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A new approach is presented for variational Monte Carlo simulations of Hubbard-Anderson
models using Gutzwiller projection operators to restrict charge fluctuations in noninteracting wave
functions. The Gutzwiller matrix elements are mapped onto a statistical model, which is evalu-
ated using a stochastic algorithm that is normally applied to finite-temperature simulation. The
method has been successfully tested for one-dimensional (1D) Hubbard and 1D Anderson models,

and results are presented for the 2D Hubbard model.

We find a region close to the half-filled

limit where the Gutzwiller states of different magnetic ordering are very close in energy.

There has been a great deal of interest recently in the
properties of systems in which the electrons are almost lo-
calized. This is evident from the heavy-fermion supercon-
ductors and the high-temperature superconductors where
many unconventional pairing mechanisms of electronic
origin have been proposed. These systems are character-
ized by a strong Hubbard-type Coulomb repulsion,
H\|=UX;n;in;;, which suppresses double occupation on a
given site, but the systems are better described as Fermi
liquids than as localized electrons.

Gutzwiller! proposed to solve such a problem using a
variational wave function I\Ilg) in which a projection
operator Py is applied to restrict the charge fluctuations in
a noninteracting wave function | ¥o):

|4
I‘I’g>"Pg,‘I’0>-LIl[1_(1 —g)ni1n51]|\l'o), ()

where g is the variational parameter, n;; is the occupation
number operator for site i and spin s, and V is the number
of sites. Most methods evaluate the Gutzwiller matrix
elements by expressing | ¥,) as a Jastrow wave function
and then evaluate the Slater determinants stochastical-
ly.2_5 Recently, Metzner and Vollhardt have introduced
a new analytical procedure to calculate 1D Hubbard mod-
el.% In this paper, we introduce an alternative approach
that maps the expectation values in the Gutzwiller ground
state onto a statistical-mechanical model which can be
evaluated in a similar way to finite-temperature Monte
Carlo simulations, but with significant saving in computa-
tional efforts. We have successfully tested this procedure
for the one-dimensional (1D) Hubbard and Anderson
models. Among our major results for the 2D Hubbard
model presented here, we find (1) long-range antiferro-
magnetic order exists in the half-filled limit (v=1 elec-
tron per site), (2) the Gutzwiller states of different mag-
netic order can be very close in energy (v=0.9375), and
(3) the ground state is paramagnetic further away from
the half-filled limit (v==0.8). The corresponding momen-
tum densities exhibit the characteristics of an insulator, an
almost localized Fermi liquid, and a normal metal, respec-
tively. Results will be compared with previous calcula-
tions.” ~°
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The Gutzwiller matrix elements can be written as
(A) =(Wo| PoAP, | wo)/(Wo| PZ| wo)
-ﬁlim Z, 'trlexp(—BF£) Py AP,] , 2)

where Z, =trlexp(—p#)PZ] is a pseudopartition func-
tion, and |¥,) is the ground state of a noninteracting
Hamiltonian #. The Hubbard-Stratonovich transforma-
tion is used to rewrite P in the form of an S matrix in
quantum-field theory:

v
Pg2==I_Il[1—-(1 —gz)n,-tnu]=(%)V§exp(h[61), 3)

For a given Ising-spin configuration of the lattice
[O’,‘"‘ + 1],

h[c]-Zaoi(n;1—n,-1)+K(n,-T+n,~1) (4)
i

with K =In(g) and cosh(a) =1/g. The partition function
becomes

Z,=(%) Vﬁtrexp(h 161/2) exp(— 7 ) exp(h(51/2)
=(3) VE trTerlexp(y{ )] )

Since #, hi,), and [#,h(,)] are single-particle operators,
Yi =X vijclc)s is also a single-particle operator. Per-
forming the trace gives

Zg-(i—)vﬁndet(1+expl“f6]), (6)

where T, is a VXV matrix [yj] for s=1,|. The
Metropolis algorithm is used to sum over the Ising-spin
configuration for the lattice. We follow the procedure of
Blankenbecler, Scalapino, and Sugar‘0 to calculate the
determinant ratio and updates (I+expI'{;) ', if a
change in the Ising configuration is made by one spin flip.
The computational effort for one spin flip grows as V2 so
that one sweep through the lattice takes =¥ steps. This
algorithm has been used for Monte Carlo simulation of
the exact partition functions of correlated fermionic sys-
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tems at temperature 7:7-'°

Z =tre —(Hy—=uN+H)/kT

L
=U'H€ —A:(Ho—uN)e —AtH, @)
=1

where u is the chemical potential, and N =X ;n;;. For
the nearest-neighbor one-band Hubbard model, Hy
=tX pXsciicjs. Note that an imaginary Matsubara
time index At=1/(kTL) is introduced for the Trotter
breakup in Eq. (7), which raises the computational efforts
to V3/T. Furthermore, the errors introduced by the
Trotter breakup increase with decreasing 7 and increasing
U. Since H does not appear in the pseudo partition func-
tion Z,, there is no Trotter breakup of Z,, and no Ma-
tasubara time index in our approach. Thus, the computa-
tional efforts and the numerical accuracy are significantly
improved. On the other hand, variation calculations de-
pend on the variational freedom in |¥,). The close
resemblance of our approach to exact simulations at
higher temperature provides a cross reference for the
ground state properties and finite size scaling with little
additional efforts.

The Green’s function for spin s and a given Ising
configuration [c], can be written as

Gt =trlexp(y{,eiscf]
=[I+expI{,l;". ®

If [A,Pg] =(), as for the number per site, or for spin-spin
or density-density correlations, then

A =(4)"Z;' ZuTTlexp(riy) Al ©)

If A is a two- or three-particle correlation, the Wick’s
theorem can be used for each Ising configuration [o] to
decompose A into products of G;;. If [4,P,;150, it can be
shown that if i =,

chiscj{'Pg = (;- )V[gcoshz(a/Z)] -1
XIZ}eXp(h[al/Z)c,-scj’} exp(h1/2) .

Then,
(cisc}) =lgcosh?(a/2)1~ ’[2} 7 +exp(r{ 1. (10)

For 1D Hubbard model, our results are in good agree-
ment with the variational Monte Carlo simulations of
Gros, Joynt, and Rice,®> who have refined the weighting of
the Slater coefficients in the g =0 limit to study the chains
up to =104 sites. Our approach for a 1D Hubbard ring
of 100 sites takes approximately 10 CPUmin on CRAY
1-XMP. However, the efficiency of this algorithm is the
same in any dimension, and the procedure can be easily
generalized to one-particle operators that do not commute
with P;. We have also applied the new algorithm to the
1D Anderson model and found excellent agreement with
the variational Monte Carlo simulations of Shiba.® In the
case of Hubbard models, we used f==30, with approxi-
mately 2000 lattice sweeps to warm up the Ising spins,
and 1000 to 2000 additional sweeps separated by 4 sweeps
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for the Green’s-function measurements, while in the case
of the Anderson model, where there is an enormous densi-
ty of states near the Fermi level, we used $=30000, and
10000 or more warm-up sweeps. Our results for the 2D
Anderson lattices will be presented elsewhere; here, we
discuss the results of the 2D Hubbard model.

For the Hubbard model, |¥,) can be nonmagnetic
(NM), antiferromagnetic (AFM), or ferromagnetic
(FM). We vary g, and in the case of AFM or FM states
the built-in moment, to minimize the ground-state energy.
In the half-filled limit (v=1 electron per site), our scaling
analysis shows long-range antiferromagnetic order due to
Fermi-surface nesting, which is in close agreement with
earlier calculations. In a recent variational Monte Carlo
simulation, Shiba and Yokayama* found the long-range
antiferromagnetic order persists to v=0.9 (depending on
U). By contrast, finite-temperature Monte Carlo simula-
tions of Hirsch’ indicate that the long-range order is al-
ways destroyed for non-half-filled cases. The conclusions
of Hirsch are based on finite-size scaling analysis of lat-
tices up to V=8x8 in spatial size, at temperature
B =0.75/V. These results may be consistent with a more
recent calculation of Sorella et al.® who solved the
Langevin dynamics for a 16x16 lattice at =24 and
U =4, although they are uncertain if the spin-correlation
functions decay exponentially or as a power law. In fact,
they found that the corresponding spin-spin correlations
for the U =0 Fermi liquid look quite similar. Comparing
the energies of the AFM and NM states, our variational
calculations agree with the phase diagram of Shiba and
Yokoyama. We found that the Gutzwiller states of
different magnetic ordering can be very close in energy for
v=0.9735, which may explain the discrepancy between
finite temperature and variational simulations.

Figure 1 shows the finite-size variation of the kinetic en-
ergy and the Coulomb energy per site for U =4 and 7 =1.
These energies are extrapolated linearly in 1/V to yield
the ground-state energy. In the half-filled limit (v=1.0),
the AFM ground-state energy (—0.842) is significantly
lower than the NM state (—0.780) (with an uncertainty
of +0.007), while for the v=0.9375 case, the AFM ener-
gies (—0.913) is much closer to the NM state (0.898).
Thus the loss of long-range order in finite-temperature
simulations may reflect thermal fluctuations between
nearly degenerate states. Otherwise, the discrepancy is an
indication of the limitation of our variational states to de-
scribe the short-range spin fluctuations. In particular, An-
derson'! has proposed that the ground state of the Hub-
bard model may be a resonating-valence-bond (RVB)
phase consisting of highly degenerate, singlet pairs of elec-
trons, superconductivity can then be induced by doping
away from the half-filled limit. For moderate doping, the
results of Sorella et al.® seem to suggest an unusual phase
that resembles RVB fluctuations, while earlier work of
Hirsch” seems to indicate an ordinary paramagnetic me-
tallic phase. Recent variational Monte Carlo simulations
for 2D Heisenberg models indicate that antiferromagne-
tism is destroyed by doping and the paramagnetic RVB
states becomes stable. 2

Figure 2 shows our finite-size-scaling analysis of the
Fourier transform of the spin-spin correlation S (x,z) for
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FIG. 1. Finite-size scaling analysis of (a) the kinetic energy
per site, and (b) the Coulomb energy per site vs 1/V, where V is
the number of sites and U=4. Results are presented for
v=1.000. with AFM states (0); NM states (0), v=0.9375 for
AFM state (A), and NM state (+).

U=16, with v=1.000, 0.9375, and 0.800. We used the
Gutzwiller ground-states wave functions, which are AFM
for the first two cases, and NM for v=0.800. In the ther-
modynamic limit (VV— o0), S(x,7) remains finite for the
AFM states and vanishes for the NM states. If the nearly
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FIG. 2. Finite-size-scaling analysis of the Fourier transform
of the spin-spin correlations S(x,z)/V for U =16, with v=1.000
(@), 0.9375 (Q), and 0.800 (2).

degenerate NM state were used for v=0.9375, S(x,7)
would also vanish. These results are similar to the phase
diagram predicted by Shiba and Yokoyama,* although
there are quantitative differences between the two calcula-
tions for smaller lattices because they use boundary condi-
tions that are periodic in one direction and antiperiodic in
the other, while our boundary conditions are periodic in
both directions. They also predicted a FM region very
near the half-filled case for U= 50z.

The momentum density of the AFM state for U =4,
v=0.9375, is shown in Fig. 3. Note that this density is re-
markably similar to the results of Sorella et al.® for U =4,
v=226/256. They concluded from the slope at the Fermi
momentum (kr) that it may be an unusual insulating
RVB phase. We have not considered here the RVB state
in our variational calculations. The momentum density in
Fig. 3 seems to suggest that the AFM state has a well-
defined Fermi surface. For a finite-size cluster, it is
difficult to determine precisely the slope at kr, but a me-
tallic phase is the ground state of the mean-filled approxi-
mation, and quantum fluctuations which broaden the
spectral functions should not reverse this conclusion. An-
tiferromagnetism is stabilized by a lowering of the elec-
tronic energy due to a magnetic contribution arising from
Fermi-surface nesting. In the half-filled limit, the system
becomes an insulator because band gaps are opened at kr.
Away from the half-filled limit, however, kr is incom-
mensurate with the antiferromagnetic order, so that the
system is a metal. The incommensurateness is an unique
feature of finite-size simulations, which may be modified
in the thermodynamic limit.

Our results for U=16 with (a) v=1.000, (b)
v=0.9375, and (c) v=0.800, respectively, are shown in
Fig. 4. In the half-filled limit, it is an antiferromagnetic
insulator so that there is no Fermi-surface effect. It grad-
ually loses long-range antiferromagnetic order as the
filling factor is reduced. As can be seen from Figs. 4(b)
(AFM) and 4(c) (NM), the volume enclosed by the Fer-
mi surface appears to be reproduced correctly in accor-
dance with Luttinger’s theory,!® while some of the spec-
tral weight is shifted to higher momentum due to electron
correlation. It is interesting to note in Fig. 4(c), that
there is a depletion of n(k) for k > kf near the Fermi sur-
face. The extra depletion leads to a jump at the Fermi

FIG. 3. Momentum density for U =4, v=0.9375.
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FIG. 4. Momentum density for U =16 with (a) v=1.000, (b) v=0.9375, and (c) v=0.800.

surface which is the renormalization factor. In the case of
1D Hubbard chains, an extra depletion has also been ob-
served in the variational Monte Carlo simulations of Gros,
Joynt, and Rice® but is absent when the Gutzwiller ap-
proximation formula, which is a mean-field approximation
for the Gutzwiller matrix element, is used. By contrast, a
sharp drop at kr appears in the Hartree-Fock AFM state
for 2D Hubbard model with U =4 and v=226/256,° but
not in the corresponding Gutzwiller ground state shown in
Fig. 3 or the simulations of Sorella et al.’® Thus, the re-
normalization factor is a very sensitive test, and our varia-

tional calculations are in good agreement with the simula-
tions of Sorella et al.’
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