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Geometric scaling of the optical memory eI'ect in coherent-wave propagation through random media
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Geometric scaling of the optical memory eA'ect is studied for transmission and reAection.
Two-dimensional momentum matching, and two-dimensional scaling of the correlation function, is
obtained for smooth-surfaced samples from theory and from experiment. Very rough-surfaced
samples exhibit three-dimensional scaling. Internal surface reAections are found to play an im-
portant role in determining the width of the correlation function, and are shown substantially to
account for previous discrepancies between theory and experiment.

Recently, a striking memory effect in the propagation
of coherent optical waves through highly;random media
was observed experimentally, verifying earlier theoretical
predictions of Feng, Kane, Lee, and Stone. One impor-
tant manifestation of this memory effect is the ability of
the emitted speckle pattern to track the (invisible) laser
beam through a random, highly multiply scattering medi-
um. This tracking, however, is strongly dependent upon
geometry, an effect not explicitly considered previous-
ly. ' Theory predicts, ' and the experiments verified, '

that the angular range over which such tracking occurs is
limited by the sample thickness t for transmission, and by
the photon-transport mean free path I for reflection.
When the change k in momentum transfer due to a
change in direction of the laser beam is such that kt for
transmission, or kl for reflection, is of order unity,
memory loss sets in, and the emitted speckle pattern loses
track of the laser-beam direction. A quantitative measure
of the extent of the memory effect is thus the degree of
cross correlation C between initial and final speckle pat-
terns as the laser direction is varied. The angular half-
width of this correlation function is also strongly depen-
dent upon geometry, and shows an important, general
scaling property which will be our major concern. In this
Rapid Communication, we explicitly introduce the re-

quisite geometric effects into the theory, and present the
first experimental and theoretical results on the geometric
scaling of the memory effect in both transmission and
reflection. We also show that internal surface reAections
play an important role in determining the width of the
correlation function C, and that these reflections account
for much of the previous discrepancy between theory and
experiment. '

Our experiments are performed on free-space speckle
patterns, which are approximated here as being in the far
field, since wave-front curvature is unimportant. The (as-
sumed scalar) optical field E(r) at the output face is re-
lated to the field A (r') at the input face by

E(r) T(r, r')A(r')d r',

where the complex transfer function T describes propaga-
tion of light through the random medium. Neglecting
correlations between optical fields at different points in
the sample, and denoting initial and final configurations
by subscripts 1 and 2, the far-field intensity-intensity
correlation function is C ((Ei(Ki)Ez (K2)) ~, where
E(K) is the Fourier transform of E(r), the K are outgo-
ing wave vectors, and the angular brackets imply an en-
semble average. With A (r) exp[ik r], we then have

(El(K~)E2 (K2)) b(Kt —kt) „expli(K~~ R+Ksz' —k~z)P(R, z, z';t)d Rdzdz', (2)

where K K2 —K~, k k2 —kt, II and J refer to direc-
tions parallel and perpendicular to the sample surface, R
is a vector parallel to this surface, and z and z' are
inward-directed distances measured from the input and
output faces, respectively. In obtaining Eq. (2) we have
set

(T(r, r')T*(r",r'")) -b'(r —r")b(r' —r"')(
~ T(r, r')

~ ),

(( T(r, r') )'& -P(R,z,z';t),

where R
~ r(~

—
r~t ~. P, which differs for transmission and

reflection, describes the probability that a photon injected

at depth z from the input surface will exit at depth z' from
the output surface, while having moved a transverse dis-
tance R. For reflection, it may be noted that the Fourier
transform appearing in Eq. (2) is essentially the same as
that which describes the coherent backscattering peak.

Since the incident beam width W))z, the Fourier
transform of the product of incident-field distributions
AiAq is well approximated as being two dimensional,
leading to the b function appearing in Eq. (2), which re-
quires that only the components of momentum parallel to
the sample surface be conserved. Experimentally, we use
a geometry in which k, K, and the normal to the sample
surface all lie in a plane, so that the angular rotation 6 of
the emitted speckle pattern is related to the angle of rota-
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tion of the laser, AL, and of the sample, ds, by

e —(cos8;/cos8, )d,i,
e (1+cos8;/cos8, )d,s,

(3a)

(3b)

75

where 8; is the angle of incidence of the incoming laser
beam, and 8, is the angle of emission of the outgoing
speckle pattern. In Eqs. (3) both these angles are mea-
sured from the normal to the input face, thereby avoiding
the need for separate formulas for refiection and transmis-
sion. Experimentally, we verify Eqs. (3) by identifying e
with the angular displacement of the peak of the correla-
tion function C as either AL or hs is varied. Our experi-
mental methods are described in Ref. 1, which may also
be consulted for graphic illustrations of how the speckle
pattern tracks the rotation of the laser beam, and how this
is mirrored in the angular displacement of the peak of the
correlation function C.

The tracking data in transmission for various
geometries are shown in Fig. 1(a) for a 0.27-mm-thick
sample containing 0.5% by weight micrometer-sized Ti02
particles dispersed in a polystyrene matrix. We note that
the diffusely transmitted light was almost completely
depolarized, while its angular dependence approximated
the predictions of Milne theory, so that optical transport
in this sample is highly diffusive. The curves displayed in
Fig. 1(a) are labeled by L (8;,8, ) for rotation of the laser
beam, and by S(8;,8, ) for rotation of the sample, both ro-
tations being about an axis perpendicular to the scattering
plane and passing through the middle of the sample at t/2.
Note that for certain geometries, say 8; 0', 8, 60',
very different results are obtained if the laser rotates,
L(0,60), in which case the speckle pattern moves in the
same direction as the laser, but at twice the rate, or if the
sample rotates, S(0,60), in which case the speckle motion
is retrograde. Overall, the data for both transmission and
refiection verify the two-dimensional momentum match-
ing conditions predicted by Eqs. (3), which are shown in
Fig. 1(a) by the straight lines. Although perhaps not im-
mediately obvious from Eq. (2), the correlation function
for a given geometry is predicted to be an identical func-
tion of dL and of hs. This is verified in Fig. 1(b) for the
two extreme cases S(0,60) and L(0,60) of Fig. 1(a), and
was found to hold true in all geometries, both for
transmission and refiection.

As was the case previously, ' the half width of the corre-
lation function C, shown in Fig. 1(b), is substantially nar-
rower than the theoretical width. ' We have identified
the cause of this discrepancy as being mostly due to inter-
nal reIIections from the sample surfaces. For a typical
sample refractive index of 1.5, half of the internally scat-
tered light wi11 exceed the critical angle for total internal
refiection. As a result of such reflections, the photon
moves a transverse distance R which is much greater than
predicted by diffusion theory, leading to a significant nar-
rowing of the correlation function. These internal reflec-
tions may be minimized by index matching the sample
surfaces to thick optical Oats, while masking out the
large-angle reAections from the free surfaces of the Aats.
In Fig. 2, we display the results for transmission through
our Ti02-polystyrene sample. The substantially improved
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FIG. l. (a) Angular displacement e of the peak of the corre-
lation function C in transmission vs the angular rotation 6 of ei-
ther the laser (b, BL) or the sample (5 hs). The curves are
labeled L(8;,8o) for rotation of the laser, and S(8;,8, ) for rota-
tion of the sample, where 8; is the angle of incidence of the laser,
and 8o is the angle of emission of the speckle pattern. Both the
angles are given in degrees. For convenience and clarity, in the
labels to all graphs 8o is measured from the normal to the out-
put face and 8; from the normal to the input face. The straight
lines are the theoretical predictions of Eqs. (3). Negative e im-

plies that the speckle motion is retrograde. (b) Memory effect
correlation function C vs angular rotation h, of either the laser
(6 ht, ) or the sample (6 hs). The data correspond to the
two extreme cases L(0,60) and S(0,60) shown in (a). In spite
of their very diff&ren tracking behavior, the correlation func-
tions for these two extreme cases are the same within experi-
mental error, in full accord with theory.



GEOMETRIC SCALING OF THE OPTICAL MEMORY EFFECT. . . 12 405

0.5—
00

~ 0
~ o

~ 0
0

o

This implies that when plotted against AL, for example, C
will appear to be strongly geometrically dependent,
whereas it will exhibit scaling when plotted against
cos(8;)AL. This prediction is verified in Figs. 3(a) and
3(b) for transmission through our Ti02-polystyrene sam-
ple.

For reflection, it is not at all obvious what degree or
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FIG. 2. Reduction of internal surface reflections in transmis-
sion for L(0,0) geometry. The solid circles are the correlation
function C for a native Ti02-polystyrene sample, and the open
circles are for the same sample in which surface reflections have
been reduced by index matching. The dashed line is the theoret-
ical prediction of Ref. 2.
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agreement between theory and experiment is self-evident.
We also find a similar degree of improvement for reAec-
tion.

We turn now to a consideration of the geometric scaling
behavior of the correlation function C. For transmission,
the transverse displacement R is of order the sample
thickness t, and is thus much greater than z, and z', which
are both of the order of the transport mean free path I.
Accordingly, the Fourier transform in Eq. (2) is dominat-
ed by the KII. R term, and is thus nearly two dimensional.
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FIG. 3. Scaling of the correlation function in transmission
(a), (b), and in reliection (c),(d), for a TiOz-polystyrene sample.
The incident laser direction 0; is shown by either open circles—normal to the input face in transmission, or 25' from the nor-
mal in reflection; or by solid circles —at an angle of incidence
equal to 60'. The output angle 8, 0 . (a) and (c) are plotted
unscaled, 6 AI. , while (b) and (d) are plotted using two-
dimensional scaling, 4 cos(60')AL.

FIG. 4. Scaling of the correlation function in reflection for
BaSO4 coatings. (a) and (b) are for a rough-surfaced sample,
while (c) is for a smooth-surfaced sample prepared as described
in the text. Data are shown for four diff'erent angles of in-
cidence: +, 5;0, 25; , 60; and &, 75 . The angle of emission
8, O'. The rough-surface data in (a) are plotted using two-
dimensional scaling, 6-cos(8;)AL, which fails completely. In
(b) these same data are replotted using three-dimensional scal-
ing, Eq. (5), with (z l/(R ) -(0.75) z, which is reasonably suc-
cessful. In (c) the smooth-surface data are scaled using two-
dimensional scaling, which in marked contrast to (a) is success-
ful for this sample. Note also the expanded scale for the corre-
lation function C. The dashed line is the square of the coherent
backscattered peak as measured in Ref. 9.
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what kind of scaling is to be expected, since R, z, and z' are all of order l, and the Fourier transform in Eq. (2) appears
three dimensional. We have extended prior treatments' of the memory effect by explicitly including the normal com-
ponents of k and K, and have obtained C for reflection from a sample of arbitrary thickness t using continuous photon in-
jection. Our general expression is too long to be reproduced here, and will be published separately. In the limit t ~ ~ it
yields for the normalized correlation function,

C=b'(k~~ —Kt~) ( (2kt~zp&;X, ) '[(A,;+ks+ik~) '(A,, —
kt~

—iK~)
—2k~~[(zo —iK )' —k~(] '[);+7.+i(k —K )]
—(X;+kii+ik~) '(7, +k(( iK—i) 'exp( —2k~~zp)] (

where A,;, -I/icos(8; ), and zo 0.711 from the bound-
ary conditions to the photon diffusion equation. Both our
general expression, and the limiting form in Eq. (4), ex-
hibit the following quite surprising result: excellent (al-
though not exact) cos(8;)AL scaling is obtained for any
combination of input and output angles within the limits
0;, ~ 75 . Experimental verification of this striking pre-
diction is given for our Ti02-polystyrene sample in Figs.
3(c) and 3(d). We note that this scaling implies that also
for refiection the Fourier transform in Eq. (2) is very
nearly two dimensional. We may describe this quasi-
two-dimensional behavior as resulting in part from the
fact that for small angles k& and EC& are, anyway, not im-
portant, while for large angles both z and z' go to zero
with cos8.

When the sample surface is very rough, this two-
dimensional scaling can be broken, and a crossover forced
to three-dimensional scaling. Since it is now the arbitrary
surface roughness which determines z, and also influences
R, we could expect that z and R will be more or less un-
correlated random variables, and that a heuristic scaling
function of the form

(cos 8;+(&z &/(R ))sin 8.)' A (5)

would provide a reasonable description of the data. In
Fig. 4 we present our results for diffuse refiection from a
suitable rough-surfaced scatterer consisting of BaSO4 mi-
croparticles. In Fig. 4(a) we first plot our data using
two-dimensional, cos (8;)d L scaling, which fails complete-
ly. In Fig. 4(b), we replot these same data scaled accord-
ing to Eq. (5) with (z )/(R ) =(0.75), which yields a
quite reasonable degree of scaling. We note that even for

I

this rough-surfaced sample, Eqs. (3) were well satisfied
experimentally over the full range of angles studied, in ac-
cordance with expectation.

How does the correlation function for a smooth-
surfaced BaSO4 sample scale? We prepared such a sam-
ple by forming the coating of microparticles onto the sur-
face of a thick optical flat, and studied the diA'use

reflection from the inner surface of the coating which was
in optical contact with the glass, while masking out the
large-angle reflections from the remaining free g1ass sur-
faces. The data, which are shown in Fig. 4(c), are scaled
using h=cos(8;)AL (i.e., (z )/(R ) =0), which produced
the best scaling results. This once again indicates that for
smooth-surfaced samples the scaling of the correlation
function is essentially two dimensional. Also shown in this
figure as the dashed curve is the square of our previous
measurement of the coherent backscattering peak from
similar BaSO4 coatings. As may be seen, our present data
for the memory eA'ect correlation function in reflection,
and our previous data for the coherent backscattering
peak, are in near agreement with each other, in full ac-
cord with theory.

We conclude by noting that our methods may be ex-
tended to the study of important correlation eA'ects pre-
dicted for propagation of coherent optical waves through
highly random media, ' ' as well as to the study of oth-
er interesting memory eA'ects which also occur in such
media.
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