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Instabilities in the quantum Sherrington-Kirkpatrick Ising spin glass
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The infinite-range quantum Ising spin glass in transverse (I") and longitudinal (h) fields is stud-

ied by means of thermo-field-dynamics as a substitute for the n-replica trick. With the use of a
one-loop approximation for the dynamic self-interaction the stability of the mean-field-type solu-

tion against the action of fluctuations is investigated in the parameter space (ks T,I,h ).

There is currently great experimental and theoretical
interest in the quantum version of the Sherrington-
Kirkpatrick (SK) (Ref. 1) Ising spin-glass in a transverse
field motivated by the discovery of characteristic spin-
glass properties in nonmagnetic cases such as the mixed-
hydrogen-bonded ferroelectrics —the so-called proton
glasses. In these systems ferroelectric glass ordering
can be regarded as the freezing of random projections of
electric dipole moments at the paraelectric-ferroelectric
glass-phase transition.

The model under consideration contains N interacting
pseudospins described by the following Hamiltonian:

where o.; are the Pauli matrices referred to the ith site of
the lattice, while I and h denote the transverse and longi-
tudinal field, respectively. The sum in Eq. (1) is per-
formed over all distinct pairs of pseudospins and the ex-
change interactions J;~ are independent random field vari-
ables with the symmetric Gaussian probability distribu-
tion

N
exp( —KJJ/2J ) . (2)

2+J
The long-range nature of the interactions J;~ originating
from the dipolar character of the interbond forces
justifies the use of the formula (2). For a proton-glass
system a new mechanism which tends to destroy the glass
order is provided by the proton tunneling, an intrinsic
quantum effect described by the transverse field I repre-
senting the tunneling frequency, while the longitudinal
field h refers to the energy splitting of a bond in an applied
electric field.

The quantum spin-glass problem is far from being a
trivial one due to the noncommutativity of operators and
different methods have been introduced to handle this
problem. Typically, quantum mechanics introduces
frequency-dependent self-interactions and order parame-
ters and it is important to understand this frequency
dependence as has been emphasized earlier.

As is well known the SK solution of the model for I =0
becomes unstable in an applied longitudinal field h below
the de Almeida-Thouless (AT) (Ref. 10) line, signaling
the apparent breakdown of ergodicity and history depen-

dence. Moreover, for vanishing longitudinal field the
spin-glass transition is controlled by the temperature and
transverse field and the system is expected to stay in the
spin-glass phase below the field-dependent critical line
T, (I ) which extends down to zero temperature" —a
phenomenon which possesses its classical counterpart in
vector spin glasses studied by Gabay and Thouless
(GT). '2 However, due to the complexity of quantum spin
glasses the exact T, (I ) dependence has been obtained
only very recently for the infinite-range model by employ-
ing a perturbative approach and a numerical Trotter-
Suzuki method as well as for a short-range model studied
in mean-field theory by employing a path-integral ap-
proach. There are other theoretical studies of the freez-
ing temperature of the infinite-range model using a static
approximation for a frequency-dependent self-
interaction, '" ' a phenomenological approach, and a
quantum version' ' of the Thouless, Anderson, and Pal-
mer (TAP) (Ref. 18) method. The obtained approximate
results for T, (I ) are in qualitative agreement with each
other and with the exact T, (I ) although the exact T, (I )
is significantly lower at low temperatures due to strong
quantum fluctuations.

It is the purpose of the present Rapid Communication
to report on the stability analysis of the mean-field theory
of the infinite-range quantum transverse Ising-spin system
described by the Hamiltonian (1) in the whole parameter
space (ktt T,I,h ).

The method we use to handle both the disorder average
and the quantum problem has been proposed earlier by
one of us. ' It is based on thermo-field-dynamics
(TFD), 2 a real-time finite-temperature quantum field
theory. Apart from the interest in dynamics, which, due
to the quantum nature of the problem, becomes an intrin-
sic theoretical ingredient of the model, this method allows
one to circumvent the use of the n-replica trick ' while
performing the quenched average and deals directly with
the physical observables like the response and correlation
functions. In this context TFD make close connection to
the dynamic approach known from the classical spin-glass
problem.

In order to incorporate thermal effects in TFD one re-
quires the doubling of degrees of freedom by associating
to any operator A(=A ') a tilde conjugate one A(=A ).
Specifically, the dynamics is generated by the thermal
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Jh

Hamiltonian 0
H -0—H =H t~'] Ht—~2], (3)

&Z[r/]& - SQexp( —NX[Q]+ o, [rt]),

where the single-site dynamic Lagrangian reads

X[Q] TrQ —ln+[Q],

(5)

while 0[r/] refers to the source term. Furthermore,

p+oo to+00
TrQ'- dt dt'gg P(t, t')QP'(t', t),

'a

where Q p(t, t') represents a 2X2 matrix field, which is
symmetric [Q'p(t, t') Qp (t', t)] and nonlocal in time.
Subsequently,

e[Q]-&o,piU~( —;+) io, p& (8)

where
~ O, p& denotes the thermal vacuum corresponding

to the single-site Hamiltonian %Fo —I o„—ha, while

+ f + OO

dt'H~(t, t')Ut2(
—oa;+ aa) TeXp —i dt

(9)

is the time-ordered exponential resulting from the interac-
tion picture. The effective time-dependent single-site
Hamiltonian then reads

where 0 is the conventional Hamiltonian of the system
(1) whereas 0 refers to the copy of the original system
moving backwards in time in the "mirror space. " The
temperature enters the theory through the thermal vacu-
um ) O(p) & constructed in such a way that the quantum
expectation value between thermal vacua corresponds to
the conventional statistical average

&o(p) i
. iop&- (4)

Tre

To proceed, we start from the disorder-averaged gen-
erating functional for the real-time 6nite-temperature
Green's functions in the form '

tuating dynamical part which results in an effective dy-
namic self-interaction JQ p(t, t') in the thermal Hamil-
tonian (10) which has to be calculated self-consistently.
In the N ~ limit the saddle-point method can be used,
which amounts to finding the Q's stationary point values
Qop determined from the relation

bz[Q]/bg P-o.
Consequently, one obtains

QtiP(t, t') - —,
' JG;P(t, t'), G, -r'/2Gi'/2

where

&o,p ~
T~;(t)ap(t') U&, ( —;+)o,p&

G'P(t, t') - i-
&o,piU&, (—;+) io, p&

(is)
It turns out that the dynamic self-interaction persists also
in the paramagnetic phase making an explicit solution of
Eq. (14) a highly nontrivial task. This is in contrast to the
classical spin-glass case where the properties of the system
in the paramagnetic regime are rather simple.

Below the freezing temperature the general strategy for
constructing the mean-field theory of a spin glass is to
look for time persistent qualities. Therefore, we factorize
the matrix of causal Green's functions (15) into finite
time G„;psand time persistent part G ps as follows:

O'P(t, t') -G;Ps(t, t')+G;Ps(t, t') .

The TFD causal matrix propagator G, ~~ is most con-
venient for calculations but more direct contact with
measurable quantities is established when one decomposes
it. Supposing that after a sufficiently long time the system
reaches equilibrium one has restored time translational in-
variance G ps(t, t') G;ps(t —t'). In this case the Fourier
transformed matrix G„'ps(co) can be presented as follows:

G„(co) Up (to) zG(co)Up (to)
'll

2iC„s(to)
iG(co) — '

p„/2e~ +1 e"
H~(t, t') -QJQ;P(t, t')cr.'(t)aP(t'),

aP

where

(10) where

sinhp(co) cosh&(to)

cosh'(oi) sinhy(ai)

~ap ~ ( I/2~ 1/2) ap I/2 ~~t
1 0
0 i sinh 2y(to)

1

e~"—1
'

Finally, the pseudospin operators are defined in the in-
teraction picture in the standard way as

cr,'(t) exp(i@ot) cr,'exp( —i itot ) . (i2)

The averaged generating functional (5) bears some for-
mal resemblance to the averaged replicated partition
function in statics' where the nxn replica field corre-
sponds to Q p(t, t') in our formalism. However, in the
present case the matrix Q' (t, t') has a nontrivial time
dependence. In fact, the quantum generalization of the
SK spin-glass model shows an interesting new feature.
The eA'ective local field acting on a pseudospin has a Auc-

(19)

C„s(to)-coth(Pco/2)ImG (a)) . (20)

Furthermore, it turns out that the time persistent part

is the thermal transformation matrix, o while

GR(co) 0
G(co)-

o G ( )

with G being the retarded (advanced) Green's func-
tion. Correspondingly, C«s(co) refers to the thermo-
dynamic correlation function being related to the G by
means of the Auctuation-dissipation theorem
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Ggs(ro) has the form

1 1

G„„s—2rriqb(co) (21)

where q is the Edwards-Anderson (EA) (Ref. 21) spin-
glass order parameter. Indeed, by substitution of Eq. (21)
into (16) using the relation (17) one obtains for the total
correlation function

C(ro) -C„s(co)+2irqb(ro), (22)

C [Q] -&exp(inc, [Q])&,
where

+" dz
~ ~ ~J —oo (2~) i j2

and

(23)

(24)

@,[Q] &O(p, z) IUg„(—~;+ee) IO(p, z)&, (25)

where ( O(p, z)) is the thermal vacuum associated with
the single-site Hamiltonian /t'o iso+ Jzq'~ o, with the
static noise, while the time-ordered exponential (9) con-

according to the dynamic EA definition of the spin-glass
order parameter.

It is convenient to represent the time persistent contri-
bution to the effective thermal Hamiltonian (10) in a
form of a static Gaussian noise component, which acts as
a random longitudinal field to generate time persistent
autocorrelations. Accordingly, the functional (8) be-
comes

tains only the finite time part of the dynamic self-
interaction.

Due to the complicated nature of the interaction it is
not possible to work out the explicit form of the functional
(23) in the general case. However one can resort on the
diagrammatic analysis by noticing that the functional
In@, [Q] expanded in powers of the dynamic self-
interaction generates in the usual way the linked-cluster
expansion for the thermo-field-Green's functions. Tak-
ing into account the action of quantum fluctuations in the
one loop order amounts to sum up all ring diagrams ac-
cording to

Ine, [Q]- + ~ ~ ~

where

JQ, =

Z(z) =

Here, the line denotes the dynamic self-interaction, while
the dot corresponds to the self-energy part. The final re-
sult is then

in@, [Q] = ——Tr in[1 —2JQ,X(z)],1 (27)

where the trace operation is defined by means of Eq. (7).
Now, in order to study the fluctuations around the saddle
point (13) we work out, by using Eqs. (6), (23), and (27)
the term which is quadratic in the fiuctuations bQ, yield-
ing

X[Qo+ BQ] —X[Qo] Tr[b'QbQ —J (bQG, (z)bQG, (z))]+o((bQ) ), (28)

where

1
G(ro, z) ~Z(io, z)

( ) ( )
(29)

is the Dyson equation for the noise-dependent causal
Green's function.

For a stable solution a 4it4 matrix defined by the
right-hand side of Eq. (28) should have no negative eigen-
values. Applying Eq. (17) in the static approximation'
that decouples the mixed thermo-field components of the
effective Hamiltonian (10) and which gives a satisfying
estimate of T, (I ) except for very low temperatures one
finally obtains from (28) the stability condition in the
form

I

It is easy to see that for I 0 Eq. (30) reduces to the con-
ventional AT instability line. For h 0 and nonzero
transverse field, approaching from the high-temperature
phase one has q 0, and from Eqs. (30) and (31) it fol-
lows that

(J/r)tanh(p, r) -I (32)
for the critical line describing the transverse freezing, '"'

1 —J'(~'(z)& ~ 0, (30)

where g(z) =6"(ro O, z) 6"(ro O, z) is the local static
longitudinal susceptibility (electric permittivity in the case
of ferroelectric glass). Furthermore,

g(z) (I /ei)tanh(pe, )

+P((J~' z+h)/e, ) sech (Pe, ),
q -(m '(z)),
m(z) -[(J~ 'z+h)/e, ]tanh(Pe, ),
e [(J' z+ h ) '+ r '] ' '

FIG. 1. Phase diagram of the quantum SK Ising spin glass in

the transverse (I ) and longitudinal (h) fields, calculated from
Eqs. (30) and (31).



INSTABILITIES IN THE QUANTUM SHERRINGTON-. . .
1

implying that the ergodicity is broken immediately below
T, (I ). For small fields one has

T, (1 ) 1 I.1— (33)
T, (O)

i.e., the quadratic field dependence characteristic for GT
instability line. ' In the general case one has in the pa-
rameter space (k&T,I,h) the instability surface depicted
in Fig. 1.

To conclude, in the present Rapid Communication we
have calculated for the first time the spin-glass freezing
temperature for transverse and longitudinal external field
and we have performed the stability analysis for the corre-
sponding mean-field-type theory. It is explicitly shown
that the mean-field solution appears to be unstable jn the
whole parameter space bounded by the instability surface,
signaling that a simple description of the glassy phase
based on a single EA spin-glass order parameter is no
longer valid in this region.

In closing we would like to add a further observation.
The peculiar feature of the quantum spin-glass problem is
that the statics and dynamics of the model are inextrica-
bly connected, so their simple decomposition as in the
classical case is no longer possible. Even in the static
limit the local susceptibility (31) will depend on the de-
tails of the dynamic self-interaction. This implies that,
e.g., an exact calculation of the critical surface T,(l,h)
enforces a full solution of the self-consistent Eq. (13).
The complexity of the problem, of course, prevents from
any nonperturbative approach. An estimate of the exact
transverse freezing line for h 0 already exists. An ex-
tension of this work covering the whole parameter space is
currently under investigation on the basis of the theory
outlined in this note.
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