp'n e upper and lower arm,

uI z and d&2 are the corresponding amplitudes in the vi-
cinity of the RHS junction,

u, 2
=uI, exp( i 0 ),

d, ,=d, , exp( —i 0), O=vrglgo+ kL .

P is the magnetic flux threading the ring and kL is the
phase ac uired b
rin 's

q e y the partial wave traveling al th

g arm in the absence of magnetic field.
ong e

Thee total transfer matrix for a part' 1ar ic e impinging from

U/, Ur

dg, dr

FIG. 3. ThThe probability distribution ~P(r)~' for typical sur-
face states. E = —2 and (a) 8' =0, (b) 8' =2.

FICs. 4. A sin 1-
in the HE re im

g e-channel model for transpo t dr via e ge states
e Q regime. Contrary to real rings, the current circu-

lates in one direction only.
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flux through the whole sample is changed by fractions of
The magnitude of these fluctuations, b, T, is of the or-

der of unity and they may be related to resonances. In
the present work, however, we concentrate on edge states
and we do not elaborate on the very interesting fluctua-
tions due to bulk levels any further.

Upon increasing the magnetic field, the Fermi energy is
shifted to the surface-states regime, in the gap between
the two lowest Landau levels. The quasi-1D nature of
these states, compared to the 2D normalization of bulk
states, accounts for the relatively high transmission. The
transmission oscillates with the flux, with a period de-
pending on the disorder. In the ordered case, the period
corresponds to an effective ring area of =70 a while for
8 =2, the effective area shrinks to =45a . This shrink-
age can be qualitatively explained within the strong-field
semiclassica1 approximation in which the guiding center
follows equipotential lines. For 8 =0, the percolating
equipotential lines, corresponding to edge states, pass
along the edges. When the disorder is increased, the per-
co1ating equipotential contours are pushed to the bulk
and the effective area shrinks. At even stronger disorder
( W) 2. 5, not shown here), the percolating contours no
longer pass through the junctions with the leads and the
AB osci11ations disappear. The linkage between two con-
ducting edge states by a bulk impurity and its contribu-
tion to magnetoconductance fluctuations observed in nar-
row wires were recently discussed in Ref. 27. The AB os-
cillations are due to interference between partial waves
circulating the square different numbers of times. The
small oscillation amplitude at 8'=0 is explained by the
weak scattering from upper to lower states (see Figs. 3).
Increasing the disorder we find that the oscillations are
enhanced by stronger scattering to leftward-propagating

states, in agreement with the model developed in Sec. IV.
We have found that as 1ong as 8 &&Ace„T reaches its
maximal value (unity) periodically, which implies that
most scattering take place in the corners [Eq. (2)]. The
oscillations are extremely robust against static disorder
and the perturbation energy 8 needed to smear them is
of the order of fico, (Sec. III). Similar oscillations occur
when EF is scanned in a fixed flux. Figure 6 depicts the
transmission versus energy for /=0. 25$o and two de-
grees of disorder, 8 =0 and 8' =2. The vanishing
transmittance at the bottom of the band is due to the
"magnetic barrier" corresponding to the vanishing densi-
ty of states of an isolated square at energies 1ower than
the lowest Landau level (Fig. 2, regime C). Notice that
contrary to the stretching of the oscillations period, as a
function of flux, when the disorder is increased, the
period in energy is almost independent of 8.

Although experimentally the shape considered here
might not be realistic, we point out that similar effects
may follow due to any abrupt change in the geometry
(e.g. , a branch for Hall contacts) or imperfections.

VI. QHE AND AB OSCILLATIONS
IN THE HALL CONDUCTIVITY-

NUMKRICAL STUDY

The dimensionless Hall conductance gH = T(p, I
—p2)/

(p„—pd ) versus Pl/0 for E = —2 and two degrees of dis-
order ( W'=0 and &=2) is depicted in Fig. 7. Evalua-
tion of the chemical potential at a given point involves
the wave function's amplitudes for LHS and RHS
scattering experiments (see Sec. IV for detailed descrip-
tion of the calculation method). The chemical potential
gradient p„—pd needed for Fig. 7 was defined using Eq.
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FIG 6. The transmission coefficient T vs energy for
P/{bo=0. 2S and two degrees of disorder, W =0 {solid line) and
W =-2 (dashed line).

FIR. 7. The dimensionless Hall conductance vs P/P„ for
E = —2 and two degrees of disorder, W=O {solid line) and
8 =2 {dashed line). Notice the AB oscillations superimposed
on the quantized value.
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(3) with u and d given by the averages of the wave func-
tion squared on the upper and lower edges, respectively
(see Fig. 1). This definition is meant to simulate a mea-
surement by two additional particle reservoirs, weakly
coupled to the square's edges. ' It is by no means the
only possible definition and a fuller discussion, including
the effects of the reservoirs on the system, is given by
Buttiker.

For a Fermi energy in the bulk Landau levels, gH fluc-
tuates rapidly with a huge amplitude (of the order of
10 —10 ). Tuning the flux to the edge-states regime we
observe periodic AB oscillations. In the model of Sec.
IV, the Hall voltage was nonoscillatory [Eq. (4)] and,
indeed, the voltage-oscillation amplitudes measured in
the present geometry are very small. The oscillations in

gH are therefore attributed to current oscillations. The
oscillations are enhanced for larger disorder and their
amplitudes agree fairly well with Eq. (6). The period
change was discussed in Sec. V.

The main and most important result demonstrated in
Fig. 7 is the quantization of (g& ) predicted by our model
(Sec. IV). Increasing &from 0 to 2, the longitudinal con-
ductivity is reduced by more than an order of magnitude
with almost no effect on (gH ) = 1.05 (we believe that the
nonintegral value of (gH ) is probably due to the specific
definition of p„—p~ we chose). We have also measured

gH for a Fermi energy in the surface-states regime, in the
gap between the second (n = 1) and the third Landau lev-
el. Although accuracy was limited by the small size of
our sample the results again indicate (gH ) = 1, compared
to the (gH ) =2 expected in the multichannel case (see
Sec. VII below).

gR;, +T, =l,
J

gR;,'+ T,,=1, (7)

gap between bulk I.andau levels in the leads, is that the
current-carrying edge states are localized on the upper
(lower) edge for right- (left-) going currents (B points out
of the page and the carriers are negatively charged). The
number of current-carrying channels in the leads is equal
to the number, n, of occupied bulk Landau levels (or the
integer n in the quantized Hall conductance ne /h,
whenever conditions for the QHE hold). Thus, compared
with the usual multichannel Landauer case, the channel
number can be made of the order of unity by applying a
strong enough magnetic field. The spatial separation of
rightward- and leftward-propagating channels simplifies
the problem considerably. Below, we briefly summarize
the SKM formulation, our new observations and correct-
ed physical consequences following from them. This in-
cludes the sum rule derived by SKM, conditions for the
QHE to hold, and the important relationship with the
quantized contact resistance. ' "

The LHS reservoir is assumed to fill the n upper LHS
edge states up to p, , where their velocities are v, . Like-
wise, the RHS reservoir feeds the n lower RHS states up
to p2. The transmission of the former states to upper-
RHS states is given by an n Xn matrix T, while their
reflections into lower-LHS states are given by a matrix
R, The transmission and reflection coefficients of the
lower-RHS states are likewise given by T,

' and R,', re-
spectively (here, the definition of the matrices is similar
to that in Ref. 30). The reflection and transmission ma-
trices satisfy the unitarily conditions

gR;, +T;, =1, gR;,'+ T,', =1,
VII. THE MULTICHANNEL LANDAUER FORMULATION

OF STREDA, KUCERA, AND MACDONALD
AND THE RELATIONSHIP BETWEEN THE QHE

AND THE "QUANTIZED CONTACT RESISTANCE"

Recently, Streda, Kucera and MacDonald' (SKM)
formulated the strong-field transport due to edge states in
a finite-width 2D system as a multichannel Landauer
problem, ' depicted in Fig. 8. Two electron reservoirs
of chemical potentials p, and p2(p, ~ pz) are connected
by ideal leads to the disordered region of the sample. The
special feature of the model, for p, and p2 lying in the

and the time-reversal conditions

r„(H)= r;, ( 0), R„(H)—=R,, (
—H),

R (H)=R ', ( H) . —

Let us define T; =g.T,
current is then given by

and R, =g .R,"= 1 —T,'. The

(10)

leading to the two-terminal conductance (with voltage
measured between the driving reservoirs with chemical
potentials p, and p2)

I uf

Perfect
Lead

~Le

Disordered

Zone

F ur

Perfect
Leod

+er +z

eGo= », .
I

In a case which will turn out later to be relevant for the
QHE, where there are no reflections (no backscattering)
and R, =0, R,

' =0, it follows from Eqs. (7), (8), and (11)
that

2eGo=n

FIG. 8. The geometry considered by SKM. A finite strip
driven by two particle reservoirs with chemical potentials
P l P2.

The conductance quantization in the ordered case (for
which the four-terminal resistance vanishes) was predict-
ed by one of us. It may be attributed to contact resis-
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1/v, -

These forms agree with Eqs. (8) of SKM. We disregard
for the moment questions related to the effects of strong
coupling to the measurement reservoirs on voltage mea-
surements, discussed by Biittiker. Equation (13) applies
in cases where the weak coupling to the measurement
reservoir does not affect the system and where the mea-
surement averages over the fluctuations on a scale of an
electron wavelength. Thus, one obtains the four-terminal
upper-edge resistance

P] Bur

I
gR /v;

h

pl/v, gT,
(14)

and the Hall voltage measured on the LHS of the sample

gT,'/v,
P] Pa h

I e~ +1/v, gT,
I

Equations (14) and (15) differ by an index fiip in the R,"
and T, in the numera-tor from Eqs. (10) and (9) of SKM.
This slightly modifies the sum rule Go = (R
+RH) ' [Eq. (11)] of SKM. The correct form follows
from Eqs. (7) and (8):

(15)

Go =(R'+RH ) (16)

where R ', measured for p2 ~ p], is given by

gR, /v;
R'= h g

pl/v, gT,
(17)

We remark that time-reversal symmetry guarantees
R (H) =R '( H), but generally—

tances in the connections of the wire to the reservoirs.
Recently, this quantization was observed by van Wees
et al. ' and Wharam et al. We emphasize that a
relevant sufficieni condition for that quantization is no
remi'ection (R, =0") much tveaker than ideal transmission
T, 6, .

The evaluation of the various four-terminal resistances
involves the chemical potentials on the upper and lower
edges of the ideal leads, denoted by p», p&&, p„„, and p«
(see Fig. 8). By assumption, p„, =p& and ltI„=pi. Using
the definitions of Buttiker et al. one finds

gR, /v,

Pn P2=(Pi Pi)
1/v,

(13)

What are the conditions for the QHE? A sufficient
condition is T, independent of i for all i [it can easily be
checked by substituting this condition into Eq. (15) and
using the identity g,. T, =g,. T,']. Moreover, assuming
that the T, 's are monotonic functions of the velocities v,

(either increasing or decreasing in the weak sense), the
above condition turns out to be a necessary one as well
(see the discussion based on Chebychev's inequality in the
Appendix). We find then that the condition T, =6;"ad-
vocated by SKM is certainly sufficient, but much stronger
than our condition. Using Chebychev's inequality and
assuming the T, s to be monotonic in the velocities, it is
also possible to relate RH to the general dependence of T,
on v, . If the transmission is a monotonically increasing
function of the velocity then RH ~ h /e n while if it is a
descending function RH ~ h /e n. Another possibility
leading to QHE is v, independent of i This m. ight occur
(at least approximately) in the strong-field limit with
small number of Landau levels.

A very interesting and plausible case is R, =0 (Ref.
29), which still allows an arbitrary scattering among
upper or lower channels, but no mixing between these
two sets. By Eqs. (1) and (2), this condition implies
R,

' =0, T, =1, and T =1, leading to

R'=R =0, 1

RH

e=G =n0 (19)

Thus, the contact resistance quantization and the QHE
are intimately related. When both hold, the chemical po-
tential is constant along the upper (lower) edge and given
by p, (pz). Steps in the two-terminal conductance in a
narrow strip at high fields have been observed by
Wharam et al. and more recently by Kastner et al.

A curious result for the QHE follows from the above
analogy. Defining the combined contact resistance
R, =1/Go —R, it was found that it is equal to h/e n (n
includes spin degeneracy) for ideal contacts, but it is not
exactly quantized for contacts with nontrivial (R;J&0)
scattering. However, the difference of (R, )

' from exact
quantization is due to the inverse velocity factors [such as
in Eqs. (14)—(17)]. Exact quantization of (R, )

' and
(RH )

' would follow if the v, 's were equal or if the T s
were equal. In one particular case, that of a single chan-
nel, the velocity factor cancels and R, =h/e for arbi-
trary scattering. Thus, one is lead to the conclusion that
when the Hall effect is due to surface states and when the
field is strong enough (or EF small enough) to have a sin-
gle channel, the Hall conductance is quantized,
RH =h /e, up to rather strong disorder (actually up to a
disorder of the order of fico, ). This indeed follows trivial-
ly from Eq. (15) for an arbitrary scattering or longitudi-
nal resistance. The system investigated in Secs. II—VI is
another example for a single-channel Hall quantization
with nonvanishing longitudinal resistance.

R (H)&R '(H), (18) VIII. SUMMARY

which is physically due to the difference in the scattering
of electrons fed into the lower and upper edges of the
sample. It would be interesting to observe this difference
in a dc experiment.

We have investigated the magnetotransport due to
edge states in a system smaller than the phase coherence
length I.

&
(for those states). For a strip topology it was

shown that a sufficient condition for the QHE to hold is
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T; or v; independent of i for all i. If the T s are assumed
to vary monotonically with v, it was proven that the
above condition is also a necessary one. Two special
cases were considered.

(a) R,"=0, leading to a vanishing four-terminal longitu-
dinal resistance and quantized Hall resistance. This is a
very plausible condition as long as the effective disorder
is smaller than Ace, .

(b) For a strong enough magnetic field or low Fermi
energy, all electrons reside in the lowest Landau level. In
that effectively single-channel case, RH =h /e indepen-
dently of R».

Another geometry considered was that of a 2D quan-
tum dot driven by two narrower leads. For a Fermi ener-
gy in the edge-states regime we have demonstrated AB
oscillations in both longitudinal and Hall resistances with
a period corresponding approximately to one Po in the
whole sample. The averaged Hall resistance was shown
to be quantized in a wide range of longitudinal resistances
(again, QHE with finite longitudinal resistance) in agree-
ment with the single-channel case in SKM's formalism.

The "ring topology" responsible for the AB effect re-
sults from the existence of edge states and finite scatter-
ing from the upper to the lower edges in the connections
of the leads to the "dot ~" This scattering is enhanced by
the disorder, leading to a larger oscillation amplitude for
increased disorder. The effective area for the flux shrinks
with enhanced disorder, resulting in a longer period of
oscillation as a function of B. The AB oscillations found
are extremely robust against disorder and it takes an
effective disorder energy of the order of A'~, to smear
them.

A possible experimental realization of these effects
might consist of a high-quality, 2D EG GaAs disk, —1

pm in diameter, driven by two narrower leads at fields of
a tesla or more. The temperature should be of the order
of 100 mK to guarantee k&T &Ace, LH/L and a coher-
ence length L& longer than L. Measurements of the Hall

conductance, we predict, will show AB periodic oscilla-
tions superimposed on the usual quantized plateaus. In
addition to the predicted oscillations one expects sharp
fluctuations, characteristic of the QHE in narrow wires.
The longitudinal resistance should be oscillatory as well,
similar to the magnetoresistance of ordinary rings.
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APPENDIX: THE CHEBYCHEV
INEQUALITY (REF. 35)

Let I a, I and
I b, ) be two monotonic series such that

a ~a ~a ~ . ~a and b ~b ~ - . ~b2 — 3— f1 n

or

a ~a ~a ~ - ~a and b ~b ~ . . . ~b
1 — 2 — 3— 1

— 2— 11

Then

nba, b, ~ ga, gb,
I I

and equality holds if and only if either a, =a2 =. . . =a„
or b&:62: ' b„. If one of the series is a monotonical-
ly increasing one while the other series is a monotonically
decreasing one, it trivially follows that

nba, b, ~ ga, gb,

and equality holds if and only if either a, =a2= . or
' "n.
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