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The sticking coefficient a(E) describes the probability that an incoming charged particle with a
low-energy E will stick to the surface of a dielectric fluid. The quantum-mechanical prediction
limg—oa(E) =0 is found to hold to all orders in A, the coupling to surface excitations. When A
exceeds a critical value A., inelastic scattering destroys quantum interference and limg—. oa(E)#=0.
For larger A a classical description is valid. Near A, we find features reminiscent of critical phe-
nomena in systems with continuous phase transitions.

A particle hitting the surface of a solid or a liquid may
be either scattered back or adsorbed by the surface. Both
processes are relevant to many applications. Surface
scattering is a powerful tool for elucidating surface struc-
tures, while adsorption is important for coating purposes.
Although the two processes are obviously related, their
respective descriptions have developed along very different
lines.

Scattering probabilities can be computed using the
distorted-wave Born approximation' (DWBA). For a
low-incident energy E, the de Broglie wavelength of the
particle becomes comparable to the characteristic size of
the surface potential well ¥ so that the wave function is
severely deformed. Since the wavelengths inside and out-
side the well differ considerably for E <V, the “im-
pedance mismatch” at the threshold of the well prevents
the particle from reaching the surface [see Fig. 1(a)l, an
interference effect better known as quantum reflection. ?
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FIG. 1. (a) Amplitude reduction of an incoming low-energy
plane wave in a potential well due to quantum reflection at the
threshold of the well. (b) Adsorption of a low-energy particle in
the classical limit.
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Consequently, if one tries to compute the adsorption prob-
ability a (“sticking coefficient”) due to the creation of
surface or bulk excitations near z=0, one finds that
lima(E) =0.

On the other hand, the description of particle adsorp-
tion by surfaces, which is based on classical mechanics,
disagrees with this result. In this description the incident
particle is a classical point particle, while the surface exci-
tations are treated quantum mechanically. The incoming
particle acts as a drive on the surface modes and loses en-
ergy. It is found that limg_ oa(E) =1, both for energy
adsorption by surface phonons? as well as by electron-hole
pairs.* Thus, there is no low-energy adiabatic regime.
The simplest way to treat this effect is to include the sur-
face excitations as giving rise to a frictional drag on the
classical particle. A low-energy incoming particle is
inevitably captured [see Fig. 1(b)].

The “quantum” and “classical” descriptions of surface
scattering are thus in contradiction at low energies.®
Which description is valid will depend on to what degree
inelastic scattering destroys phase coherence and
suppresses quantum interference. To investigate the
range of validity of these two pictures, we consider a case
where the surface is smooth and the Hamiltonian well un-
derstood:” a charged particle of mass M impinging on a
zero-temperature dielectric fluid of density S, surface ten-
sion o, and dielectric constant . The Hamiltonian is

H——;—; + V(z)+§ —(—.STQ)-"IWVq'(z)(aq-FaT-q)e"q'R
+X hozadaq, ¢))
with !
- Ao/z, z> zo,
V(z)=1 —A¢/z0, 0<z <z, ()
oo z<0,

]

S is the surface area, Q, =(hq/2pw,)'"?, and Ag=e?(e
—1)/4(e+1). The cutoff zg is of the order of the intera-
tomic spacing of the fluid.” For distances z < zo the im-
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age potential is invalid. For z <0, a particle would be in-
side the fluid. The repulsive barrier it needs to overcome
was taken here to be infinite. The range of the interaction
between particle and capillary waves is determined by

V,'(z) =Ao/z*— (Ao/z)gK (qz) , 3)

where K is the modified Bessel function of the first kind.
Equation (3) is valid only for z > z¢. For a thick helium
film, the quantized capillary waves (“ripplons”) have a
dispersion

) 1/2 q 3/2 , 4)

J

w,=(o/p

2r (F| Hin
th:< | Hiw | D Pf E;—E,

If we keep only the first term (Fermi’s golden rule), then
for E < Epg,

a(E)~(E/ER)'*, (6)

so @(0) =0 for the Coulomb }aotential. For a potential
well of finite range® a(E) ~E /2

Higher-order terms involve multiripplon emission, self-
energy, and vertex corrections. We computed’ @ up to
third order in Hiy and found a(0) =0. In fact, every term
in the perturbation series [Eq. (5)] contains one factor
(v| Hin: | I) which vanishes as E — 0 because [ is a scatter-
ing state. The density of states at E =0 is smooth for
Coulomb potentials so the integration over the intermedi-
ate states | v) does not lead to any logarithmic divergences
for E;— 0, while for E,— 0, the intermediate states
again contain quantum-reflection terms proportional to
(E,JER)'*. Hence, we conclude that a(0) =0 term by
term in the perturbation theory.

The coupling parameter A of the perturbation series is
found by noting that Hi,,=(3V/dz)u(R,), with u(Ry)
the height deformation of the surface at Ry, and R the
in-plane coordinate. Comparing this with ¥ (z) suggests

A=(u"ap, @)
which is (almost) correct.® As long as the perturbation
series converges, i.c., for small A, we expect Eq. (6) to be
valid.

To deal with the strong-coupling limit A>>1. We note

|

2

2
HTDH-———;MV2+V(Z)— 2S
q

th)<V|Him|1)dV

ZVq'(z)quf_,wdt'(gb | V' | 9)rsinewg (£ —1') .
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neglecting gravitational effects.

We start by computing a¢(0) perturbatively in Hy, the
particle-ripplon term in Eq. (1). In the absence of cou-
pling, the bound-state spectrum is hydrogenic with a
characteristic Rydberg energy Er =M A$/2h % and a Bohr
“radius” ag =h*/MAo. For z~ag, the incoming and out-
going scattering states have their amplitudes reduced by a
factor (E/Eg)'* with respect to their amplitude at z =oo.
The transition probability W for an incoming wave |I)
with energy E; to be trapped and turned into one of the
bound states | F) is®

2
+--- | 8(EF—E)). €Y

|
that our Hamiltonian is of the form of the polaron prob-

lem. In the strong-coupling limit, the wave function of a
polaron is of a narrow extent and the energy scale of the
particle due to zero-point motion is high compared to the
energy scale of the phonon degrees of freedom. This
justifies a Born-Oppenheimer approximation for the
many-body wave function ¥. In our case

v=yo(R,t), (8)
where y and ¢ are, respectively, the ripplon and particle
wave functions. The optimal choice for those functions
can then be determined variationally, and is found to cor-
respond to the time-dependent Hartree (TDH) approxi-
mation. This method was introduced by Kumamoto and
Silbey (KS) in surface scattering,'® but was used previ-
ously in nuclear and molecular physics. One obtains two
coupled equations for y and ¢:

2y72
ih%f_s —%+V(z) o+y | Hinl )i, (92)
ih%‘f—=Zhwqa;’aqv/+(¢|Him|¢>rW, (9b)
q

where the subscript ¢ indicates the time dependence of the
matrix elements. Since Eq. (9b) represents a set of driven
harmonic oscillators, it can be solved exactly. Inserting
the result in Eq. (9a) gives a self-consistent particle Ham-
iltonian for ¢

(10)

Since our wave function is assumed to be well localized, we set eTRi= 1, i.e., we neglect spreading parallel to the surface

on length scales of order of the ripplon wavelength.

If, following KS, we also neglect spreading of ¢ along the z direction, we recover an equation of motion for the classical

coordinate z4(z)

Mig=—V'(g)+ %gwg(zc,)lgg S _arv, zaG)sine, e — 1) .

(11)

This is a well-known equation, shown by Knowles and Suhl!! to be the classical limit of the adsorption problem. The
memory kernel in Eq. (11) leads to frictional loss and a(0) =1, as expected.
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We now allow the wave function ¢(z) to spread along
the z direction and solve numerically the corresponding
nonlinear Schrédinger equation [Eq. (9a)] with Hrpy as
Hamiltonian.'> Thus, we fully include quantum
reflection, while treating electron-ripplon coupling
through the mean-field approximation [Eq. (8)]. For an
electron normally incident on a *He surface, we delib-
erately vary the surface tension away from its physical
value in order to change the coupling strength A without
changing ¥V (z). We take as our initial wave function an
incoming Gaussian wave packing of average energy
E=0.1 K, 8000 A away from the surface (a5==50 A).
We choose the energy range E < Eg (Eg==10 K) in order
to observe quantum-interference effects. The results are
shown in Fig. 2. For large A, we find a(0)=1, and the
wave function is highly localized near the surface. As we
reduce A, a(0) drops and develops a nonmonotonic depen-
dence on A in the A=1-10 range. The reflected wave
packet is delocalized and has a broad energy spectrum
which extends down to E=0. Because of finite-size
effects, it is difficult to establish the precise value of a in
this range. For A <1, a(0) goes to zero and the wave
function is indistinguishable from a Coulomb scattering
state.

The essential point is that for A>>1 quantum reflection
does not completely suppress a(0), contrary to the predic-
tions of perturbation theory. We have checked this result
for different values of E as well. This indicates that, as a
function of A, a(0) has a nonanalyticity around A =1, al-
though an exp(—1/A) dependence would also be possible.
The suppression of quantum-interference effects by inelas-
tic scattering could proceed through a phase transition, as
in the case of level splitting in a double-well potential cou-
pled to an “Ohmic” bath.!> This possibility is reinforced
by the observation of low-frequency “noise” in the wave
function for A~1-10. However, our numerical accuracy
is insufficient to check whether indeed we have true criti-
cal slowing down. :

Experimental realization of the transition region should
be quite readily achieved. If we take the real value of o
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FIG. 2. Sticking coefficient a(0) vs coupling strength A for an
incoming electron of momentum k£ =2x10°cm ~'. (The broken
line is a guide to eye.)

for “He, then A2~ 10 ~3, and so electrons are well into the
weak-coupling regime. However, the crossover to the
strong-coupling regime could be seen either by decreasing
the width of the “He layer'* or by increasing the mass of
the incident particle. At low energies, we find no adsorp-
tion for a proton, but an F ™ ion has a sticking coefficient
a(0) =0.54. We have also repeated the above calculation
for the scattering of *He atoms from *“He surfaces, and
found @(0)==0.5. Thus, both *He and F ~ would be in
the intermediate to strong-coupling regime.

In summary, we find that for the case of adsorption of
low-energy charged particles by dielectric fields, neither
perturbation theory nor the classical approximation are
valid over a large range of coupling constants. Low-energy
adsorption involves a complex interplay between quantum
interference and dissipation which is not well described by
either of the two standard pictures.
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